/// @brief extracts the iTRAQ channels from the MS data and stores intensity values in a consensus map
  ///
  /// @param ms_exp_data Raw data to read
  /// @param consensus_map Output each MS² scan as a consensus feature
  /// @throws Exception::MissingInformation if no scans present or MS² scan has no precursor
  void ItraqChannelExtractor::run(const MSExperiment<Peak1D>& ms_exp_data, ConsensusMap& consensus_map)
  {
    if (ms_exp_data.empty())
    {
      LOG_WARN << "The given file does not contain any conventional peak data, but might"
                  " contain chromatograms. This tool currently cannot handle them, sorry.";
      throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, "Experiment has no scans!");
    }

    MSExperiment<> ms_exp_MS2;

    String mode = (String) param_.getValue("select_activation");
    std::cout << "Selecting scans with activation mode: " << (mode == "" ? "any" : mode) << "\n";
    HasActivationMethod<MSExperiment<Peak1D>::SpectrumType> activation_predicate(ListUtils::create<String>(mode));

    for (size_t idx = 0; idx < ms_exp_data.size(); ++idx)
    {
      if (ms_exp_data[idx].getMSLevel() == 2)
      {
        if (mode == "" || activation_predicate(ms_exp_data[idx]))
        {
          // copy only MS² scans
          ms_exp_MS2.addSpectrum(ms_exp_data[idx]);
        }
        else
        {
          //std::cout << "deleting spectrum # " << idx << " with RT: " << ms_exp_data[idx].getRT() << "\n";
        }
      }
    }

#ifdef ITRAQ_DEBUG
    std::cout << "we have " << ms_exp_MS2.size() << " scans left of level " << ms_exp_MS2[0].getMSLevel() << std::endl;
    std::cout << "run: channel_map_ has " << channel_map_.size() << " entries!" << std::endl;
#endif
    consensus_map.clear(false);
    // set <mapList> header
    Int index_cnt = 0;
    for (ChannelMapType::const_iterator cm_it = channel_map_.begin(); cm_it != channel_map_.end(); ++cm_it)
    {
      // structure of Map cm_it
      //  first == channel-name as Int e.g. 114
      //  second == ChannelInfo struct
      ConsensusMap::FileDescription channel_as_map;
      // label is the channel + description provided in the Params
      if (itraq_type_ != TMT_SIXPLEX)
        channel_as_map.label = "iTRAQ_" + String(cm_it->second.name) + "_" + String(cm_it->second.description);
      else
        channel_as_map.label = "TMT_" + String(cm_it->second.name) + "_" + String(cm_it->second.description);

      channel_as_map.size = ms_exp_MS2.size();
      //TODO what about .filename? leave empty?
      // add some more MetaInfo
      channel_as_map.setMetaValue("channel_name", cm_it->second.name);
      channel_as_map.setMetaValue("channel_id", cm_it->second.id);
      channel_as_map.setMetaValue("channel_description", cm_it->second.description);
      channel_as_map.setMetaValue("channel_center", cm_it->second.center);
      channel_as_map.setMetaValue("channel_active", String(cm_it->second.active ? "true" : "false"));
      consensus_map.getFileDescriptions()[index_cnt++] = channel_as_map;
    }

    // create consensusElements

    Peak2D::CoordinateType allowed_deviation = (Peak2D::CoordinateType) param_.getValue("reporter_mass_shift");
    // now we have picked data
    // --> assign peaks to channels
    UInt element_index(0);

    for (MSExperiment<>::ConstIterator it = ms_exp_MS2.begin(); it != ms_exp_MS2.end(); ++it)
    {
      // store RT&MZ of parent ion as centroid of ConsensusFeature
      ConsensusFeature cf;
      cf.setUniqueId();
      cf.setRT(it->getRT());
      if (it->getPrecursors().size() >= 1)
      {
        cf.setMZ(it->getPrecursors()[0].getMZ());
      }
      else
      {
        throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, String("No precursor information given for scan native ID ") + String(it->getNativeID()) + " with RT " + String(it->getRT()));
      }

      Peak2D channel_value;
      channel_value.setRT(it->getRT());
      // for each each channel
      Int index = 0;
      Peak2D::IntensityType overall_intensity = 0;
      for (ChannelMapType::const_iterator cm_it = channel_map_.begin(); cm_it != channel_map_.end(); ++cm_it)
      {
        // set mz-position of channel
        channel_value.setMZ(cm_it->second.center);
        // reset intensity
        channel_value.setIntensity(0);

        //add up all signals
        for (MSExperiment<>::SpectrumType::ConstIterator mz_it =
               it->MZBegin(cm_it->second.center - allowed_deviation)
             ; mz_it != it->MZEnd(cm_it->second.center + allowed_deviation)
             ; ++mz_it
             )
        {
          channel_value.setIntensity(channel_value.getIntensity() + mz_it->getIntensity());
        }

        overall_intensity += channel_value.getIntensity();

        // add channel to ConsensusFeature
        cf.insert(index++, channel_value, element_index);

      } // ! channel_iterator


      // check featureHandles are not empty
      if (overall_intensity == 0)
      {
        cf.setMetaValue("all_empty", String("true"));
      }
      cf.setIntensity(overall_intensity);
      consensus_map.push_back(cf);

      // the tandem-scan in the order they appear in the experiment
      ++element_index;
    } // ! Experiment iterator


#ifdef ITRAQ_DEBUG
    std::cout << "processed " << element_index << " scans" << std::endl;
#endif

    consensus_map.setExperimentType("itraq");

    return;
  }
  void IsobaricChannelExtractor::extractChannels(const MSExperiment<Peak1D>& ms_exp_data, ConsensusMap& consensus_map)
  {
    if (ms_exp_data.empty())
    {
      LOG_WARN << "The given file does not contain any conventional peak data, but might"
                  " contain chromatograms. This tool currently cannot handle them, sorry.\n";
      throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, "Experiment has no scans!");
    }

    // clear the output map
    consensus_map.clear(false);
    consensus_map.setExperimentType("labeled_MS2");

    // create predicate for spectrum checking
    LOG_INFO << "Selecting scans with activation mode: " << (selected_activation_ == "" ? "any" : selected_activation_) << "\n";
    HasActivationMethod<MSExperiment<Peak1D>::SpectrumType> activation_predicate(StringList::create(selected_activation_));

    // now we have picked data
    // --> assign peaks to channels
    UInt64 element_index(0);

    // remember the current precusor spectrum
    MSExperiment<Peak1D>::ConstIterator prec_spec = ms_exp_data.end();

    for (MSExperiment<Peak1D>::ConstIterator it = ms_exp_data.begin(); it != ms_exp_data.end(); ++it)
    {
      // remember the last MS1 spectra as we assume it to be the precursor spectrum
      if (it->getMSLevel() ==  1) prec_spec = it;

      if (selected_activation_ == "" || activation_predicate(*it))
      {
        // check if precursor is available
        if (it->getPrecursors().empty())
        {
          throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, String("No precursor information given for scan native ID ") + it->getNativeID() + " with RT " + String(it->getRT()));
        }

        // check precursor constraints
        if (!isValidPrecursor_(it->getPrecursors()[0]))
        {
          LOG_DEBUG << "Skip spectrum " << it->getNativeID() << ": Precursor doesn't fulfill all constraints." << std::endl;
          continue;
        }

        // check precursor purity if we have a valid precursor ..
        if (prec_spec != ms_exp_data.end())
        {
          const DoubleReal purity = computePrecursorPurity_(it, prec_spec);
          if (purity < min_precursor_purity_)
          {
            LOG_DEBUG << "Skip spectrum " << it->getNativeID() << ": Precursor purity is below the threshold. [purity = " << purity << "]" << std::endl;
            continue;
          }
        }
        else
        {
          LOG_INFO << "No precursor available for spectrum: " << it->getNativeID() << std::endl;
        }
        if (!(prec_spec == ms_exp_data.end()) && computePrecursorPurity_(it, prec_spec) < min_precursor_purity_)
        {
          LOG_DEBUG << "Skip spectrum " << it->getNativeID() << ": Precursor purity is below the threshold." << std::endl;
          continue;
        }

        // store RT&MZ of parent ion as centroid of ConsensusFeature
        ConsensusFeature cf;
        cf.setUniqueId();
        cf.setRT(it->getRT());
        cf.setMZ(it->getPrecursors()[0].getMZ());

        Peak2D channel_value;
        channel_value.setRT(it->getRT());
        // for each each channel
        UInt64 map_index = 0;
        Peak2D::IntensityType overall_intensity = 0;
        for (IsobaricQuantitationMethod::IsobaricChannelList::const_iterator cl_it = quant_method_->getChannelInformation().begin();
             cl_it != quant_method_->getChannelInformation().end();
             ++cl_it)
        {
          // set mz-position of channel
          channel_value.setMZ(cl_it->center);
          // reset intensity
          channel_value.setIntensity(0);

          // as every evaluation requires time, we cache the MZEnd iterator
          const MSExperiment<Peak1D>::SpectrumType::ConstIterator mz_end = it->MZEnd(cl_it->center + reporter_mass_shift_);

          // add up all signals
          for (MSExperiment<Peak1D>::SpectrumType::ConstIterator mz_it = it->MZBegin(cl_it->center - reporter_mass_shift_);
               mz_it != mz_end;
               ++mz_it)
          {
            channel_value.setIntensity(channel_value.getIntensity() + mz_it->getIntensity());
          }

          // discard contribution of this channel as it is below the required intensity threshold
          if (channel_value.getIntensity() < min_reporter_intensity_)
          {
            channel_value.setIntensity(0);
          }

          overall_intensity += channel_value.getIntensity();
          // add channel to ConsensusFeature
          cf.insert(map_index++, channel_value, element_index);
        } // ! channel_iterator

        // check if we keep this feature or if it contains low-intensity quantifications
        if (remove_low_intensity_quantifications_ && hasLowIntensityReporter_(cf))
        {
          continue;
        }

        // check featureHandles are not empty
        if (overall_intensity == 0)
        {
          cf.setMetaValue("all_empty", String("true"));
        }
        cf.setIntensity(overall_intensity);
        consensus_map.push_back(cf);

        // the tandem-scan in the order they appear in the experiment
        ++element_index;
      }
    } // ! Experiment iterator

    /// add meta information to the map
    registerChannelsInOutputMap_(consensus_map);
  }
  void EDTAFile::load(const String& filename, ConsensusMap& consensus_map)
  {
    // load input
    TextFile input(filename);
    TextFile::ConstIterator input_it = input.begin();

    // reset map
    consensus_map = ConsensusMap();
    consensus_map.setUniqueId();

    char separator = ' ';
    if (input_it->hasSubstring("\t"))
      separator = '\t';
    else if (input_it->hasSubstring(" "))
      separator = ' ';
    else if (input_it->hasSubstring(","))
      separator = ',';

    // parsing header line
    std::vector<String> headers;
    input_it->split(separator, headers);
    int offset = 0;
    for (Size i = 0; i < headers.size(); ++i)
    {
      headers[i].trim();
    }
    String header_trimmed = *input.begin();
    header_trimmed.trim();

    enum
    {
      TYPE_UNDEFINED,
      TYPE_OLD_NOCHARGE,
      TYPE_OLD_CHARGE,
      TYPE_CONSENSUS
    }
    input_type = TYPE_UNDEFINED;
    Size input_features = 1;

    double rt = 0.0;
    double mz = 0.0;
    double it = 0.0;
    Int ch = 0;

    if (headers.size() <= 2)
    {
      throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line 1: not enough columns! Expected at least 3 columns!\nOffending line: '") + header_trimmed + "'  (line 1)\n");
    }
    else if (headers.size() == 3)
      input_type = TYPE_OLD_NOCHARGE;
    else if (headers.size() == 4)
      input_type = TYPE_OLD_CHARGE;

    // see if we have a header
    try
    {
      // try to convert... if not: thats a header
      rt = headers[0].toDouble();
      mz = headers[1].toDouble();
      it = headers[2].toDouble();
    }
    catch (Exception::BaseException&)
    {
      offset = 1;
      ++input_it;
      LOG_INFO << "Detected a header line.\n";
    }

    if (headers.size() >= 5)
    {
      if (String(headers[4].trim()).toUpper() == "RT1")
        input_type = TYPE_CONSENSUS;
      else
        input_type = TYPE_OLD_CHARGE;
    }
    if (input_type == TYPE_CONSENSUS)
    {
      // Every consensus style line includes features with four columns.
      // The remainder is meta data
      input_features = headers.size() / 4;
    }

    if (offset == 0 && (input_type == TYPE_OLD_CHARGE || input_type == TYPE_CONSENSUS))
    {
      throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line 1: No HEADER provided. This is only allowed for three columns. You have more!\nOffending line: '") + header_trimmed + "'  (line 1)\n");
    }

    SignedSize input_size = input.end() - input.begin();

    ConsensusMap::FileDescription desc;
    desc.filename = filename;
    desc.size = (input_size) - offset;
    consensus_map.getFileDescriptions()[0] = desc;

    // parsing features
    consensus_map.reserve(input_size);

    for (; input_it != input.end(); ++input_it)
    {
      //do nothing for empty lines
      String line_trimmed = *input_it;
      line_trimmed.trim();
      if (line_trimmed == "")
      {
        if ((input_it - input.begin()) < input_size - 1) LOG_WARN << "Notice: Empty line ignored (line " << ((input_it - input.begin()) + 1) << ").";
        continue;
      }

      //split line to tokens
      std::vector<String> parts;
      input_it->split(separator, parts);

      //abort if line does not contain enough fields
      if (parts.size() < 3)
      {
        throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "",
                                    String("Failed parsing in line ")
                                    + String((input_it - input.begin()) + 1)
                                    + ": At least three columns are needed! (got  "
                                    + String(parts.size())
                                    + ")\nOffending line: '"
                                    + line_trimmed
                                    + "'  (line "
                                    + String((input_it - input.begin()) + 1)
                                    + ")\n");
      }

      ConsensusFeature cf;
      cf.setUniqueId();

      try
      {
        // Convert values. Will return -1 if not available.
        rt = checkedToDouble_(parts, 0);
        mz = checkedToDouble_(parts, 1);
        it = checkedToDouble_(parts, 2);
        ch = checkedToInt_(parts, 3);

        cf.setRT(rt);
        cf.setMZ(mz);
        cf.setIntensity(it);
        if (input_type != TYPE_OLD_NOCHARGE)
          cf.setCharge(ch);
      }
      catch (Exception::BaseException&)
      {
        throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line ") + String((input_it - input.begin()) + 1) + ": Could not convert the first three columns to a number!\nOffending line: '" + line_trimmed + "'  (line " + String((input_it - input.begin()) + 1) + ")\n");
      }

      // Check all features in one line
      for (Size j = 1; j < input_features; ++j)
      {
        try
        {
          Feature f;
          f.setUniqueId();

          // Convert values. Will return -1 if not available.
          rt = checkedToDouble_(parts, j * 4 + 0);
          mz = checkedToDouble_(parts, j * 4 + 1);
          it = checkedToDouble_(parts, j * 4 + 2);
          ch = checkedToInt_(parts, j * 4 + 3);

          // Only accept features with at least RT and MZ set
          if (rt != -1 && mz != -1)
          {
            f.setRT(rt);
            f.setMZ(mz);
            f.setIntensity(it);
            f.setCharge(ch);

            cf.insert(j - 1, f);
          }
        }
        catch (Exception::BaseException&)
        {
          throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line ") + String((input_it - input.begin()) + 1) + ": Could not convert one of the four sub-feature columns (starting at column " + (j * 4 + 1) + ") to a number! Is the correct separator specified?\nOffending line: '" + line_trimmed + "'  (line " + String((input_it - input.begin()) + 1) + ")\n");
        }
      }

      //parse meta data
      for (Size j = input_features * 4; j < parts.size(); ++j)
      {
        String part_trimmed = parts[j];
        part_trimmed.trim();
        if (part_trimmed != "")
        {
          //check if column name is ok
          if (headers.size() <= j || headers[j] == "")
          {
            throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "",
                                        String("Error: Missing meta data header for column ") + (j + 1) + "!"
                                        + String("Offending header line: '") + header_trimmed + "'  (line 1)");
          }
          //add meta value
          cf.setMetaValue(headers[j], part_trimmed);
        }
      }

      //insert feature to map
      consensus_map.push_back(cf);
    }

    // register FileDescriptions
    ConsensusMap::FileDescription fd;
    fd.filename = filename;
    fd.size = consensus_map.size();
    Size maps = std::max(input_features - 1, Size(1)); // its either a simple feature or a consensus map
    // (in this case the 'input_features' includes the centroid, which we do not count)
    for (Size i = 0; i < maps; ++i)
    {
      fd.label = String("EDTA_Map ") + String(i);
      consensus_map.getFileDescriptions()[i] = fd;
    }

  }