Beispiel #1
0
/**
  Check if an FV is consistent and allocate cache for it.

  @param  FvDevice              A pointer to the FvDevice to be checked.

  @retval EFI_OUT_OF_RESOURCES  No enough buffer could be allocated.
  @retval EFI_SUCCESS           FV is consistent and cache is allocated.
  @retval EFI_VOLUME_CORRUPTED  File system is corrupted.

**/
EFI_STATUS
FvCheck (
  IN OUT FV_DEVICE  *FvDevice
  )
{
  EFI_STATUS                            Status;
  EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL    *Fvb;
  EFI_FIRMWARE_VOLUME_HEADER            *FwVolHeader;
  EFI_FIRMWARE_VOLUME_EXT_HEADER        *FwVolExtHeader;
  EFI_FVB_ATTRIBUTES_2                  FvbAttributes;
  EFI_FV_BLOCK_MAP_ENTRY                *BlockMap;
  FFS_FILE_LIST_ENTRY                   *FfsFileEntry;
  EFI_FFS_FILE_HEADER                   *FfsHeader;
  UINT8                                 *CacheLocation;
  UINTN                                 LbaOffset;
  UINTN                                 HeaderSize;
  UINTN                                 Index;
  EFI_LBA                               LbaIndex;
  UINTN                                 Size;
  EFI_FFS_FILE_STATE                    FileState;
  UINT8                                 *TopFvAddress;
  UINTN                                 TestLength;
  EFI_PHYSICAL_ADDRESS                  PhysicalAddress;
  BOOLEAN                               FileCached;
  UINTN                                 WholeFileSize;
  EFI_FFS_FILE_HEADER                   *CacheFfsHeader;

  FileCached = FALSE;
  CacheFfsHeader = NULL;

  Fvb = FvDevice->Fvb;
  FwVolHeader = FvDevice->FwVolHeader;

  Status = Fvb->GetAttributes (Fvb, &FvbAttributes);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Size is the size of the FV minus the head. We have already allocated
  // the header to check to make sure the volume is valid
  //
  Size = (UINTN)(FwVolHeader->FvLength - FwVolHeader->HeaderLength);
  if ((FvbAttributes & EFI_FVB2_MEMORY_MAPPED) != 0) {
    FvDevice->IsMemoryMapped = TRUE;

    Status = Fvb->GetPhysicalAddress (Fvb, &PhysicalAddress);
    if (EFI_ERROR (Status)) {
      return Status;
    }

    //
    // Don't cache memory mapped FV really.
    //
    FvDevice->CachedFv = (UINT8 *) (UINTN) (PhysicalAddress + FwVolHeader->HeaderLength);
  } else {
    FvDevice->IsMemoryMapped = FALSE;
    FvDevice->CachedFv = AllocatePool (Size);

    if (FvDevice->CachedFv == NULL) {
      return EFI_OUT_OF_RESOURCES;
    }
  }

  //
  // Remember a pointer to the end fo the CachedFv
  //
  FvDevice->EndOfCachedFv = FvDevice->CachedFv + Size;

  if (!FvDevice->IsMemoryMapped) {
    //
    // Copy FV minus header into memory using the block map we have all ready
    // read into memory.
    //
    BlockMap = FwVolHeader->BlockMap;
    CacheLocation = FvDevice->CachedFv;
    LbaIndex = 0;
    LbaOffset = 0;
    HeaderSize = FwVolHeader->HeaderLength;
    while ((BlockMap->NumBlocks != 0) || (BlockMap->Length != 0)) {
      Index = 0;
      Size  = BlockMap->Length;
      if (HeaderSize > 0) {
        //
        // Skip header size
        //
        for (; Index < BlockMap->NumBlocks && HeaderSize >= BlockMap->Length; Index ++) {
          HeaderSize -= BlockMap->Length;
          LbaIndex ++;
        }

        //
        // Check whether FvHeader is crossing the multi block range.
        //
        if (Index >= BlockMap->NumBlocks) {
          BlockMap++;
          continue;
        } else if (HeaderSize > 0) {
          LbaOffset = HeaderSize;
          Size = BlockMap->Length - HeaderSize;
          HeaderSize = 0;
        }
      }
    
      //
      // read the FV data  
      //
      for (; Index < BlockMap->NumBlocks; Index ++) {
        Status = Fvb->Read (Fvb,
                        LbaIndex,
                        LbaOffset,
                        &Size,
                        CacheLocation
                        );

        //
        // Not check EFI_BAD_BUFFER_SIZE, for Size = BlockMap->Length
        //
        if (EFI_ERROR (Status)) {
          goto Done;
        }

        LbaIndex++;
        CacheLocation += Size;

        //
        // After we skip Fv Header always read from start of block
        //
        LbaOffset = 0;
        Size  = BlockMap->Length;
      }

      BlockMap++;
    }
  }

  //
  // Scan to check the free space & File list
  //
  if ((FvbAttributes & EFI_FVB2_ERASE_POLARITY) != 0) {
    FvDevice->ErasePolarity = 1;
  } else {
    FvDevice->ErasePolarity = 0;
  }


  //
  // go through the whole FV cache, check the consistence of the FV.
  // Make a linked list of all the Ffs file headers
  //
  Status = EFI_SUCCESS;
  InitializeListHead (&FvDevice->FfsFileListHeader);

  //
  // Build FFS list
  //
  if (FwVolHeader->ExtHeaderOffset != 0) {
    //
    // Searching for files starts on an 8 byte aligned boundary after the end of the Extended Header if it exists.
    //
    FwVolExtHeader = (EFI_FIRMWARE_VOLUME_EXT_HEADER *) (FvDevice->CachedFv + (FwVolHeader->ExtHeaderOffset - FwVolHeader->HeaderLength));
    FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FwVolExtHeader + FwVolExtHeader->ExtHeaderSize);
    FfsHeader = (EFI_FFS_FILE_HEADER *) ALIGN_POINTER (FfsHeader, 8);
  } else {
    FfsHeader = (EFI_FFS_FILE_HEADER *) (FvDevice->CachedFv);
  }
  TopFvAddress = FvDevice->EndOfCachedFv;
  while (((UINTN) FfsHeader >= (UINTN) FvDevice->CachedFv) && ((UINTN) FfsHeader <= (UINTN) ((UINTN) TopFvAddress - sizeof (EFI_FFS_FILE_HEADER)))) {

    if (FileCached) {
      CoreFreePool (CacheFfsHeader);
      FileCached = FALSE;
    }

    TestLength = TopFvAddress - ((UINT8 *) FfsHeader);
    if (TestLength > sizeof (EFI_FFS_FILE_HEADER)) {
      TestLength = sizeof (EFI_FFS_FILE_HEADER);
    }

    if (IsBufferErased (FvDevice->ErasePolarity, FfsHeader, TestLength)) {
      //
      // We have found the free space so we are done!
      //
      goto Done;
    }

    if (!IsValidFfsHeader (FvDevice->ErasePolarity, FfsHeader, &FileState)) {
      if ((FileState == EFI_FILE_HEADER_INVALID) ||
          (FileState == EFI_FILE_HEADER_CONSTRUCTION)) {
        if (IS_FFS_FILE2 (FfsHeader)) {
          if (!FvDevice->IsFfs3Fv) {
            DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &FfsHeader->Name));
          }
          FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + sizeof (EFI_FFS_FILE_HEADER2));
        } else {
          FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + sizeof (EFI_FFS_FILE_HEADER));
        }
        continue;
      } else {
        //
        // File system is corrputed
        //
        Status = EFI_VOLUME_CORRUPTED;
        goto Done;
      }
    }

    CacheFfsHeader = FfsHeader;
    if ((CacheFfsHeader->Attributes & FFS_ATTRIB_CHECKSUM) == FFS_ATTRIB_CHECKSUM) {
      if (FvDevice->IsMemoryMapped) {
        //
        // Memory mapped FV has not been cached.
        // Here is to cache FFS file to memory buffer for following checksum calculating.
        // And then, the cached file buffer can be also used for FvReadFile.
        //
        WholeFileSize = IS_FFS_FILE2 (CacheFfsHeader) ? FFS_FILE2_SIZE (CacheFfsHeader): FFS_FILE_SIZE (CacheFfsHeader);
        CacheFfsHeader = AllocateCopyPool (WholeFileSize, CacheFfsHeader);
        if (CacheFfsHeader == NULL) {
          Status = EFI_OUT_OF_RESOURCES;
          goto Done;
        }
        FileCached = TRUE;
      }
    }

    if (!IsValidFfsFile (FvDevice->ErasePolarity, CacheFfsHeader)) {
      //
      // File system is corrupted
      //
      Status = EFI_VOLUME_CORRUPTED;
      goto Done;
    }

    if (IS_FFS_FILE2 (CacheFfsHeader)) {
      ASSERT (FFS_FILE2_SIZE (CacheFfsHeader) > 0x00FFFFFF);
      if (!FvDevice->IsFfs3Fv) {
        DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &CacheFfsHeader->Name));
        FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE2_SIZE (CacheFfsHeader));
        //
        // Adjust pointer to the next 8-byte aligned boundry.
        //
        FfsHeader = (EFI_FFS_FILE_HEADER *) (((UINTN) FfsHeader + 7) & ~0x07);
        continue;
      }
    }

    FileState = GetFileState (FvDevice->ErasePolarity, CacheFfsHeader);

    //
    // check for non-deleted file
    //
    if (FileState != EFI_FILE_DELETED) {
      //
      // Create a FFS list entry for each non-deleted file
      //
      FfsFileEntry = AllocateZeroPool (sizeof (FFS_FILE_LIST_ENTRY));
      if (FfsFileEntry == NULL) {
        Status = EFI_OUT_OF_RESOURCES;
        goto Done;
      }

      FfsFileEntry->FfsHeader = CacheFfsHeader;
      FfsFileEntry->FileCached = FileCached;
      FileCached = FALSE;
      InsertTailList (&FvDevice->FfsFileListHeader, &FfsFileEntry->Link);
    }

    if (IS_FFS_FILE2 (CacheFfsHeader)) {
      FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE2_SIZE (CacheFfsHeader));
    } else {
      FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE_SIZE (CacheFfsHeader));
    }

    //
    // Adjust pointer to the next 8-byte aligned boundry.
    //
    FfsHeader = (EFI_FFS_FILE_HEADER *)(((UINTN)FfsHeader + 7) & ~0x07);

  }

Done:
  if (EFI_ERROR (Status)) {
    if (FileCached) {
      CoreFreePool (CacheFfsHeader);
      FileCached = FALSE;
    }
    FreeFvDeviceResource (FvDevice);
  }

  return Status;
}
Beispiel #2
0
/**
  Starts a target block update. This function will record data about write
  in fault tolerant storage and will complete the write in a recoverable
  manner, ensuring at all times that either the original contents or
  the modified contents are available.

  @param This            The pointer to this protocol instance. 
  @param Lba             The logical block address of the target block.
  @param Offset          The offset within the target block to place the data.
  @param Length          The number of bytes to write to the target block.
  @param PrivateData     A pointer to private data that the caller requires to
                         complete any pending writes in the event of a fault.
  @param FvBlockHandle   The handle of FVB protocol that provides services for
                         reading, writing, and erasing the target block.
  @param Buffer          The data to write.

  @retval EFI_SUCCESS          The function completed successfully 
  @retval EFI_ABORTED          The function could not complete successfully. 
  @retval EFI_BAD_BUFFER_SIZE  The input data can't fit within the spare block. 
                               Offset + *NumBytes > SpareAreaLength.
  @retval EFI_ACCESS_DENIED    No writes have been allocated. 
  @retval EFI_OUT_OF_RESOURCES Cannot allocate enough memory resource.
  @retval EFI_NOT_FOUND        Cannot find FVB protocol by handle.

**/
EFI_STATUS
EFIAPI
FtwWrite (
  IN EFI_FAULT_TOLERANT_WRITE_PROTOCOL     *This,
  IN EFI_LBA                               Lba,
  IN UINTN                                 Offset,
  IN UINTN                                 Length,
  IN VOID                                  *PrivateData,
  IN EFI_HANDLE                            FvBlockHandle,
  IN VOID                                  *Buffer
  )
{
  EFI_STATUS                          Status;
  EFI_FTW_DEVICE                      *FtwDevice;
  EFI_FAULT_TOLERANT_WRITE_HEADER     *Header;
  EFI_FAULT_TOLERANT_WRITE_RECORD     *Record;
  EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *Fvb;
  UINTN                               MyLength;
  UINTN                               MyOffset;
  UINTN                               MyBufferSize;
  UINT8                               *MyBuffer;
  UINTN                               SpareBufferSize;
  UINT8                               *SpareBuffer;
  UINTN                               Index;
  UINT8                               *Ptr;
  EFI_PHYSICAL_ADDRESS                FvbPhysicalAddress;

  FtwDevice = FTW_CONTEXT_FROM_THIS (This);

  Status    = WorkSpaceRefresh (FtwDevice);
  if (EFI_ERROR (Status)) {
    return EFI_ABORTED;
  }

  Header  = FtwDevice->FtwLastWriteHeader;
  Record  = FtwDevice->FtwLastWriteRecord;
  
  if (IsErasedFlashBuffer ((UINT8 *) Header, sizeof (EFI_FAULT_TOLERANT_WRITE_HEADER))) {
    if (PrivateData == NULL) {
      //
      // Ftw Write Header is not allocated.
      // No additional private data, the private data size is zero. Number of record can be set to 1.
      //
      Status = FtwAllocate (This, &gEfiCallerIdGuid, 0, 1);
      if (EFI_ERROR (Status)) {
        return Status;
      }
    } else {
      //
      // Ftw Write Header is not allocated
      // Additional private data is not NULL, the private data size can't be determined.
      //
      DEBUG ((EFI_D_ERROR, "Ftw: no allocates space for write record!\n"));
      DEBUG ((EFI_D_ERROR, "Ftw: Allocate service should be called before Write service!\n"));
      return EFI_NOT_READY;
    }
  }

  //
  // If Record is out of the range of Header, return access denied.
  //
  if (((UINTN)((UINT8 *) Record - (UINT8 *) Header)) > WRITE_TOTAL_SIZE (Header->NumberOfWrites - 1, Header->PrivateDataSize)) {
    return EFI_ACCESS_DENIED;
  }

  //
  // Check the COMPLETE flag of last write header
  //
  if (Header->Complete == FTW_VALID_STATE) {
    return EFI_ACCESS_DENIED;
  }

  if (Record->DestinationComplete == FTW_VALID_STATE) {
    return EFI_ACCESS_DENIED;
  }

  if ((Record->SpareComplete == FTW_VALID_STATE) && (Record->DestinationComplete != FTW_VALID_STATE)) {
    return EFI_NOT_READY;
  }
  //
  // Check if the input data can fit within the target block
  //
  if ((Offset + Length) > FtwDevice->SpareAreaLength) {
    return EFI_BAD_BUFFER_SIZE;
  }
  //
  // Get the FVB protocol by handle
  //
  Status = FtwGetFvbByHandle (FvBlockHandle, &Fvb);
  if (EFI_ERROR (Status)) {
    return EFI_NOT_FOUND;
  }

  Status = Fvb->GetPhysicalAddress (Fvb, &FvbPhysicalAddress);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "FtwLite: Get FVB physical address - %r\n", Status));
    return EFI_ABORTED;
  }

  //
  // Set BootBlockUpdate FLAG if it's updating boot block.
  //
  if (IsBootBlock (FtwDevice, Fvb, Lba)) {
    Record->BootBlockUpdate = FTW_VALID_STATE;
  }
  //
  // Write the record to the work space.
  //
  Record->Lba     = Lba;
  Record->Offset  = Offset;
  Record->Length  = Length;
  Record->FvBaseAddress = FvbPhysicalAddress;
  if (PrivateData != NULL) {
    CopyMem ((Record + 1), PrivateData, Header->PrivateDataSize);
  }

  MyOffset  = (UINT8 *) Record - FtwDevice->FtwWorkSpace;
  MyLength  = RECORD_SIZE (Header->PrivateDataSize);

  Status = FtwDevice->FtwFvBlock->Write (
                                    FtwDevice->FtwFvBlock,
                                    FtwDevice->FtwWorkSpaceLba,
                                    FtwDevice->FtwWorkSpaceBase + MyOffset,
                                    &MyLength,
                                    (UINT8 *) Record
                                    );
  if (EFI_ERROR (Status)) {
    return EFI_ABORTED;
  }
  //
  // Record has written to working block, then do the data.
  //
  //
  // Allocate a memory buffer
  //
  MyBufferSize  = FtwDevice->SpareAreaLength;
  MyBuffer      = AllocatePool (MyBufferSize);
  if (MyBuffer == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }
  //
  // Read all original data from target block to memory buffer
  //
  Ptr = MyBuffer;
  for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
    MyLength  = FtwDevice->BlockSize;
    Status    = Fvb->Read (Fvb, Lba + Index, 0, &MyLength, Ptr);
    if (EFI_ERROR (Status)) {
      FreePool (MyBuffer);
      return EFI_ABORTED;
    }

    Ptr += MyLength;
  }
  //
  // Overwrite the updating range data with
  // the input buffer content
  //
  CopyMem (MyBuffer + Offset, Buffer, Length);

  //
  // Try to keep the content of spare block
  // Save spare block into a spare backup memory buffer (Sparebuffer)
  //
  SpareBufferSize = FtwDevice->SpareAreaLength;
  SpareBuffer     = AllocatePool (SpareBufferSize);
  if (SpareBuffer == NULL) {
    FreePool (MyBuffer);
    return EFI_OUT_OF_RESOURCES;
  }

  Ptr = SpareBuffer;
  for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
    MyLength = FtwDevice->BlockSize;
    Status = FtwDevice->FtwBackupFvb->Read (
                                        FtwDevice->FtwBackupFvb,
                                        FtwDevice->FtwSpareLba + Index,
                                        0,
                                        &MyLength,
                                        Ptr
                                        );
    if (EFI_ERROR (Status)) {
      FreePool (MyBuffer);
      FreePool (SpareBuffer);
      return EFI_ABORTED;
    }

    Ptr += MyLength;
  }
  //
  // Write the memory buffer to spare block
  //
  Status  = FtwEraseSpareBlock (FtwDevice);
  Ptr     = MyBuffer;
  for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
    MyLength = FtwDevice->BlockSize;
    Status = FtwDevice->FtwBackupFvb->Write (
                                        FtwDevice->FtwBackupFvb,
                                        FtwDevice->FtwSpareLba + Index,
                                        0,
                                        &MyLength,
                                        Ptr
                                        );
    if (EFI_ERROR (Status)) {
      FreePool (MyBuffer);
      FreePool (SpareBuffer);
      return EFI_ABORTED;
    }

    Ptr += MyLength;
  }
  //
  // Free MyBuffer
  //
  FreePool (MyBuffer);

  //
  // Set the SpareComplete in the FTW record,
  //
  MyOffset = (UINT8 *) Record - FtwDevice->FtwWorkSpace;
  Status = FtwUpdateFvState (
            FtwDevice->FtwFvBlock,
            FtwDevice->FtwWorkSpaceLba,
            FtwDevice->FtwWorkSpaceBase + MyOffset,
            SPARE_COMPLETED
            );
  if (EFI_ERROR (Status)) {
    FreePool (SpareBuffer);
    return EFI_ABORTED;
  }

  Record->SpareComplete = FTW_VALID_STATE;

  //
  //  Since the content has already backuped in spare block, the write is
  //  guaranteed to be completed with fault tolerant manner.
  //
  Status = FtwWriteRecord (This, Fvb);
  if (EFI_ERROR (Status)) {
    FreePool (SpareBuffer);
    return EFI_ABORTED;
  }
  //
  // Restore spare backup buffer into spare block , if no failure happened during FtwWrite.
  //
  Status  = FtwEraseSpareBlock (FtwDevice);
  Ptr     = SpareBuffer;
  for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
    MyLength = FtwDevice->BlockSize;
    Status = FtwDevice->FtwBackupFvb->Write (
                                        FtwDevice->FtwBackupFvb,
                                        FtwDevice->FtwSpareLba + Index,
                                        0,
                                        &MyLength,
                                        Ptr
                                        );
    if (EFI_ERROR (Status)) {
      FreePool (SpareBuffer);
      return EFI_ABORTED;
    }

    Ptr += MyLength;
  }
  //
  // All success.
  //
  FreePool (SpareBuffer);

  DEBUG (
    (EFI_D_ERROR,
    "Ftw: Write() success, (Lba:Offset)=(%lx:0x%x), Length: 0x%x\n",
    Lba,
    Offset,
    Length)
    );

  return EFI_SUCCESS;
}
Beispiel #3
0
/**
  Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE.
  Spare block is accessed by FTW working FVB protocol interface. LBA is 1.
  Target block is accessed by FvbBlock protocol interface. LBA is Lba.

  FTW will do extra work on boot block update.
  FTW should depend on a protocol of EFI_ADDRESS_RANGE_SWAP_PROTOCOL,
  which is produced by a chipset driver.
  FTW updating boot block steps may be:
  1. GetRangeLocation(), if the Range is inside the boot block, FTW know
  that boot block will be update. It shall add a FLAG in the working block.
  2. When spare block is ready,
  3. SetSwapState(EFI_SWAPPED)
  4. erasing boot block,
  5. programming boot block until the boot block is ok.
  6. SetSwapState(UNSWAPPED)
  FTW shall not allow to update boot block when battery state is error.

  @param FtwDevice       The private data of FTW driver

  @retval EFI_SUCCESS             Spare block content is copied to boot block
  @retval EFI_INVALID_PARAMETER   Input parameter error
  @retval EFI_OUT_OF_RESOURCES    Allocate memory error
  @retval EFI_ABORTED             The function could not complete successfully

**/
EFI_STATUS
FlushSpareBlockToBootBlock (
  EFI_FTW_DEVICE                      *FtwDevice
  )
{
  EFI_STATUS                          Status;
  UINTN                               Length;
  UINT8                               *Buffer;
  UINTN                               Count;
  UINT8                               *Ptr;
  UINTN                               Index;
  BOOLEAN                             TopSwap;
  EFI_SWAP_ADDRESS_RANGE_PROTOCOL     *SarProtocol;
  EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *BootFvb;
  EFI_LBA                             BootLba;

  if (!FeaturePcdGet(PcdFullFtwServiceEnable)) {
    return EFI_UNSUPPORTED;
  }

  //
  // Locate swap address range protocol
  //
  Status = FtwGetSarProtocol ((VOID **) &SarProtocol);
  if (EFI_ERROR (Status)) {
    return Status;
  }
  //
  // Allocate a memory buffer
  //
  Length = FtwDevice->SpareAreaLength;
  Buffer  = AllocatePool (Length);
  if (Buffer == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }
  //
  // Get TopSwap bit state
  //
  Status = SarProtocol->GetSwapState (SarProtocol, &TopSwap);
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Ftw: Get Top Swapped status - %r\n", Status));
    FreePool (Buffer);
    return EFI_ABORTED;
  }

  if (TopSwap) {
    //
    // Get FVB of current boot block
    //
    if (GetFvbByAddress (FtwDevice->SpareAreaAddress + FtwDevice->SpareAreaLength, &BootFvb) == NULL) {
      FreePool (Buffer);
      return EFI_ABORTED;
    }
    //
    // Read data from current boot block
    //
    BootLba = 0;
    Ptr     = Buffer;
    for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
      Count = FtwDevice->BlockSize;
      Status = BootFvb->Read (
                          BootFvb,
                          BootLba + Index,
                          0,
                          &Count,
                          Ptr
                          );
      if (EFI_ERROR (Status)) {
        FreePool (Buffer);
        return Status;
      }

      Ptr += Count;
    }
  } else {
    //
    // Read data from spare block
    //
    Ptr = Buffer;
    for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
      Count = FtwDevice->BlockSize;
      Status = FtwDevice->FtwBackupFvb->Read (
                                          FtwDevice->FtwBackupFvb,
                                          FtwDevice->FtwSpareLba + Index,
                                          0,
                                          &Count,
                                          Ptr
                                          );
      if (EFI_ERROR (Status)) {
        FreePool (Buffer);
        return Status;
      }

      Ptr += Count;
    }
    //
    // Set TopSwap bit
    //
    Status = SarProtocol->SetSwapState (SarProtocol, TRUE);
    if (EFI_ERROR (Status)) {
      FreePool (Buffer);
      return Status;
    }
  }
  //
  // Erase current spare block
  // Because TopSwap is set, this actually erase the top block (boot block)!
  //
  Status = FtwEraseSpareBlock (FtwDevice);
  if (EFI_ERROR (Status)) {
    FreePool (Buffer);
    return EFI_ABORTED;
  }
  //
  // Write memory buffer currenet spare block. Still top block.
  //
  Ptr = Buffer;
  for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) {
    Count = FtwDevice->BlockSize;
    Status = FtwDevice->FtwBackupFvb->Write (
                                        FtwDevice->FtwBackupFvb,
                                        FtwDevice->FtwSpareLba + Index,
                                        0,
                                        &Count,
                                        Ptr
                                        );
    if (EFI_ERROR (Status)) {
      DEBUG ((EFI_D_ERROR, "Ftw: FVB Write boot block - %r\n", Status));
      FreePool (Buffer);
      return Status;
    }

    Ptr += Count;
  }

  FreePool (Buffer);

  //
  // Clear TopSwap bit
  //
  Status = SarProtocol->SetSwapState (SarProtocol, FALSE);

  return Status;
}
Beispiel #4
0
/**
  Check if an FV is consistent and allocate cache for it.

  @param  FvDevice              A pointer to the FvDevice to be checked.

  @retval EFI_OUT_OF_RESOURCES  No enough buffer could be allocated.
  @retval EFI_VOLUME_CORRUPTED  File system is corrupted.
  @retval EFI_SUCCESS           FV is consistent and cache is allocated.

**/
EFI_STATUS
FvCheck (
  IN FV_DEVICE  *FvDevice
  )
{
  EFI_STATUS                          Status;
  EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *Fvb;
  EFI_FVB_ATTRIBUTES_2                FvbAttributes;
  EFI_FV_BLOCK_MAP_ENTRY              *BlockMap;
  EFI_FIRMWARE_VOLUME_HEADER          *FwVolHeader;
  EFI_FIRMWARE_VOLUME_EXT_HEADER      *FwVolExtHeader;
  UINT8                               *FwCache;
  LBA_ENTRY                           *LbaEntry;
  FREE_SPACE_ENTRY                    *FreeSpaceEntry;
  FFS_FILE_LIST_ENTRY                 *FfsFileEntry;
  UINT8                               *LbaStart;
  UINTN                               Index;
  EFI_LBA                             LbaIndex;
  UINT8                               *Ptr;
  UINTN                               Size;
  UINT8                               *FreeStart;
  UINTN                               FreeSize;
  UINT8                               ErasePolarity;
  EFI_FFS_FILE_STATE                  FileState;
  UINT8                               *TopFvAddress;
  UINTN                               TestLength;
  EFI_PHYSICAL_ADDRESS                BaseAddress;

  Fvb     = FvDevice->Fvb;

  Status  = Fvb->GetAttributes (Fvb, &FvbAttributes);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  InitializeListHead (&FvDevice->LbaHeader);
  InitializeListHead (&FvDevice->FreeSpaceHeader);
  InitializeListHead (&FvDevice->FfsFileListHeader);

  FwVolHeader = NULL;
  Status = GetFwVolHeader (Fvb, &FwVolHeader);
  if (EFI_ERROR (Status)) {
    return Status;
  }
  ASSERT (FwVolHeader != NULL);

  FvDevice->IsFfs3Fv = CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiFirmwareFileSystem3Guid);

  //
  // Double Check firmware volume header here
  //
  if (!VerifyFvHeaderChecksum (FwVolHeader)) {
    FreePool (FwVolHeader);
    return EFI_VOLUME_CORRUPTED;
  }

  BlockMap = FwVolHeader->BlockMap;

  //
  // FwVolHeader->FvLength is the whole FV length including FV header
  //
  FwCache = AllocateZeroPool ((UINTN) FwVolHeader->FvLength);
  if (FwCache == NULL) {
    FreePool (FwVolHeader);
    return EFI_OUT_OF_RESOURCES;
  }

  FvDevice->CachedFv = (EFI_PHYSICAL_ADDRESS) (UINTN) FwCache;

  //
  // Copy to memory
  //
  LbaStart  = FwCache;
  LbaIndex  = 0;
  Ptr       = NULL;

  if ((FvbAttributes & EFI_FVB2_MEMORY_MAPPED) != 0) {
    //
    // Get volume base address
    //
    Status = Fvb->GetPhysicalAddress (Fvb, &BaseAddress);
    if (EFI_ERROR (Status)) {
      FreePool (FwVolHeader);
      return Status;
    }

    Ptr = (UINT8 *) ((UINTN) BaseAddress);

    DEBUG((EFI_D_INFO, "Fv Base Address is 0x%LX\n", BaseAddress));
  }
  //
  // Copy whole FV into the memory
  //
  while ((BlockMap->NumBlocks != 0) || (BlockMap->Length != 0)) {

    for (Index = 0; Index < BlockMap->NumBlocks; Index++) {
      LbaEntry = AllocatePool (sizeof (LBA_ENTRY));
      if (LbaEntry == NULL) {
        FreePool (FwVolHeader);
        FreeFvDeviceResource (FvDevice);
        return EFI_OUT_OF_RESOURCES;
      }

      LbaEntry->LbaIndex        = LbaIndex;
      LbaEntry->StartingAddress = LbaStart;
      LbaEntry->BlockLength     = BlockMap->Length;

      //
      // Copy each LBA into memory
      //
      if ((FvbAttributes & EFI_FVB2_MEMORY_MAPPED) != 0) {

        CopyMem (LbaStart, Ptr, BlockMap->Length);
        Ptr += BlockMap->Length;

      } else {

        Size = BlockMap->Length;
        Status = Fvb->Read (
                        Fvb,
                        LbaIndex,
                        0,
                        &Size,
                        LbaStart
                        );
        //
        // Not check EFI_BAD_BUFFER_SIZE, for Size = BlockMap->Length
        //
        if (EFI_ERROR (Status)) {
          FreePool (FwVolHeader);
          FreeFvDeviceResource (FvDevice);
          return Status;
        }

      }

      LbaIndex++;
      LbaStart += BlockMap->Length;

      InsertTailList (&FvDevice->LbaHeader, &LbaEntry->Link);
    }

    BlockMap++;
  }

  FvDevice->FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) FwCache;

  //
  // it is not used any more, so free FwVolHeader
  //
  FreePool (FwVolHeader);

  //
  // Scan to check the free space & File list
  //
  if ((FvbAttributes & EFI_FVB2_ERASE_POLARITY) != 0) {
    ErasePolarity = 1;
  } else {
    ErasePolarity = 0;
  }

  FvDevice->ErasePolarity = ErasePolarity;

  //
  // go through the whole FV cache, check the consistence of the FV
  //
  if (FvDevice->FwVolHeader->ExtHeaderOffset != 0) {
    //
    // Searching for files starts on an 8 byte aligned boundary after the end of the Extended Header if it exists.
    //
    FwVolExtHeader = (EFI_FIRMWARE_VOLUME_EXT_HEADER *) (UINTN) (FvDevice->CachedFv + FvDevice->FwVolHeader->ExtHeaderOffset);
    Ptr = (UINT8 *) FwVolExtHeader + FwVolExtHeader->ExtHeaderSize;
    Ptr = (UINT8 *) ALIGN_POINTER (Ptr, 8);
  } else {
    Ptr = (UINT8 *) (UINTN) (FvDevice->CachedFv + FvDevice->FwVolHeader->HeaderLength);
  }
  TopFvAddress = (UINT8 *) (UINTN) (FvDevice->CachedFv + FvDevice->FwVolHeader->FvLength);

  //
  // Build FFS list & Free Space List here
  //
  while (Ptr < TopFvAddress) {
    TestLength = TopFvAddress - Ptr;

    if (TestLength > sizeof (EFI_FFS_FILE_HEADER)) {
      TestLength = sizeof (EFI_FFS_FILE_HEADER);
    }

    if (IsBufferErased (ErasePolarity, Ptr, TestLength)) {
      //
      // We found free space
      //
      FreeStart = Ptr;
      FreeSize  = 0;

      do {
        TestLength = TopFvAddress - Ptr;

        if (TestLength > sizeof (EFI_FFS_FILE_HEADER)) {
          TestLength = sizeof (EFI_FFS_FILE_HEADER);
        }

        if (!IsBufferErased (ErasePolarity, Ptr, TestLength)) {
          break;
        }

        FreeSize += TestLength;
        Ptr += TestLength;
      } while (Ptr < TopFvAddress);

      FreeSpaceEntry = AllocateZeroPool (sizeof (FREE_SPACE_ENTRY));
      if (FreeSpaceEntry == NULL) {
        FreeFvDeviceResource (FvDevice);
        return EFI_OUT_OF_RESOURCES;
      }
      //
      // Create a Free space entry
      //
      FreeSpaceEntry->StartingAddress = FreeStart;
      FreeSpaceEntry->Length          = FreeSize;
      InsertTailList (&FvDevice->FreeSpaceHeader, &FreeSpaceEntry->Link);
      continue;
    }
    //
    // double check boundry
    //
    if (TestLength < sizeof (EFI_FFS_FILE_HEADER)) {
      break;
    }

    if (!IsValidFFSHeader (
          FvDevice->ErasePolarity,
          (EFI_FFS_FILE_HEADER *) Ptr
          )) {
      FileState = GetFileState (
                    FvDevice->ErasePolarity,
                    (EFI_FFS_FILE_HEADER *) Ptr
                    );
      if ((FileState == EFI_FILE_HEADER_INVALID) || (FileState == EFI_FILE_HEADER_CONSTRUCTION)) {
        if (IS_FFS_FILE2 (Ptr)) {
          if (!FvDevice->IsFfs3Fv) {
            DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &((EFI_FFS_FILE_HEADER *) Ptr)->Name));
          }
          Ptr = Ptr + sizeof (EFI_FFS_FILE_HEADER2);
        } else {
          Ptr = Ptr + sizeof (EFI_FFS_FILE_HEADER);
        }

        continue;

      } else {
        //
        // File system is corrputed, return
        //
        FreeFvDeviceResource (FvDevice);
        return EFI_VOLUME_CORRUPTED;
      }
    }

    if (IS_FFS_FILE2 (Ptr)) {
      ASSERT (FFS_FILE2_SIZE (Ptr) > 0x00FFFFFF);
      if (!FvDevice->IsFfs3Fv) {
        DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &((EFI_FFS_FILE_HEADER *) Ptr)->Name));
        Ptr = Ptr + FFS_FILE2_SIZE (Ptr);
        //
        // Adjust Ptr to the next 8-byte aligned boundry.
        //
        while (((UINTN) Ptr & 0x07) != 0) {
          Ptr++;
        }
        continue;
      }
    }

    if (IsValidFFSFile (FvDevice, (EFI_FFS_FILE_HEADER *) Ptr)) {
      FileState = GetFileState (
                    FvDevice->ErasePolarity,
                    (EFI_FFS_FILE_HEADER *) Ptr
                    );

      //
      // check for non-deleted file
      //
      if (FileState != EFI_FILE_DELETED) {
        //
        // Create a FFS list entry for each non-deleted file
        //
        FfsFileEntry = AllocateZeroPool (sizeof (FFS_FILE_LIST_ENTRY));
        if (FfsFileEntry == NULL) {
          FreeFvDeviceResource (FvDevice);
          return EFI_OUT_OF_RESOURCES;
        }

        FfsFileEntry->FfsHeader = Ptr;
        InsertTailList (&FvDevice->FfsFileListHeader, &FfsFileEntry->Link);
      }

      if (IS_FFS_FILE2 (Ptr)) {
        Ptr = Ptr + FFS_FILE2_SIZE (Ptr);
      } else {
        Ptr = Ptr + FFS_FILE_SIZE (Ptr);
      }

      //
      // Adjust Ptr to the next 8-byte aligned boundry.
      //
      while (((UINTN) Ptr & 0x07) != 0) {
        Ptr++;
      }
    } else {
      //
      // File system is corrupted, return
      //
      FreeFvDeviceResource (FvDevice);
      return EFI_VOLUME_CORRUPTED;
    }
  }

  FvDevice->CurrentFfsFile = NULL;

  return EFI_SUCCESS;
}