Beispiel #1
0
bool CacheTileHandler::handleTile(const TileKey& key, const TileVisitor& tv)
{        
    ImageLayer* imageLayer = dynamic_cast< ImageLayer* >( _layer.get() );
    ElevationLayer* elevationLayer = dynamic_cast< ElevationLayer* >( _layer.get() );    

    // Just call createImage or createHeightField on the layer and the it will be cached!
    if (imageLayer)
    {                
        GeoImage image = imageLayer->createImage( key );
        if (image.valid())
        {                
            return true;
        }            
    }
    else if (elevationLayer )
    {
        GeoHeightField hf = elevationLayer->createHeightField(key, 0L);
        if (hf.valid())
        {                
            return true;
        }            
    }

    // If we didn't produce a result but the key isn't within range then we should continue to 
    // traverse the children b/c a min level was set.
    if (!_layer->isKeyInLegalRange(key))
    {
        return true;
    }

    return false;        
}   
Beispiel #2
0
bool CacheTileHandler::handleTile( const TileKey& key )
{        
    ImageLayer* imageLayer = dynamic_cast< ImageLayer* >( _layer.get() );
    ElevationLayer* elevationLayer = dynamic_cast< ElevationLayer* >( _layer.get() );    

    // Just call createImage or createHeightField on the layer and the it will be cached!
    if (imageLayer)
    {                
        GeoImage image = imageLayer->createImage( key );
        if (image.valid())
        {                
            return true;
        }            
    }
    else if (elevationLayer )
    {
        GeoHeightField hf = elevationLayer->createHeightField( key );
        if (hf.valid())
        {                
            return true;
        }            
    }
    return false;        
}   
bool
ElevationLayerVector::populateHeightFieldAndNormalMap(osg::HeightField*      hf,
                                                      NormalMap*             normalMap,
                                                      const TileKey&         key,
                                                      const Profile*         haeProfile,
                                                      ElevationInterpolation interpolation,
                                                      ProgressCallback*      progress ) const
{
    // heightfield must already exist.
    if ( !hf )
        return false;

    METRIC_SCOPED("ElevationLayer.populateHeightField");

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    LayerDataVector contenders;
    LayerDataVector offsets;

#ifdef ANALYZE
    struct LayerAnalysis {
        LayerAnalysis() : samples(0), used(false), failed(false), fallback(false), actualKeyValid(true) { }
        int samples; bool used; bool failed; bool fallback; bool actualKeyValid; std::string message;
    };
    std::map<ElevationLayer*, LayerAnalysis> layerAnalysis;
#endif

    // Track the number of layers that would return fallback data.
    unsigned numFallbackLayers = 0;

    // Check them in reverse order since the highest priority is last.
    for (int i = size()-1; i>=0; --i)
    //for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = (*this)[i].get(); //i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = keyToUse.mapResolution(
                hf->getNumColumns(),
                layer->getTileSize() );

            bool useLayer = true;
            TileKey bestKey( mappedKey );

            // Check whether the non-mapped key is valid according to the user's min/max level settings:
            if ( !layer->isKeyInLegalRange(key) )
            {
                useLayer = false;
            }
                
            // Find the "best available" mapped key from the tile source:
            else 
            {
                bestKey = layer->getBestAvailableTileKey(mappedKey);
                if (bestKey.valid())
                {
                    // If the bestKey is not the mappedKey, this layer is providing
                    // fallback data (data at a lower resolution than requested)
                    if ( mappedKey != bestKey )
                    {
                        numFallbackLayers++;
                    }
                }
                else
                {
                    useLayer = false;
                }
            }

            if ( useLayer )
            {
                if ( layer->isOffset() )
                {
                    offsets.push_back(LayerData());
                    LayerData& ld = offsets.back();
                    ld.layer = layer;
                    ld.key = bestKey;
                    ld.index = i;
                }
                else
                {
                    contenders.push_back(LayerData());
                    LayerData& ld = contenders.back();
                    ld.layer = layer;
                    ld.key = bestKey;
                    ld.index = i;
                }

#ifdef ANALYZE
                layerAnalysis[layer].used = true;
#endif
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    // if everything is fallback data, bail out.
    if ( contenders.size() + offsets.size() == numFallbackLayers )
    {
        return false;
    }
    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);
   
    // We will load the actual heightfields on demand. We might not need them all.
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFallback(contenders.size(), false);
    std::vector<bool>    heightFailed(contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);

    // The maximum number of heightfields to keep in this local cache
    const unsigned maxHeightFields = 50;
    unsigned numHeightFieldsInCache = 0;

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    unsigned int total = numColumns * numRows;

    // query resolution interval (x, y) of each sample.
    osg::ref_ptr<osg::ShortArray> deltaLOD = new osg::ShortArray(total);
    
    int nodataCount = 0;

    TileKey scratchKey; // Storage if a new key needs to be constructed

    bool requiresResample = true;

    // If we only have a single contender layer, and the tile is the same size as the requested 
    // heightfield then we just use it directly and avoid having to resample it
    if (contenders.size() == 1 && offsets.empty())
    {
        ElevationLayer* layer = contenders[0].layer.get();
        TileKey& contenderKey = contenders[0].key;

        GeoHeightField layerHF = layer->createHeightField(contenderKey, 0);
        if (layerHF.valid())
        {
            if (layerHF.getHeightField()->getNumColumns() == hf->getNumColumns() &&
                layerHF.getHeightField()->getNumRows() == hf->getNumRows())
            {
                requiresResample = false;
                memcpy(hf->getFloatArray()->asVector().data(),
                    layerHF.getHeightField()->getFloatArray()->asVector().data(),
                    sizeof(float) * hf->getFloatArray()->size()
                );
                deltaLOD->resize(hf->getFloatArray()->size(), 0);
                realData = true;
            }
        }
    }

    // If we need to mosaic multiple layers or resample it to a new output tilesize go through a resampling loop.
    if (requiresResample)
    {
        for (unsigned c = 0; c < numColumns; ++c)
        {
            double x = xmin + (dx * (double)c);

            // periodically check for cancelation
            if (progress && progress->isCanceled())
            {
                return false;
            }

            for (unsigned r = 0; r < numRows; ++r)
            {
                double y = ymin + (dy * (double)r);

                // Collect elevations from each layer as necessary.
                int resolvedIndex = -1;

                osg::Vec3 normal_sum(0, 0, 0);

                for (int i = 0; i < contenders.size() && resolvedIndex < 0; ++i)
                {
                    ElevationLayer* layer = contenders[i].layer.get();
                    TileKey& contenderKey = contenders[i].key;
                    int index = contenders[i].index;

                    if (heightFailed[i])
                        continue;

                    TileKey* actualKey = &contenderKey;

                    GeoHeightField& layerHF = heightFields[i];

                    if (!layerHF.valid())
                    {
                        // We couldn't get the heightfield from the cache, so try to create it.
                        // We also fallback on parent layers to make sure that we have data at the location even if it's fallback.
                        while (!layerHF.valid() && actualKey->valid() && layer->isKeyInLegalRange(*actualKey))
                        {
                            layerHF = layer->createHeightField(*actualKey, progress);
                            if (!layerHF.valid())
                            {
                                if (actualKey != &scratchKey)
                                {
                                    scratchKey = *actualKey;
                                    actualKey = &scratchKey;
                                }
                                *actualKey = actualKey->createParentKey();
                            }
                        }

                        // Mark this layer as fallback if necessary.
                        if (layerHF.valid())
                        {
                            heightFallback[i] = (*actualKey != contenderKey); // actualKey != contenders[i].second;
                            numHeightFieldsInCache++;
                        }
                        else
                        {
                            heightFailed[i] = true;
#ifdef ANALYZE
                            layerAnalysis[layer].failed = true;
                            layerAnalysis[layer].actualKeyValid = actualKey->valid();
                            if (progress) layerAnalysis[layer].message = progress->message();
#endif
                            continue;
                        }
                    }

                    if (layerHF.valid())
                    {
                        bool isFallback = heightFallback[i];
#ifdef ANALYZE
                        layerAnalysis[layer].fallback = isFallback;
#endif

                        // We only have real data if this is not a fallback heightfield.
                        if (!isFallback)
                        {
                            realData = true;
                        }

                        float elevation;
                        if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation))
                        {
                            if (elevation != NO_DATA_VALUE)
                            {
                                // remember the index so we can only apply offset layers that
                                // sit on TOP of this layer.
                                resolvedIndex = index;

                                hf->setHeight(c, r, elevation);

#ifdef ANALYZE
                                layerAnalysis[layer].samples++;
#endif

                                if (deltaLOD)
                                {
                                    (*deltaLOD)[r*numColumns + c] = key.getLOD() - actualKey->getLOD();
                                }
                            }
                            else
                            {
                                ++nodataCount;
                            }
                        }
                    }


                    // Clear the heightfield cache if we have too many heightfields in the cache.
                    if (numHeightFieldsInCache >= maxHeightFields)
                    {
                        //OE_NOTICE << "Clearing cache" << std::endl;
                        for (unsigned int k = 0; k < heightFields.size(); k++)
                        {
                            heightFields[k] = GeoHeightField::INVALID;
                            heightFallback[k] = false;
                        }
                        numHeightFieldsInCache = 0;
                    }
                }

                for (int i = offsets.size() - 1; i >= 0; --i)
                {
                    // Only apply an offset layer if it sits on top of the resolved layer
                    // (or if there was no resolved layer).
                    if (resolvedIndex >= 0 && offsets[i].index < resolvedIndex)
                        continue;

                    TileKey &contenderKey = offsets[i].key;

                    if (offsetFailed[i] == true)
                        continue;

                    GeoHeightField& layerHF = offsetFields[i];
                    if (!layerHF.valid())
                    {
                        ElevationLayer* offset = offsets[i].layer.get();

                        layerHF = offset->createHeightField(contenderKey, progress);
                        if (!layerHF.valid())
                        {
                            offsetFailed[i] = true;
                            continue;
                        }
                    }

                    // If we actually got a layer then we have real data
                    realData = true;

                    float elevation = 0.0f;
                    if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                        elevation != NO_DATA_VALUE)
                    {
                        hf->getHeight(c, r) += elevation;

                        // Update the resolution tracker to account for the offset. Sadly this
                        // will wipe out the resolution of the actual data, and might result in 
                        // normal faceting. See the comments on "createNormalMap" for more info
                        if (deltaLOD)
                        {
                            (*deltaLOD)[r*numColumns + c] = key.getLOD() - contenderKey.getLOD();
                        }
                    }
                }
            }
        }
    }

    if (normalMap)
    {
        // periodically check for cancelation
        if (progress && progress->isCanceled())
        {
            return false;
        }

        createNormalMap(key.getExtent(), hf, deltaLOD.get(), normalMap);
    }

#ifdef ANALYZE
    {
        static Threading::Mutex m;
        Threading::ScopedMutexLock lock(m);
        std::cout << key.str() << ": ";
        for (std::map<ElevationLayer*, LayerAnalysis>::const_iterator i = layerAnalysis.begin();
            i != layerAnalysis.end(); ++i)
        {
            std::cout << i->first->getName() 
                << " used=" << i->second.used
                << " failed=" << i->second.failed
                << " akv=" << i->second.actualKeyValid
                << " fallback=" << i->second.fallback
                << " samples=" << i->second.samples
                << " msg=" << i->second.message
                << "; ";
        }
        std::cout << std::endl;
    }
#endif

    if (progress && progress->isCanceled())
    {
        return false;
    }

    // Return whether or not we actually read any real data
    return realData;
}
Beispiel #4
0
bool
ElevationLayerVector::createHeightField(const TileKey&                  key,
                                        bool                            fallback,
                                        const Profile*                  haeProfile,
                                        ElevationInterpolation          interpolation,
                                        ElevationSamplePolicy           samplePolicy,
                                        osg::ref_ptr<osg::HeightField>& out_result,
                                        bool*                           out_isFallback,
                                        ProgressCallback*               progress )  const
{        
    unsigned lowestLOD = key.getLevelOfDetail();
    bool hfInitialized = false;

    //Get a HeightField for each of the enabled layers
    GeoHeightFieldVector heightFields;

    //The number of fallback heightfields we have
    int numFallbacks = 0;

    //Default to being fallback data.
    if ( out_isFallback )
    {
        *out_isFallback = true;
    }

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLevelOfDetail(), key.getTileX(), key.getTileY(), haeProfile );
    }

    // Generate a heightfield for each elevation layer.

    unsigned defElevSize = 8;

    for( ElevationLayerVector::const_iterator i = this->begin(); i != this->end(); i++ )
    {
        ElevationLayer* layer = i->get();
        if ( layer->getVisible() )
        {
            GeoHeightField geoHF = layer->createHeightField( keyToUse, progress );

            // if "fallback" is set, try to fall back on lower LODs.
            if ( !geoHF.valid() && fallback )
            {
                TileKey hf_key = keyToUse.createParentKey();

                while ( hf_key.valid() && !geoHF.valid() )
                {
                    geoHF = layer->createHeightField( hf_key, progress );
                    if ( !geoHF.valid() )
                        hf_key = hf_key.createParentKey();
                }

                if ( geoHF.valid() )
                {
                    if ( hf_key.getLevelOfDetail() < lowestLOD )
                        lowestLOD = hf_key.getLevelOfDetail();

                    //This HeightField is fallback data, so increment the count.
                    numFallbacks++;
                }
            }

            if ( geoHF.valid() )
            {
                heightFields.push_back( geoHF );
            }
        }
    }

    //If any of the layers produced valid data then it's not considered a fallback
    if ( out_isFallback )
    {
        *out_isFallback = (numFallbacks == heightFields.size());
        //OE_NOTICE << "Num fallbacks=" << numFallbacks << " numHeightFields=" << heightFields.size() << " is fallback " << *out_isFallback << std::endl;
    }   

    if ( heightFields.size() == 0 )
    {            
        //If we got no heightfields but were requested to fallback, create an empty heightfield.
        if ( fallback )
        {
            out_result = HeightFieldUtils::createReferenceHeightField( keyToUse.getExtent(), defElevSize, defElevSize );                
            return true;
        }
        else
        {
            //We weren't requested to fallback so just return.
            return false;
        }
    }

    else if (heightFields.size() == 1)
    {
        if ( lowestLOD == key.getLevelOfDetail() )
        {
            //If we only have on heightfield, just return it.
            out_result = heightFields[0].takeHeightField();
        }
        else
        {
            GeoHeightField geoHF = heightFields[0].createSubSample( key.getExtent(), interpolation);
            out_result = geoHF.takeHeightField();
            hfInitialized = true;
        }
    }

    else
    {
        //If we have multiple heightfields, we need to composite them together.
        unsigned int width = 0;
        unsigned int height = 0;

        for (GeoHeightFieldVector::const_iterator i = heightFields.begin(); i < heightFields.end(); ++i)
        {
            if (i->getHeightField()->getNumColumns() > width) 
                width = i->getHeightField()->getNumColumns();
            if (i->getHeightField()->getNumRows() > height) 
                height = i->getHeightField()->getNumRows();
        }
        out_result = new osg::HeightField();
        out_result->allocate( width, height );

        //Go ahead and set up the heightfield so we don't have to worry about it later
        double minx, miny, maxx, maxy;
        key.getExtent().getBounds(minx, miny, maxx, maxy);
        double dx = (maxx - minx)/(double)(out_result->getNumColumns()-1);
        double dy = (maxy - miny)/(double)(out_result->getNumRows()-1);

        const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

        //Create the new heightfield by sampling all of them.
        for (unsigned int c = 0; c < width; ++c)
        {
            double x = minx + (dx * (double)c);
            for (unsigned r = 0; r < height; ++r)
            {
                double y = miny + (dy * (double)r);

                //Collect elevations from all of the layers. Iterate BACKWARDS because the last layer
                // is the highest priority.
                std::vector<float> elevations;
                for( GeoHeightFieldVector::reverse_iterator itr = heightFields.rbegin(); itr != heightFields.rend(); ++itr )
                {
                    const GeoHeightField& geoHF = *itr;

                    float elevation = 0.0f;
                    if ( geoHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) )
                    {
                        if (elevation != NO_DATA_VALUE)
                        {
                            elevations.push_back(elevation);
                        }
                    }
                }

                float elevation = NO_DATA_VALUE;

                //The list of elevations only contains valid values
                if (elevations.size() > 0)
                {
                    if (samplePolicy == SAMPLE_FIRST_VALID)
                    {
                        elevation = elevations[0];
                    }
                    else if (samplePolicy == SAMPLE_HIGHEST)
                    {
                        elevation = -FLT_MAX;
                        for (unsigned int i = 0; i < elevations.size(); ++i)
                        {
                            if (elevation < elevations[i]) elevation = elevations[i];
                        }
                    }
                    else if (samplePolicy == SAMPLE_LOWEST)
                    {
                        elevation = FLT_MAX;
                        for (unsigned i = 0; i < elevations.size(); ++i)
                        {
                            if (elevation > elevations[i]) elevation = elevations[i];
                        }
                    }
                    else if (samplePolicy == SAMPLE_AVERAGE)
                    {
                        elevation = 0.0;
                        for (unsigned i = 0; i < elevations.size(); ++i)
                        {
                            elevation += elevations[i];
                        }
                        elevation /= (float)elevations.size();
                    }
                }
                out_result->setHeight(c, r, elevation);
            }
        }
    }

    // Replace any NoData areas with the reference value. This is zero for HAE datums,
    // and some geoid height for orthometric datums.
    if (out_result.valid())
    {
        const Geoid*         geoid = 0L;
        const VerticalDatum* vdatum = key.getProfile()->getSRS()->getVerticalDatum();

        if ( haeProfile && vdatum )
        {
            geoid = vdatum->getGeoid();
        }

        HeightFieldUtils::resolveInvalidHeights(
            out_result.get(),
            key.getExtent(),
            NO_DATA_VALUE,
            geoid );

        //ReplaceInvalidDataOperator o;
        //o.setValidDataOperator(new osgTerrain::NoDataValue(NO_DATA_VALUE));
        //o( out_result.get() );
    }

    //Initialize the HF values for osgTerrain
    if (out_result.valid() && !hfInitialized )
    {   
        //Go ahead and set up the heightfield so we don't have to worry about it later
        double minx, miny, maxx, maxy;
        key.getExtent().getBounds(minx, miny, maxx, maxy);
        out_result->setOrigin( osg::Vec3d( minx, miny, 0.0 ) );
        double dx = (maxx - minx)/(double)(out_result->getNumColumns()-1);
        double dy = (maxy - miny)/(double)(out_result->getNumRows()-1);
        out_result->setXInterval( dx );
        out_result->setYInterval( dy );
        out_result->setBorderWidth( 0 );
    }

    return out_result.valid();
}
Beispiel #5
0
bool
ElevationLayerVector::populateHeightField(osg::HeightField*      hf,
                                          const TileKey&         key,
                                          const Profile*         haeProfile,
                                          ElevationInterpolation interpolation,
                                          ProgressCallback*      progress ) const
{
    //osg::Timer_t startTime = osg::Timer::instance()->tick();
    // heightfield must already exist.
    if ( !hf )
        return false;

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    LayerAndKeyVector contenders;
    LayerAndKeyVector offsets;

    // Track the number of layers that would return fallback data.
    unsigned numFallbackLayers = 0;

    // Check them in reverse order since the highest priority is last.
    for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = keyToUse.mapResolution(
                hf->getNumColumns(),
                layer->getTileSize() );

            bool useLayer = true;
            TileKey bestKey( mappedKey );

            // Is there a tilesource? If not we are cache-only and cannot reject the layer.
            if ( layer->getTileSource() )
            {
                // Check whether the non-mapped key is valid according to the user's min/max level settings:
                if ( !layer->isKeyInRange(key) )
                {
                    useLayer = false;
                }
                

                // Find the "best available" mapped key from the tile source:
                else 
                {
                    if ( layer->getTileSource()->getBestAvailableTileKey(mappedKey, bestKey) )
                    {
                        // If the bestKey is not the mappedKey, this layer is providing
                        // fallback data (data at a lower resolution than requested)
                        if ( mappedKey != bestKey )
                        {
                            numFallbackLayers++;
                        }
                    }
                    else
                    {
                        useLayer = false;
                    }
                }
            }

            if ( useLayer )
            {
                if ( layer->isOffset() )
                {
                    offsets.push_back( std::make_pair(layer, bestKey) );
                }
                else
                {
                    contenders.push_back( std::make_pair(layer, bestKey) );
                }
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    // if everything is fallback data, bail out.
    if ( contenders.size() + offsets.size() == numFallbackLayers )
    {
        return false;
    }
    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);
    
    // We will load the actual heightfields on demand. We might not need them all.
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFailed(contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);

    // The maximum number of heightfields to keep in this local cache
    unsigned int maxHeightFields = 50;
    unsigned numHeightFieldsInCache = 0;

    //double fallBackTime = 0;

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    //unsigned int numFallback = 0;


    unsigned int total = numColumns * numRows;
    unsigned int completed = 0;

    for (unsigned c = 0; c < numColumns; ++c)
    {
        double x = xmin + (dx * (double)c);
        for (unsigned r = 0; r < numRows; ++r)
        {
            double y = ymin + (dy * (double)r);

            // Collect elevations from each layer as necessary.
            bool resolved = false;

            for(int i=0; i<contenders.size() && !resolved; ++i)
            {
                if ( heightFailed[i] )
                    continue;

                ElevationLayer* layer = contenders[i].first.get();

                GeoHeightField& layerHF = heightFields[i];
                if ( !layerHF.valid() )
                {
                    layerHF = layer->createHeightField(contenders[i].second, progress);
                    
                    if ( !layerHF.valid() )
                    {
                        // This layer potentially has data or it wouldn't have ended up in the contendors list, so try falling back on the parent
                        TileKey parentKey = contenders[i].second.createParentKey();
                        while (!layerHF.valid() && parentKey.valid())
                        {
                            //numFallback++;
                            //osg::Timer_t fbStartTime = osg::Timer::instance()->tick();
                            GeoHeightField parentHF = layer->createHeightField(parentKey, progress);
                            //osg::Timer_t fbEndTime = osg::Timer::instance()->tick();

                            // Only penalize time wasted actually falling back.
                            //if (!parentHF.valid())
                            // {
                            //    fallBackTime += osg::Timer::instance()->delta_m(fbStartTime, fbEndTime);
                            //}

                            if (parentHF.valid())
                            {
                                layerHF = parentHF;
                                break;
                            }
                            else
                            {
                                parentKey = parentKey.createParentKey();
                            }

                        }

                        if (!layerHF.valid())
                        {
                            heightFailed[i] = true;
                            continue;
                        }
                    }
                    else
                    {
                        numHeightFieldsInCache++;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {
                    resolved = true;                    
                    hf->setHeight(c, r, elevation);
                }


                // Clear the heightfield cache if we have too many heightfields in the cache.
                if (numHeightFieldsInCache >= maxHeightFields)
                {
                    //OE_NOTICE << "Clearing cache" << std::endl;
                    for (unsigned int k = 0; k < heightFields.size(); k++)
                    {
                        heightFields[k] = GeoHeightField::INVALID;
                    }
                    numHeightFieldsInCache = 0;
                }
            }

            for(int i=offsets.size()-1; i>=0; --i)
            {
                if ( offsetFailed[i] )
                    continue;

                GeoHeightField& layerHF = offsetFields[i];
                if ( !layerHF.valid() )
                {
                    ElevationLayer* offset = offsets[i].first.get();

                    layerHF = offset->createHeightField(offsets[i].second, progress);
                    if ( !layerHF.valid() )
                    {
                        offsetFailed[i] = true;
                        continue;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation = 0.0f;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {                    
                    hf->getHeight(c, r) += elevation;
                }
            }

            completed++;
            //OE_NOTICE << "Completed " << completed << " of " << total << std::endl;
        }
    }   

    //osg::Timer_t endTime = osg::Timer::instance()->tick();
    //double totalTime = osg::Timer::instance()->delta_m(startTime, endTime);
   // double fallbackPercentage = fallBackTime / totalTime;
    //if (fallBackTime > 0)
    //{
    //    OE_NOTICE << "populateHeightField took " << totalTime << "ms fallbacktime=" << fallBackTime << "ms count=" << numFallback << " percentage=" << fallbackPercentage << std::endl;
    //}
    //else
    //{
    //    OE_NOTICE << "populateHeightField took " << totalTime << "ms" << std::endl;
    //}

    // Return whether or not we actually read any real data
    return realData;
}
Beispiel #6
0
bool
ElevationLayerVector::populateHeightField(osg::HeightField*      hf,
                                          const TileKey&         key,
                                          const Profile*         haeProfile,
                                          ElevationInterpolation interpolation,
                                          ProgressCallback*      progress ) const
{
    // heightfield must already exist.
    if ( !hf )
        return false;

    // if the caller provided an "HAE map profile", he wants an HAE elevation grid even if
    // the map profile has a vertical datum. This is the usual case when building the 3D
    // terrain, for example. Construct a temporary key that doesn't have the vertical
    // datum info and use that to query the elevation data.
    TileKey keyToUse = key;
    if ( haeProfile )
    {
        keyToUse = TileKey(key.getLOD(), key.getTileX(), key.getTileY(), haeProfile );
    }
    
    // Collect the valid layers for this tile.
    LayerAndKeyVector contenders;
    LayerAndKeyVector offsets;

    // Track the number of layers that would return fallback data.
    unsigned numFallbackLayers = 0;

    // Check them in reverse order since the highest priority is last.
    for(ElevationLayerVector::const_reverse_iterator i = this->rbegin(); i != this->rend(); ++i)
    {
        ElevationLayer* layer = i->get();

        if ( layer->getEnabled() && layer->getVisible() )
        {
            // calculate the resolution-mapped key (adjusted for tile resolution differential).            
            TileKey mappedKey = keyToUse.mapResolution(
                hf->getNumColumns(),
                layer->getTileSize() );

            bool useLayer = true;
            TileKey bestKey( mappedKey );

            // Is there a tilesource? If not we are cache-only and cannot reject the layer.
            if ( layer->getTileSource() )
            {
                // Check whether the non-mapped key is valid according to the user's min/max level settings:
                if ( !layer->isKeyInRange(key) )
                {
                    useLayer = false;
                }
                

                // Find the "best available" mapped key from the tile source:
                else 
                {
                    if ( layer->getTileSource()->getBestAvailableTileKey(mappedKey, bestKey) )
                    {
                        // If the bestKey is not the mappedKey, this layer is providing
                        // fallback data (data at a lower resolution than requested)
                        if ( mappedKey != bestKey )
                        {
                            numFallbackLayers++;
                        }
                    }
                    else
                    {
                        useLayer = false;
                    }
                }
            }

            if ( useLayer )
            {
                if ( layer->isOffset() )
                {
                    offsets.push_back( std::make_pair(layer, bestKey) );
                }
                else
                {
                    contenders.push_back( std::make_pair(layer, bestKey) );
                }
            }
        }
    }

    // nothing? bail out.
    if ( contenders.empty() && offsets.empty() )
    {
        return false;
    }

    // if everything is fallback data, bail out.
    if ( contenders.size() + offsets.size() == numFallbackLayers )
    {
        return false;
    }
    
    // Sample the layers into our target.
    unsigned numColumns = hf->getNumColumns();
    unsigned numRows    = hf->getNumRows();    
    double   xmin       = key.getExtent().xMin();
    double   ymin       = key.getExtent().yMin();
    double   dx         = key.getExtent().width() / (double)(numColumns-1);
    double   dy         = key.getExtent().height() / (double)(numRows-1);

    // If the incoming heightfield requests a positive border width, 
    // we need to adjust the extents so that we request data outside the
    // extent of the tile key:
    unsigned border = hf->getBorderWidth();
    if (border > 0u)
    {
        dx = key.getExtent().width() / (double)(numColumns - (border*2+1));
        dy = key.getExtent().height() / (double)(numRows - (border*2+1));
        xmin -= dx * (double)border;
        ymin -= dy * (double)border;
    }
    
    // We will load the actual heightfields on demand. We might not need them all.
#if 0
    GeoHeightFieldVector heightFields(contenders.size());
    GeoHeightFieldVector offsetFields(offsets.size());
    std::vector<bool>    heightFallback(contenders.size(), false);
    std::vector<bool>    heightFailed(contenders.size(), false);
    std::vector<bool>    offsetFailed(offsets.size(), false);
#else
    GeoHeightFieldVector heightFields[9];
    GeoHeightFieldVector offsetFields[9]; //(offsets.size());
    std::vector<bool>    heightFallback[9]; //(contenders.size(), false);
    std::vector<bool>    heightFailed[9]; //(contenders.size(), false);
    std::vector<bool>    offsetFailed[9]; //(offsets.size(), false);

    for (int n = 0; n < 9; ++n)
    {
        heightFields[n].resize(contenders.size());
        offsetFields[n].resize(offsets.size());
        heightFallback[n].assign(9, false);
        heightFailed[n].assign(9, false);
        offsetFailed[n].assign(9, false);
    }
#endif

    // The maximum number of heightfields to keep in this local cache
    unsigned int maxHeightFields = 50;
    unsigned numHeightFieldsInCache = 0;

    const SpatialReference* keySRS = keyToUse.getProfile()->getSRS();

    bool realData = false;

    unsigned int total = numColumns * numRows;
    unsigned int completed = 0;
    int nodataCount = 0;

    for (unsigned c = 0; c < numColumns; ++c)
    {
        double x = xmin + (dx * (double)c);
        for (unsigned r = 0; r < numRows; ++r)
        {
            double y = ymin + (dy * (double)r);

            // Collect elevations from each layer as necessary.
            bool resolved = false;

            for(int i=0; i<contenders.size() && !resolved; ++i)
            {
                ElevationLayer* layer = contenders[i].first.get();                
                TileKey contenderKey = contenders[i].second;

                // If there is a border, the edge points may not fall within the key extents 
                // and we may need to fetch a neighboring key.

                int n = 4; // index 4 is the center/default tile

                if (border > 0u && !contenderKey.getExtent().contains(x, y))
                {
                    int dTx = x < contenderKey.getExtent().xMin() ? -1 : x > contenderKey.getExtent().xMax() ? +1 : 0;
                    int dTy = y < contenderKey.getExtent().yMin() ? +1 : y > contenderKey.getExtent().yMax() ? -1 : 0;
                    contenderKey = contenderKey.createNeighborKey(dTx, dTy);
                    n = (dTy+1)*3 + (dTx+1);
                }

                if ( heightFailed[n][i] )
                    continue;

                TileKey actualKey = contenderKey;

                GeoHeightField& layerHF = heightFields[n][i];

                if (!layerHF.valid())
                {
                    // We couldn't get the heightfield from the cache, so try to create it.
                    // We also fallback on parent layers to make sure that we have data at the location even if it's fallback.
                    while (!layerHF.valid() && actualKey.valid())
                    {
                        layerHF = layer->createHeightField(actualKey, progress);
                        if (!layerHF.valid())
                        {
                            actualKey = actualKey.createParentKey();
                        }
                    }

                    // Mark this layer as fallback if necessary.
                    if (layerHF.valid())
                    {
                        heightFallback[n][i] = (actualKey != contenderKey); // actualKey != contenders[i].second;
                        numHeightFieldsInCache++;
                    }
                    else
                    {
                        heightFailed[n][i] = true;
                        continue;
                    }
                }

                if (layerHF.valid())
                {
                    bool isFallback = heightFallback[n][i];

                    // We only have real data if this is not a fallback heightfield.
                    if (!isFallback)
                    {
                        realData = true;
                    }

                    float elevation;
                    if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation))
                    {
                        if ( elevation != NO_DATA_VALUE )
                        {
                            resolved = true;                    
                            hf->setHeight(c, r, elevation);
                        }
                        else
                        {
                            ++nodataCount;
                        }
                    }
                }


                // Clear the heightfield cache if we have too many heightfields in the cache.
                if (numHeightFieldsInCache >= maxHeightFields)
                {
                    //OE_NOTICE << "Clearing cache" << std::endl;
                    for (unsigned int j = 0; j < 9; ++j)
                    {
                        for (unsigned int k = 0; k < heightFields[j].size(); k++)
                        {
                            heightFields[j][k] = GeoHeightField::INVALID;
                            heightFallback[j][k] = false;
                        }
                    }
                    numHeightFieldsInCache = 0;
                }
            }

            for(int i=offsets.size()-1; i>=0; --i)
            {
                TileKey contenderKey = offsets[i].second;

                // If there is a border, the edge points may not fall within the key extents 
                // and we may need to fetch a neighboring key.

                int n = 4; // index 4 is the center/default tile

                if (border > 0u && !contenderKey.getExtent().contains(x, y))
                {
                    int dTx = x < contenderKey.getExtent().xMin() ? -1 : x > contenderKey.getExtent().xMax() ? +1 : 0;
                    int dTy = y < contenderKey.getExtent().yMin() ? +1 : x > contenderKey.getExtent().yMax() ? -1 : 0;
                    contenderKey = contenderKey.createNeighborKey(dTx, dTy);
                    n = (dTy+1)*3 + (dTx+1);
                }
                
                if ( offsetFailed[n][i] == true )
                    continue;

                GeoHeightField& layerHF = offsetFields[n][i];
                if ( !layerHF.valid() )
                {
                    ElevationLayer* offset = offsets[i].first.get();

                    layerHF = offset->createHeightField(contenderKey, progress);
                    if ( !layerHF.valid() )
                    {
                        offsetFailed[n][i] = true;
                        continue;
                    }
                }

                // If we actually got a layer then we have real data
                realData = true;

                float elevation = 0.0f;
                if (layerHF.getElevation(keySRS, x, y, interpolation, keySRS, elevation) &&
                    elevation != NO_DATA_VALUE)
                {                    
                    hf->getHeight(c, r) += elevation;
                }
            }
        }
    }

    // Return whether or not we actually read any real data
    return realData;
}