Beispiel #1
0
int ApiGen::genEncoderImpl(const std::string &filename)
{
    FILE *fp = fopen(filename.c_str(), "wt");
    if (fp == NULL) {
        perror(filename.c_str());
        return -1;
    }

    printHeader(fp);
    fprintf(fp, "\n\n#include <string.h>\n");
    fprintf(fp, "#include \"%s_opcodes.h\"\n\n", m_basename.c_str());
    fprintf(fp, "#include \"%s_enc.h\"\n\n\n", m_basename.c_str());
    fprintf(fp, "#include <stdio.h>\n\n");
    fprintf(fp, "namespace {\n\n");

    // unsupport printout
    fprintf(fp,
            "void enc_unsupported()\n"
            "{\n"
            "\tALOGE(\"Function is unsupported\\n\");\n"
            "}\n\n");

    // entry points;
    std::string classname = m_basename + "_encoder_context_t";

    size_t n = size();
    for (size_t i = 0; i < n; i++) {
        EntryPoint *e = &at(i);

        if (e->unsupported()) continue;


        e->print(fp, true, "_enc", /* classname + "::" */"", "void *self");
        fprintf(fp, "{\n");

//      fprintf(fp, "\n\tDBG(\">>>> %s\\n\");\n", e->name().c_str());
        fprintf(fp, "\n\t%s *ctx = (%s *)self;\n",
                classname.c_str(),
                classname.c_str());
        fprintf(fp, "\tIOStream *stream = ctx->m_stream;\n\n");
        VarsArray & evars = e->vars();
        size_t  maxvars = evars.size();
        size_t  j;

        char    buff[256];

        // Define the __size_XXX variables that contain the size of data
        // associated with pointers.
        for (j = 0; j < maxvars; j++) {
            Var& var = evars[j];

            if (!var.isPointer())
                continue;

            const char* varname = var.name().c_str();
            fprintf(fp, "\tconst unsigned int __size_%s = ", varname);

            getVarEncodingSizeExpression(var, e, buff, sizeof(buff));
            fprintf(fp, "%s;\n", buff);
        }

#if WITH_LARGE_SUPPORT
        // We need to take care of 'isLarge' variable in a special way
        // Anything before an isLarge variable can be packed into a single
        // buffer, which is then commited. Each isLarge variable is a pointer
        // to data that can be written to directly through the pipe, which
        // will be instant when using a QEMU pipe

        size_t  nvars   = 0;
        size_t  npointers = 0;

        // First, compute the total size, 8 bytes for the opcode + payload size
        fprintf(fp, "\t unsigned char *ptr;\n");
        fprintf(fp, "\t const size_t packetSize = 8");

        for (j = 0; j < maxvars; j++) {
            fprintf(fp, " + ");
            npointers += writeVarEncodingSize(evars[j], fp);
        }
        if (npointers > 0) {
            fprintf(fp, " + %zu*4", npointers);
        }
        fprintf(fp, ";\n");

        // We need to divide the packet into fragments. Each fragment contains
        // either copied arguments to a temporary buffer, or direct writes for
        // large variables.
        //
        // The first fragment must also contain the opcode+payload_size
        //
        nvars = 0;
        while (nvars < maxvars || maxvars == 0) {

            // Skip over non-large fields
            for (j = nvars; j < maxvars; j++) {
                if (evars[j].isLarge())
                    break;
            }

            // Write a fragment if needed.
            if (nvars == 0 || j > nvars) {
                const char* plus = "";

                if (nvars == 0 && j == maxvars) {
                    // Simple shortcut for the common case where we don't have large variables;
                    fprintf(fp, "\tptr = stream->alloc(packetSize);\n");

                } else {
                    // allocate buffer from the stream until the first large variable
                    fprintf(fp, "\tptr = stream->alloc(");
                    plus = "";

                    if (nvars == 0) {
                        fprintf(fp,"8");
                        plus = " + ";
                    }
                    if (j > nvars) {
                        npointers = 0;
                        for (j = nvars; j < maxvars && !evars[j].isLarge(); j++) {
                            fprintf(fp, "%s", plus);
                            plus = " + ";
                            npointers += writeVarEncodingSize(evars[j], fp);
                        }
                        if (npointers > 0) {
                            fprintf(fp, "%s%zu*4", plus, npointers);
                            plus = " + ";
                        }
                    }
                    fprintf(fp,");\n");
                }

                // encode packet header if needed.
                if (nvars == 0) {
                    fprintf(fp, "\tint tmp = OP_%s;memcpy(ptr, &tmp, 4); ptr += 4;\n",  e->name().c_str());
                    fprintf(fp, "\tmemcpy(ptr, &packetSize, 4);  ptr += 4;\n\n");
                }

                if (maxvars == 0)
                    break;

                // encode non-large fields in this fragment
                for (j = nvars; j < maxvars && !evars[j].isLarge(); j++) {
                    writeVarEncodingExpression(evars[j],fp);
                }

                // Ensure the fragment is commited if it is followed by a large variable
                if (j < maxvars) {
                    fprintf(fp, "\tstream->flush();\n");
                }
            }

            // If we have one or more large variables, write them directly.
            // As size + data
            for ( ; j < maxvars && evars[j].isLarge(); j++) {
                writeVarLargeEncodingExpression(evars[j], fp);
            }

            nvars = j;
        }

#else /* !WITH_LARGE_SUPPORT */
        size_t nvars = evars.size();
        size_t npointers = 0;
        fprintf(fp, "\t const size_t packetSize = 8");
        for (size_t j = 0; j < nvars; j++) {
            npointers += getVarEncodingSizeExpression(evars[j],e,buff,sizeof(buff));
            fprintf(fp, " + %s", buff);
        }
        fprintf(fp, " + %u * 4;\n", (unsigned int) npointers);

        // allocate buffer from the stream;
        fprintf(fp, "\t unsigned char *ptr = stream->alloc(packetSize);\n\n");

        // encode into the stream;
        fprintf(fp, "\tint tmp = OP_%s; memcpy(ptr, &tmp, 4); ptr += 4;\n",  e->name().c_str());
        fprintf(fp, "\tmemcpy(ptr, &packetSize, 4);  ptr += 4;\n\n");

        // out variables
        for (size_t j = 0; j < nvars; j++) {
            writeVarEncodingExpression(evars[j], fp);
        }
#endif /* !WITH_LARGE_SUPPORT */

        // in variables;
        for (size_t j = 0; j < nvars; j++) {
            if (evars[j].isPointer()) {
                Var::PointerDir dir = evars[j].pointerDir();
                if (dir == Var::POINTER_INOUT || dir == Var::POINTER_OUT) {
                    const char* varname = evars[j].name().c_str();
                    if (evars[j].nullAllowed()) {
                        fprintf(fp, "\tif (%s != NULL) ",varname);
                    } else {
                        fprintf(fp, "\t");
                    }
                    fprintf(fp, "stream->readback(%s, __size_%s);\n",
                            varname, varname);
                }
            }
        }
//XXX       fprintf(fp, "\n\tDBG(\"<<<< %s\\n\");\n", e->name().c_str());

        // todo - return value for pointers
        if (e->retval().isPointer()) {
            fprintf(stderr, "WARNING: %s : return value of pointer is unsupported\n",
                    e->name().c_str());
            if (e->flushOnEncode()) {
                fprintf(fp, "\tstream->flush();\n");
            }
            fprintf(fp, "\t return NULL;\n");
        } else if (e->retval().type()->name() != "void") {
            fprintf(fp, "\n\t%s retval;\n", e->retval().type()->name().c_str());
            fprintf(fp, "\tstream->readback(&retval, %u);\n",(unsigned) e->retval().type()->bytes());
            fprintf(fp, "\treturn retval;\n");
        } else if (e->flushOnEncode()) {
            fprintf(fp, "\tstream->flush();\n");
        }
        fprintf(fp, "}\n\n");
    }

    fprintf(fp, "}  // namespace\n\n");

    // constructor
    fprintf(fp, "%s::%s(IOStream *stream)\n{\n", classname.c_str(), classname.c_str());
    fprintf(fp, "\tm_stream = stream;\n\n");

    for (size_t i = 0; i < n; i++) {
        EntryPoint *e = &at(i);
        if (e->unsupported()) {
            fprintf(fp,
                    "\tthis->%s = (%s_%s_proc_t) &enc_unsupported;\n",
                    e->name().c_str(),
                    e->name().c_str(),
                    sideString(CLIENT_SIDE));
        } else {
            fprintf(fp,
                    "\tthis->%s = &%s_enc;\n",
                    e->name().c_str(),
                    e->name().c_str());
        }
    }
    fprintf(fp, "}\n\n");

    fclose(fp);
    return 0;
}
Beispiel #2
0
int ApiGen::genEntryPoints(const std::string & filename, SideType side)
{

    if (side != CLIENT_SIDE && side != WRAPPER_SIDE) {
        fprintf(stderr, "Entry points are only defined for Client and Wrapper components\n");
        return -999;
    }


    FILE *fp = fopen(filename.c_str(), "wt");
    if (fp == NULL) {
        perror(filename.c_str());
        return errno;
    }

    printHeader(fp);
    fprintf(fp, "#include <stdio.h>\n");
    fprintf(fp, "#include <stdlib.h>\n");
    fprintf(fp, "#include \"%s_%s_context.h\"\n", m_basename.c_str(), sideString(side));
    fprintf(fp, "\n");

    fprintf(fp, "#ifndef GL_TRUE\n");
    fprintf(fp, "extern \"C\" {\n");

    for (size_t i = 0; i < size(); i++) {
        fprintf(fp, "\t");
        at(i).print(fp, false);
        fprintf(fp, ";\n");
    }
    fprintf(fp, "};\n\n");
    fprintf(fp, "#endif\n");

    fprintf(fp, "#ifndef GET_CONTEXT\n");
    fprintf(fp, "static %s_%s_context_t::CONTEXT_ACCESSOR_TYPE *getCurrentContext = NULL;\n",
            m_basename.c_str(), sideString(side));

    fprintf(fp,
            "void %s_%s_context_t::setContextAccessor(CONTEXT_ACCESSOR_TYPE *f) { getCurrentContext = f; }\n",
            m_basename.c_str(), sideString(side));
    fprintf(fp, "#define GET_CONTEXT %s_%s_context_t * ctx = getCurrentContext()\n",
            m_basename.c_str(), sideString(side));
    fprintf(fp, "#endif\n\n");


    for (size_t i = 0; i < size(); i++) {
        EntryPoint *e = &at(i);
        e->print(fp);
        fprintf(fp, "{\n");
        fprintf(fp, "\tGET_CONTEXT;\n");

        bool shouldReturn = !e->retval().isVoid();
        bool shouldCallWithContext = (side == CLIENT_SIDE);
        //param check
        if (shouldCallWithContext) {
            for (size_t j=0; j<e->vars().size(); j++) {
                if (e->vars()[j].paramCheckExpression() != "")
                    fprintf(fp, "\t%s\n", e->vars()[j].paramCheckExpression().c_str());
            }
        }
        fprintf(fp, "\t%sctx->%s(%s",
                shouldReturn ? "return " : "",
                e->name().c_str(),
                shouldCallWithContext ? "ctx" : "");
        size_t nvars = e->vars().size();

        for (size_t j = 0; j < nvars; j++) {
            if (!e->vars()[j].isVoid()) {
                fprintf(fp, "%s %s",
                        j != 0 || shouldCallWithContext ? "," : "",
                        e->vars()[j].name().c_str());
            }
        }
        fprintf(fp, ");\n");
        fprintf(fp, "}\n\n");
    }
    fclose(fp);
    return 0;
}