Beispiel #1
0
int ORCEnvironmentGetRobots(void* env, void** robots)
{
    EnvironmentBasePtr penv = GetEnvironment(env);
    std::vector<RobotBasePtr> vrobots;
    penv->GetRobots(vrobots);
    if( !robots ) {
        return static_cast<int>(vrobots.size());
    }
    for(size_t i = 0; i < vrobots.size(); ++i) {
        robots[i] = new InterfaceBasePtr(vrobots[i]);
    }
    return vrobots.size();
}
int main() {
  RaveInitialize(false, OpenRAVE::Level_Debug);
  env = RaveCreateEnvironment();
  env->StopSimulation();
//  bool success = env->Load("data/pr2test2.env.xml");
  {
    bool success = env->Load("/home/joschu/Proj/drc/gfe.xml");
    FAIL_IF_FALSE(success);
  }
  {
    bool success = env->Load("/home/joschu/Proj/trajopt/data/test2.env.xml");
    FAIL_IF_FALSE(success);
  }
  vector<RobotBasePtr> robots;
  env->GetRobots(robots);
  RobotBasePtr robot = robots[0];
  vector<RobotBase::ManipulatorPtr> manips = robot->GetManipulators();


  cc = CollisionChecker::GetOrCreate(*env);
  viewer.reset(new OSGViewer(env));
  env->AddViewer(viewer);



  ManipulatorControl mc(manips[manips.size()-1], viewer);
  DriveControl dc(robot, viewer);
  StatePrinter sp(robot);
  viewer->AddKeyCallback('a', boost::bind(&StatePrinter::PrintAll, &sp));
  viewer->AddKeyCallback('q', &PlotCollisionGeometry);
  viewer->AddKeyCallback('=', boost::bind(&AdjustTransparency, .05));
  viewer->AddKeyCallback('-', boost::bind(&AdjustTransparency, -.05));

  viewer->Idle();

  env.reset();
  viewer.reset();
  RaveDestroy();

}
Beispiel #3
0
int main(int argc, char ** argv)
{

  //int interval = 1000000000; // 1hz (1.0 sec)
  //int interval = 500000000; // 2hz (0.5 sec)
  //int interval = 10000000; // 100 hz (0.01 sec)
  int interval =   40000000; // 25 hz (0.04 sec)

  // At this point an explanation is necessary for the following arrays
  //
  // jointNames is the order makeTraj python code saves the joint values in plain text format
  string jointNames[] = {"RHY", "RHR", "RHP", "RKP", "RAP", "RAR", "LHY", "LHR", "LHP", "LKP", "LAP", "LAR", "RSP", "RSR", "RSY", "REP", "RWY", "RWR", "RWP", "LSP", "LSR", "LSY", "LEP", "LWY", "LWR", "LWP", "NKY", "NK1", "NK2", "HPY", "rightThumbKnuckle1", "rightIndexKnuckle1", "rightMiddleKnuckle1", "rightRingKnuckle1", "rightPinkyKnuckle1", "leftThumbKnuckle1", "leftIndexKnuckle1", "leftMiddleKnuckle1", "leftRingKnuckle1", "leftPinkyKnuckle1"};
  
  // openRAVE Joint Indices keeps the mapping between the order given above and hubo's joint index in openRAVE. (E.g. RHY's index in openRAVE is 1, RHR's is 3 and so on). A -1 means that the joint name does not exist in openRAVE but it exists on the real robot. (E.g. RWR)
  int openRAVEJointIndices[] = {1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 21, -1, 23, 14, 16, 18, 20, 22, -1, 24, -1, -1, -1, 0, 41, 29, 32, 35, 38, 56, 44, 47, 50, 53};

  // hubo_ref Joint Indices keeps the mapping between openRAVE joint Indices and the order hubo-read-trajectory writes in ach channel. (E.g. RHY is the 26th element of H.ref[] array).
  int hubo_refJointIndices[] = {26, 27, 28, 29, 30, 31, 19, 20, 21, 22, 23, 24, 11, 12, 13, 14, 15, 16, 17, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 0, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41};

  /* Joint Numbers/Index values */	
  string viewername = "qtcoin";
  string scenefilename = "../../../openHubo/huboplus/";
  RaveInitialize(true); // start openrave core
  EnvironmentBasePtr penv = RaveCreateEnvironment(); // create the main environment
	
  int i = 1;
  bool vflag = false; // verbose mode flag
  bool Vflag = false; // extra verbose mode flag
  bool cflag = false; // self colision flag
  bool fflag = false; // ref vs. ref-filter channel flag
  /* For Viewer */
  if(argc <= i ){
    printf("Loading Headless\n");	
  }
  while(argc > i) {
    if(strcmp(argv[i], "-g") == 0) {
      //RaveSetDebugLevel(Level_Debug);
      boost::thread thviewer(boost::bind(SetViewer,penv,viewername));
    }
    else {
      printf("Loading Headless\n");
    }

		
    if(strcmp(argv[i], "-v") == 0) {
      vflag = true;
      printf("Entering Verbose Mode");
    }
    else {
      vflag = false;
    }
		
    if(strcmp(argv[i], "-V") == 0) {
      Vflag = true;
      printf("Entering Extra Verbose Mode");
    }

    if(strcmp(argv[i], "-f") == 0) {
      fflag = true;
      printf("listening to filtered channel.");
    }
		
    if(strcmp(argv[i], "-m") == 0) {
      i++;
      string hubomodel;
      hubomodel = argv[i];
      scenefilename.append(hubomodel);
      scenefilename.append(".robot.xml");
      cout<<"Loading model "<<scenefilename<<endl;
    }
    i++;
  }

  vector<dReal> vsetvalues;
  // parse the command line options
    
  // load the scene
  if( !penv->Load(scenefilename) ) {
    return 2;
  }

  // Wait until the robot model appears
  usleep(1000000);
	
  /* timing */
  struct timespec t;
	
  /* hubo ACH Channel */
  struct hubo_ref H;
  memset( &H,   0, sizeof(H));
  int r;
	
  if(fflag){
    r = ach_open(&chan_num, HUBO_CHAN_REF_FILTER_NAME, NULL);
  }
  else{
    r = ach_open(&chan_num, HUBO_CHAN_REF_NAME, NULL);
  }

  size_t fs;


  /* read first set of data */
  r = ach_get( &chan_num, &H, sizeof(H), &fs, NULL, ACH_O_LAST );
  assert( sizeof(H) == fs );

  int contactpoints = 0;
  bool runflag = true;
  while(runflag) {
  {
    // lock the environment to prevent data from changing
    EnvironmentMutex::scoped_lock lock(penv->GetMutex());
    
    //vector<KinBodyPtr> vbodies;
    vector<RobotBasePtr> vbodies;
    //penv->GetBodies(vbodies);
    penv->GetRobots(vbodies);
    // get the first body
    if( vbodies.size() == 0 ) {
      RAVELOG_ERROR("no bodies loaded\n");
      return -3;
    }
    
    //KinBodyPtr pbody = vbodies.at(0);
    RobotBasePtr pbody = vbodies.at(0);
    vector<dReal> values;
    pbody->GetDOFValues(values);
    
    // set new values
    for(int i = 0; i < (int)vsetvalues.size() && i < (int)values.size(); ++i) {
      values[i] = vsetvalues[i];
    }
    
    pbody->Enable(true);
    //pbody->SetVisible(true);
    //CollisionReportPtr report(new CollisionReport());
    //bool runflag = true;
    //while(runflag) {
	
      /* Wait until next shot */
      clock_nanosleep(0,TIMER_ABSTIME,&t, NULL);

      /* Get updated joint info here */
      r = ach_get( &chan_num, &H, sizeof(H), &fs, NULL, ACH_O_LAST );
      assert( sizeof(H) == fs );

      
      /* set all joints from ach */
      int len = (int)(sizeof(openRAVEJointIndices)/sizeof(openRAVEJointIndices[0]));

      /* set all joints from ach */
      for( int ii = 0; ii < (int)values.size() ; ii++ ) {
	values[ii] = 0.0;
      }

      for( int ii = 0; ii < len; ii++){
	if(openRAVEJointIndices[ii] != -1){
	  values[openRAVEJointIndices[ii]] = H.ref[hubo_refJointIndices[ii]];
	}
      }

      //		values[RSY] = -1.0;
      //		values[REB] = 1.0;
      pbody->SetDOFValues(values,true);

      // penv->GetCollisionChecker()->SetCollisionOptions(CO_Contacts);
      // if( pbody->CheckSelfCollision(report) ) {
      // 	cflag = true;
      // if(vflag | Vflag){
      // 		RAVELOG_INFO("body not in collision\n");
      // 	}
      // 	if(Vflag) {   
      // 	 	contactpoints = (int)report->contacts.size();
      // 		stringstream ss;
      // 		ss << "body in self-collision "
      // 		<< (!!report->plink1 ? report->plink1->GetName() : "") << ":"
      // 		<< (!!report->plink2 ? report->plink2->GetName() : "") << " at "
      // 		<< contactpoints << "contacts" << endl;
      // 		for(int i = 0; i < contactpoints; ++i) {
      // 			CollisionReport::CONTACT& c = report->contacts[i];
      // 			ss << "contact" << i << ": pos=("
      // 			<< c.pos.x << ", " << c.pos.y << ", " << c.pos.z << "), norm=("
      // 			<< c.norm.x << ", " << c.norm.y << ", " << c.norm.z << ")" << endl;
      // 		}

      // 	RAVELOG_INFOA(ss.str());
      // 	}
      // }
      // else {
      // 	cflag = false;
      // 	if(vflag | Vflag) {
      // 		RAVELOG_INFO("body not in collision\n");
      // 	}
      // }
      // get the transformations of all the links
      vector<Transform> vlinktransforms;
      pbody->GetLinkTransformations(vlinktransforms);
      //boost::this_thread::sleep(boost::posix_time::milliseconds(2000));
      //		boost::this_thread::sleep(boost::posix_time::milliseconds(1));
      t.tv_nsec+=interval;
      tsnorm(&t);
      
      //		runflag = false;
      //pbody->Enable(true);
      //pbody->SetVisible(true);
      
      usleep(10000);
      
      pbody->SimulationStep(0.01);
      penv->StepSimulation(0.01);
  } 
  }
  pause();
  RaveDestroy(); // destroy
  return contactpoints;
}
int main(int argc, char ** argv)
{
    string scenefilename = "data/diffdrive_arm.env.xml";
    string viewername = "qtcoin";
    RaveInitialize(true);
    EnvironmentBasePtr penv = RaveCreateEnvironment();
    penv->SetDebugLevel(Level_Debug);

    boost::thread thviewer(boost::bind(SetViewer,penv,viewername)); // create the viewer
    usleep(400000); // wait for the viewer to init

    penv->Load(scenefilename);

    // attach a physics engine
    penv->SetPhysicsEngine(RaveCreatePhysicsEngine(penv,"ode"));
    penv->GetPhysicsEngine()->SetGravity(Vector(0,0,-9.8));

    vector<RobotBasePtr> vrobots;
    penv->GetRobots(vrobots);
    RobotBasePtr probot = vrobots.at(0);
    std::vector<dReal> q;

    vector<int> wheelindices, restindices;
    ControllerBasePtr wheelcontroller, armcontroller;
    // create the controllers, make sure to lock environment!
    {
        EnvironmentMutex::scoped_lock lock(penv->GetMutex()); // lock environment

        MultiControllerPtr multi(new MultiController(penv));
        vector<int> dofindices(probot->GetDOF());
        for(int i = 0; i < probot->GetDOF(); ++i) {
            dofindices[i] = i;
        }
        probot->SetController(multi,dofindices,1); // control everything
        // set the velocity controller on all joints that have 'wheel' in their description
        for(std::vector<KinBody::JointPtr>::const_iterator itjoint = probot->GetJoints().begin(); itjoint != probot->GetJoints().end(); ++itjoint) {
            if( (*itjoint)->GetName().find("wheel") != string::npos ) {
                for(int i = 0; i < (*itjoint)->GetDOF(); ++i) {
                    wheelindices.push_back((*itjoint)->GetDOFIndex()+i);
                }
            }
            else {
                for(int i = 0; i < (*itjoint)->GetDOF(); ++i) {
                    restindices.push_back((*itjoint)->GetDOFIndex()+i);
                }
            }
        }

        if(wheelindices.size() > 0 ) {
            wheelcontroller = RaveCreateController(penv,"odevelocity");
            multi->AttachController(wheelcontroller,wheelindices,0);
        }

        if( restindices.size() > 0 ) {
            armcontroller = RaveCreateController(penv,"idealcontroller");
            multi->AttachController(armcontroller,restindices,0);
        }
        else {
            RAVELOG_WARN("robot needs to have wheels and arm for demo to work\n");
        }
    }

    while(1) {
        {
            EnvironmentMutex::scoped_lock lock(penv->GetMutex()); // lock environment

            if( !!armcontroller ) {
                // set a trajectory on the arm and velocity on the wheels
                TrajectoryBasePtr traj = RaveCreateTrajectory(penv,"");
                probot->SetActiveDOFs(restindices);
                ConfigurationSpecification spec = probot->GetActiveConfigurationSpecification();
                int timeoffset = spec.AddDeltaTime();
                traj->Init(spec);
                probot->GetActiveDOFValues(q); // get current values
                vector<dReal> vdata(spec.GetDOF(),0);
                std::copy(q.begin(),q.end(),vdata.begin());
                traj->Insert(0,vdata);
                for(int i = 0; i < 4; ++i) {
                    q.at(RaveRandomInt()%restindices.size()) += RaveRandomFloat()-0.5; // move a random axis
                }

                // check for collisions
                {
                    RobotBase::RobotStateSaver saver(probot); // add a state saver so robot is not moved permenantly
                    probot->SetActiveDOFValues(q);
                    if( probot->CheckSelfCollision() ) { // don't check env collisions since we have physics enabled
                        continue; // robot in collision at final point, so reject
                    }
                }

                std::copy(q.begin(),q.end(),vdata.begin());
                vdata.at(timeoffset) = 2; // trajectory takes 2s
                traj->Insert(1,vdata);
                planningutils::RetimeActiveDOFTrajectory(traj,probot,true);
                armcontroller->SetPath(traj);
            }

            if( !!wheelcontroller ) {
                stringstream sout,ss; ss << "setvelocity ";
                for(size_t i = 0; i < wheelindices.size(); ++i) {
                    ss << 2*(RaveRandomFloat()-0.5) << " ";
                }
                if( !wheelcontroller->SendCommand(sout,ss) ) {
                    RAVELOG_WARN("failed to send velocity command\n");
                }
            }
        }

        // unlock the environment and wait for the arm controller to finish (wheel controller will never finish)
        if( !armcontroller ) {
            usleep(2000000);
        }
        else {
            while(!armcontroller->IsDone()) {
                usleep(1000);
            }
        }
    }

    thviewer.join(); // wait for the viewer thread to exit
    penv->Destroy(); // destroy
    return 0;
}