Beispiel #1
0
// ============================================================================
void
Solve(const Epetra_RowMatrix* Matrix, const Epetra_MultiVector* LHS,
      const Epetra_MultiVector* RHS)
{
  if (Matrix->Comm().NumProc() != 1)
    throw(Exception(__FILE__, __LINE__,
                    "Solve() works only in serial"));
  if (LHS->NumVectors() != RHS->NumVectors())
    throw(Exception(__FILE__, __LINE__,
                    "number of vectors in multivectors not consistent"));

  if(Matrix->NumGlobalRows64() > std::numeric_limits<int>::max())
    throw(Exception(__FILE__, __LINE__,
                    "Matrix->NumGlobalRows64() > std::numeric_limits<int>::max()"));

  int n = static_cast<int>(Matrix->NumGlobalRows64());
  int NumVectors = LHS->NumVectors();

  Epetra_SerialDenseMatrix DenseMatrix;
  DenseMatrix.Shape(n, n);

  for (int i = 0 ; i < n ; ++i)
    for (int j = 0 ; j < n ; ++j)
      DenseMatrix(i,j) = 0.0;

  // allocate storage to extract matrix rows.
  int Length = Matrix->MaxNumEntries();
  vector<double> Values(Length);
  vector<int>    Indices(Length);

  for (int j = 0 ; j < Matrix->NumMyRows() ; ++j)
  {
    int NumEntries;
    int ierr = Matrix->ExtractMyRowCopy(j, Length, NumEntries,
                                        &Values[0], &Indices[0]);

    for (int k = 0 ; k < NumEntries ; ++k)
      DenseMatrix(j,Indices[k]) = Values[k];
  }

  Epetra_SerialDenseMatrix DenseX(n, NumVectors);
  Epetra_SerialDenseMatrix DenseB(n, NumVectors);

  for (int i = 0 ; i < n ; ++i)
    for (int j = 0 ; j < NumVectors ; ++j)
      DenseB(i,j) = (*RHS)[j][i];

  Epetra_SerialDenseSolver DenseSolver;

  DenseSolver.SetMatrix(DenseMatrix);
  DenseSolver.SetVectors(DenseX,DenseB);

  DenseSolver.Factor();
  DenseSolver.Solve();

  for (int i = 0 ; i < n ; ++i)
    for (int j = 0 ; j < NumVectors ; ++j)
       (*LHS)[j][i] = DenseX(i,j);
}
Beispiel #2
0
int main(int argc, char *argv[])
{
  int ierr = 0, i, j, k;
  bool debug = false;

#ifdef EPETRA_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm( MPI_COMM_WORLD );
#else
  Epetra_SerialComm Comm;
#endif

  bool verbose = false;

  // Check if we should print results to standard out
  if (argc>1) if (argv[1][0]=='-' && argv[1][1]=='v') verbose = true;

  if (verbose && Comm.MyPID()==0)
    cout << Epetra_Version() << endl << endl;

  int rank = Comm.MyPID();
  //  char tmp;
  //  if (rank==0) cout << "Press any key to continue..."<< endl;
  //  if (rank==0) cin >> tmp;
  //  Comm.Barrier();

  Comm.SetTracebackMode(0); // This should shut down any error traceback reporting
  if (verbose) cout << Comm <<endl;

  //  bool verbose1 = verbose;

  // Redefine verbose to only print on PE 0
  if (verbose && rank!=0) verbose = false;
	
  int N = 20;
  int NRHS = 4;
  double * A = new double[N*N];
  double * A1 = new double[N*N];
  double * X = new double[(N+1)*NRHS];
  double * X1 = new double[(N+1)*NRHS];
  int LDX = N+1;
  int LDX1 = N+1;
  double * B = new double[N*NRHS];
  double * B1 = new double[N*NRHS];
  int LDB = N;
  int LDB1 = N;

  int LDA = N;
  int LDA1 = LDA;
  double OneNorm1;
  bool Transpose = false;

  Epetra_SerialDenseSolver solver;
  Epetra_SerialDenseMatrix * Matrix;
  for (int kk=0; kk<2; kk++) {
    for (i=1; i<=N; i++) {
      GenerateHilbert(A, LDA, i);
      OneNorm1 = 0.0;
      for (j=1; j<=i; j++) OneNorm1 += 1.0/((double) j); // 1-Norm = 1 + 1/2 + ...+1/n

      if (kk==0) {
	Matrix = new Epetra_SerialDenseMatrix(View, A, LDA, i, i);
	LDA1 = LDA;
      }
      else {
	Matrix = new Epetra_SerialDenseMatrix(Copy, A, LDA, i, i);
	LDA1 = i;
      }

      GenerateHilbert(A1, LDA1, i);
	
      if (kk==1) {
	solver.FactorWithEquilibration(true);
	solver.SolveWithTranspose(true);
	Transpose = true;
	solver.SolveToRefinedSolution(true);
      }

      for (k=0; k<NRHS; k++)
	for (j=0; j<i; j++) {
	  B[j+k*LDB] = 1.0/((double) (k+3)*(j+3));
	  B1[j+k*LDB1] = B[j+k*LDB1];
	}
      Epetra_SerialDenseMatrix Epetra_B(View, B, LDB, i, NRHS);
      Epetra_SerialDenseMatrix Epetra_X(View, X, LDX, i, NRHS);

      solver.SetMatrix(*Matrix);
      solver.SetVectors(Epetra_X, Epetra_B);

      ierr = check(solver, A1, LDA1,  i, NRHS, OneNorm1, B1, LDB1,  X1, LDX1, Transpose, verbose);
      assert (ierr>-1);
      delete Matrix;
      if (ierr!=0) {
	if (verbose) cout << "Factorization failed due to bad conditioning.  This is normal if RCOND is small."
			  << endl;
	break;
      }
    }
  }

  delete [] A;
  delete [] A1;
  delete [] X;
  delete [] X1;
  delete [] B;
  delete [] B1;

  /////////////////////////////////////////////////////////////////////
  // Now test norms and scaling functions
  /////////////////////////////////////////////////////////////////////

  Epetra_SerialDenseMatrix D;
  double ScalarA = 2.0;

  int DM = 10;
  int DN = 8;
  D.Shape(DM, DN);
  for (j=0; j<DN; j++)
    for (i=0; i<DM; i++) D[j][i] = (double) (1+i+j*DM) ;

  //cout << D << endl;

  double NormInfD_ref = (double)(DM*(DN*(DN+1))/2);
  double NormOneD_ref = (double)((DM*DN*(DM*DN+1))/2 - (DM*(DN-1)*(DM*(DN-1)+1))/2 );

  double NormInfD = D.NormInf();
  double NormOneD = D.NormOne();

  if (verbose) {
    cout << " *** Before scaling *** " << endl
	 << " Computed one-norm of test matrix = " << NormOneD << endl
	 << " Expected one-norm                = " << NormOneD_ref << endl
	 << " Computed inf-norm of test matrix = " << NormInfD << endl
	 << " Expected inf-norm                = " << NormInfD_ref << endl;
  }
  D.Scale(ScalarA); // Scale entire D matrix by this value
  NormInfD = D.NormInf();
  NormOneD = D.NormOne();
  if (verbose) {
    cout << " *** After scaling *** " << endl
	 << " Computed one-norm of test matrix = " << NormOneD << endl
	 << " Expected one-norm                = " << NormOneD_ref*ScalarA << endl
	 << " Computed inf-norm of test matrix = " << NormInfD << endl
	 << " Expected inf-norm                = " << NormInfD_ref*ScalarA << endl;
  }


  /////////////////////////////////////////////////////////////////////
  // Now test that A.Multiply(false, x, y) produces the same result
  // as y.Multiply('N','N', 1.0, A, x, 0.0).
  /////////////////////////////////////////////////////////////////////

  N = 10;
  int M = 10;
  LDA = N;
  Epetra_SerialDenseMatrix smallA(N, M, false);
  Epetra_SerialDenseMatrix x(N, 1, false);
  Epetra_SerialDenseMatrix y1(N, 1, false);
  Epetra_SerialDenseMatrix y2(N, 1, false);

  for(i=0; i<N; ++i) {
    for(j=0; j<M; ++j) {
      smallA(i,j) = 1.0*i+2.0*j+1.0;
    }
    x(i,0) = 1.0;
    y1(i,0) = 0.0;
    y2(i,0) = 0.0;
  }

  //quick check of operator==
  if (x == y1) {
    if (verbose) cout << "err in Epetra_SerialDenseMatrix::operator==, "
        << "erroneously returned true." << std::endl;
    return(-1);
  }

  //quick check of operator!=
  if (x != x) {
    if (verbose) cout << "err in Epetra_SerialDenseMatrix::operator==, "
        << "erroneously returned true." << std::endl;
    return(-1);
  }

  int err1 = smallA.Multiply(false, x, y1);
  int err2 = y2.Multiply('N','N', 1.0, smallA, x, 0.0);
  if (err1 != 0 || err2 != 0) {
    if (verbose) cout << "err in Epetra_SerialDenseMatrix::Multiply"<<endl;
    return(err1+err2);
  }

  for(i=0; i<N; ++i) {
    if (y1(i,0) != y2(i,0)) {
      if (verbose) cout << "different versions of Multiply don't match."<<endl;
      return(-99);
    }
  }

  /////////////////////////////////////////////////////////////////////
  // Now test for larger system, both correctness and performance.
  /////////////////////////////////////////////////////////////////////


  N = 2000;
  NRHS = 5;
  LDA = N;
  LDB = N;
  LDX = N;

  if (verbose) cout << "\n\nComputing factor of an " << N << " x " << N << " general matrix...Please wait.\n\n" << endl;

  // Define A and X

  A = new double[LDA*N];
  X = new double[LDB*NRHS];

  for (j=0; j<N; j++) {
    for (k=0; k<NRHS; k++) X[j+k*LDX] = 1.0/((double) (j+5+k));
    for (i=0; i<N; i++) {
      if (i==((j+2)%N)) A[i+j*LDA] = 100.0 + i;
      else A[i+j*LDA] = -11.0/((double) (i+5)*(j+2));
    }
  }

  // Define Epetra_SerialDenseMatrix object

  Epetra_SerialDenseMatrix BigMatrix(Copy, A, LDA, N, N);
  Epetra_SerialDenseMatrix OrigBigMatrix(View, A, LDA, N, N);

  Epetra_SerialDenseSolver BigSolver;
  BigSolver.FactorWithEquilibration(true);
  BigSolver.SetMatrix(BigMatrix);

  // Time factorization

  Epetra_Flops counter;
  BigSolver.SetFlopCounter(counter);
  Epetra_Time Timer(Comm);
  double tstart = Timer.ElapsedTime();
  ierr = BigSolver.Factor();
  if (ierr!=0 && verbose) cout << "Error in factorization = "<<ierr<< endl;
  assert(ierr==0);
  double time = Timer.ElapsedTime() - tstart;

  double FLOPS = counter.Flops();
  double MFLOPS = FLOPS/time/1000000.0;
  if (verbose) cout << "MFLOPS for Factorization = " << MFLOPS << endl;

  // Define Left hand side and right hand side
  Epetra_SerialDenseMatrix LHS(View, X, LDX, N, NRHS);
  Epetra_SerialDenseMatrix RHS;
  RHS.Shape(N,NRHS); // Allocate RHS

  // Compute RHS from A and X

  Epetra_Flops RHS_counter;
  RHS.SetFlopCounter(RHS_counter);
  tstart = Timer.ElapsedTime();
  RHS.Multiply('N', 'N', 1.0, OrigBigMatrix, LHS, 0.0);
  time = Timer.ElapsedTime() - tstart;

  Epetra_SerialDenseMatrix OrigRHS = RHS;

  FLOPS = RHS_counter.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) cout << "MFLOPS to build RHS (NRHS = " << NRHS <<") = " << MFLOPS << endl;

  // Set LHS and RHS and solve
  BigSolver.SetVectors(LHS, RHS);

  tstart = Timer.ElapsedTime();
  ierr = BigSolver.Solve();
  if (ierr==1 && verbose) cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << endl;
  else if (ierr!=0 && verbose) cout << "Error in solve = "<<ierr<< endl;
  assert(ierr>=0);
  time = Timer.ElapsedTime() - tstart;

  FLOPS = BigSolver.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) cout << "MFLOPS for Solve (NRHS = " << NRHS <<") = " << MFLOPS << endl;

  double * resid = new double[NRHS];
  bool OK = Residual(N, NRHS, A, LDA, BigSolver.Transpose(), BigSolver.X(), BigSolver.LDX(),
		     OrigRHS.A(), OrigRHS.LDA(), resid);

  if (verbose) {
    if (!OK) cout << "************* Residual do not meet tolerance *************" << endl;
    for (i=0; i<NRHS; i++)
      cout << "Residual[" << i <<"] = "<< resid[i] << endl;
    cout  << endl;
  }

  // Solve again using the Epetra_SerialDenseVector class for LHS and RHS

  Epetra_SerialDenseVector X2;
  Epetra_SerialDenseVector B2;
  X2.Size(BigMatrix.N());
  B2.Size(BigMatrix.M());
  int length = BigMatrix.N();
  {for (int kk=0; kk<length; kk++) X2[kk] = ((double ) kk)/ ((double) length);} // Define entries of X2

  RHS_counter.ResetFlops();
  B2.SetFlopCounter(RHS_counter);
  tstart = Timer.ElapsedTime();
  B2.Multiply('N', 'N', 1.0, OrigBigMatrix, X2, 0.0); // Define B2 = A*X2
  time = Timer.ElapsedTime() - tstart;

  Epetra_SerialDenseVector OrigB2 = B2;

  FLOPS = RHS_counter.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) cout << "MFLOPS to build single RHS = " << MFLOPS << endl;

  // Set LHS and RHS and solve
  BigSolver.SetVectors(X2, B2);

  tstart = Timer.ElapsedTime();
  ierr = BigSolver.Solve();
  time = Timer.ElapsedTime() - tstart;
  if (ierr==1 && verbose) cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << endl;
  else if (ierr!=0 && verbose) cout << "Error in solve = "<<ierr<< endl;
  assert(ierr>=0);

  FLOPS = counter.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) cout << "MFLOPS to solve single RHS = " << MFLOPS << endl;

  OK = Residual(N, 1, A, LDA, BigSolver.Transpose(), BigSolver.X(), BigSolver.LDX(), OrigB2.A(),
		OrigB2.LDA(), resid);

  if (verbose) {
    if (!OK) cout << "************* Residual do not meet tolerance *************" << endl;
      cout << "Residual = "<< resid[0] << endl;
  }
  delete [] resid;
  delete [] A;
  delete [] X;

  ///////////////////////////////////////////////////
  // Now test default constructor and index operators
  ///////////////////////////////////////////////////

  N = 5;
  Epetra_SerialDenseMatrix C; // Implicit call to default constructor, should not need to call destructor
  C.Shape(5,5); // Make it 5 by 5
  double * C1 = new double[N*N];
  GenerateHilbert(C1, N, N); // Generate Hilber matrix

  C1[1+2*N] = 1000.0;  // Make matrix nonsymmetric

  // Fill values of C with Hilbert values
  for (i=0; i<N; i++)
    for (j=0; j<N; j++)
      C(i,j) = C1[i+j*N];

  // Test if values are correctly written and read
  for (i=0; i<N; i++)
    for (j=0; j<N; j++) {
      assert(C(i,j) == C1[i+j*N]);
      assert(C(i,j) == C[j][i]);
    }

  if (verbose)
    cout << "Default constructor and index operator check OK.  Values of Hilbert matrix = "
	 << endl << C << endl
	 << "Values should be 1/(i+j+1), except value (1,2) should be 1000" << endl;

  delete [] C1;

  // now test sized/shaped constructor
  Epetra_SerialDenseMatrix shapedMatrix(10, 12);
  assert(shapedMatrix.M() == 10);
  assert(shapedMatrix.N() == 12);
  for(i = 0; i < 10; i++)
    for(j = 0; j < 12; j++)
      assert(shapedMatrix(i, j) == 0.0);
  Epetra_SerialDenseVector sizedVector(20);
  assert(sizedVector.Length() == 20);
  for(i = 0; i < 20; i++)
    assert(sizedVector(i) == 0.0);
  if (verbose)
    cout << "Shaped/sized constructors check OK." << endl;

  // test Copy/View mode in op= and cpy ctr
  int temperr = 0;
  temperr = matrixAssignment(verbose, debug);
  if(verbose && temperr == 0)
    cout << "Operator = checked OK." << endl;
  EPETRA_TEST_ERR(temperr, ierr);
  temperr = matrixCpyCtr(verbose, debug);
  if(verbose && temperr == 0)
    cout << "Copy ctr checked OK." << endl;
  EPETRA_TEST_ERR(temperr, ierr);

  // Test some vector methods

  Epetra_SerialDenseVector v1(3);
  v1[0] = 1.0;
  v1[1] = 3.0;
  v1[2] = 2.0;

  Epetra_SerialDenseVector v2(3);
  v2[0] = 2.0;
  v2[1] = 1.0;
  v2[2] = -2.0;

  temperr = 0;
  if (v1.Norm1()!=6.0) temperr++;
  if (fabs(sqrt(14.0)-v1.Norm2())>1.0e-6) temperr++;
  if (v1.NormInf()!=3.0) temperr++;
  if(verbose && temperr == 0)
    cout << "Vector Norms checked OK." << endl;
  temperr = 0;
  if (v1.Dot(v2)!=1.0) temperr++;
  if(verbose && temperr == 0)
    cout << "Vector Dot product checked OK." << endl;

#ifdef EPETRA_MPI
  MPI_Finalize() ;
#endif

/* end main
*/
return ierr ;
}
Beispiel #3
0
int main(int argc, char *argv[])
{
  int ierr = 0, i, j, k;

#ifdef EPETRA_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm( MPI_COMM_WORLD );
#else
  Epetra_SerialComm Comm;
#endif

  bool verbose = false;

  // Check if we should print results to standard out
  if (argc>1) if (argv[1][0]=='-' && argv[1][1]=='v') verbose = true;

  if(verbose && Comm.MyPID()==0)
    std::cout << Epetra_Version() << std::endl << std::endl;

  int rank = Comm.MyPID();
  //  char tmp;
  //  if (rank==0) std::cout << "Press any key to continue..."<< std::endl;
  //  if (rank==0) cin >> tmp;
  //  Comm.Barrier();

  Comm.SetTracebackMode(0); // This should shut down any error traceback reporting
  if (verbose) std::cout << Comm << std::endl;

  //  bool verbose1 = verbose;

  // Redefine verbose to only print on PE 0
  if (verbose && rank!=0) verbose = false;

  int N = 20;
  int NRHS = 4;
  double * A = new double[N*N];
  double * A1 = new double[N*N];
  double * X = new double[(N+1)*NRHS];
  double * X1 = new double[(N+1)*NRHS];
  int LDX = N+1;
  int LDX1 = N+1;
  double * B = new double[N*NRHS];
  double * B1 = new double[N*NRHS];
  int LDB = N;
  int LDB1 = N;

  int LDA = N;
  int LDA1 = LDA;
  double OneNorm1;
  bool Upper = false;

  Epetra_SerialSpdDenseSolver solver;
  Epetra_SerialSymDenseMatrix * Matrix;
  for (int kk=0; kk<2; kk++) {
    for (i=1; i<=N; i++) {
      GenerateHilbert(A, LDA, i);
      OneNorm1 = 0.0;
      for (j=1; j<=i; j++) OneNorm1 += 1.0/((double) j); // 1-Norm = 1 + 1/2 + ...+1/n

      if (kk==0) {
	Matrix = new Epetra_SerialSymDenseMatrix(View, A, LDA, i);
	LDA1 = LDA;
      }
      else {
	Matrix = new Epetra_SerialSymDenseMatrix(Copy, A, LDA, i);
	LDA1 = i;
      }
      GenerateHilbert(A1, LDA1, i);
	
      if (kk==1) {
	solver.FactorWithEquilibration(true);
	Matrix->SetUpper();
	Upper = true;
	solver.SolveToRefinedSolution(false);
      }

      for (k=0; k<NRHS; k++)
	for (j=0; j<i; j++) {
	  B[j+k*LDB] = 1.0/((double) (k+3)*(j+3));
	  B1[j+k*LDB1] = B[j+k*LDB1];
	}
      Epetra_SerialDenseMatrix Epetra_B(View, B, LDB, i, NRHS);
      Epetra_SerialDenseMatrix Epetra_X(View, X, LDX, i, NRHS);
      solver.SetMatrix(*Matrix);
      solver.SetVectors(Epetra_X, Epetra_B);

      ierr = check(solver, A1, LDA1,  i, NRHS, OneNorm1, B1, LDB1,  X1, LDX1, Upper, verbose);
      assert (ierr>-1);
      delete Matrix;
      if (ierr!=0) {
	if (verbose) std::cout << "Factorization failed due to bad conditioning.  This is normal if SCOND is small."
			  << std::endl;
	break;
      }
    }
  }

  delete [] A;
  delete [] A1;
  delete [] X;
  delete [] X1;
  delete [] B;
  delete [] B1;

  /////////////////////////////////////////////////////////////////////
  // Now test norms and scaling functions
  /////////////////////////////////////////////////////////////////////

  Epetra_SerialSymDenseMatrix D;
  double ScalarA = 2.0;

  int DM = 10;
  int DN = 10;
  D.Shape(DM);
  for (j=0; j<DN; j++)
    for (i=0; i<DM; i++) D[j][i] = (double) (1+i+j*DM) ;

  //std::cout << D << std::endl;

  double NormInfD_ref = (double)(DM*(DN*(DN+1))/2);
  double NormOneD_ref = NormInfD_ref;

  double NormInfD = D.NormInf();
  double NormOneD = D.NormOne();

  if (verbose) {
    std::cout << " *** Before scaling *** " << std::endl
	 << " Computed one-norm of test matrix = " << NormOneD << std::endl
	 << " Expected one-norm                = " << NormOneD_ref << std::endl
	 << " Computed inf-norm of test matrix = " << NormInfD << std::endl
	 << " Expected inf-norm                = " << NormInfD_ref << std::endl;
  }
  D.Scale(ScalarA); // Scale entire D matrix by this value

  //std::cout << D << std::endl;

  NormInfD = D.NormInf();
  NormOneD = D.NormOne();
  if (verbose) {
    std::cout << " *** After scaling *** " << std::endl
	 << " Computed one-norm of test matrix = " << NormOneD << std::endl
	 << " Expected one-norm                = " << NormOneD_ref*ScalarA << std::endl
	 << " Computed inf-norm of test matrix = " << NormInfD << std::endl
	 << " Expected inf-norm                = " << NormInfD_ref*ScalarA << std::endl;
  }



  /////////////////////////////////////////////////////////////////////
  // Now test for larger system, both correctness and performance.
  /////////////////////////////////////////////////////////////////////


  N = 2000;
  NRHS = 5;
  LDA = N;
  LDB = N;
  LDX = N;

  if (verbose) std::cout << "\n\nComputing factor of an " << N << " x " << N << " SPD matrix...Please wait.\n\n" << std::endl;

  // Define A and X

  A = new double[LDA*N];
  X = new double[LDB*NRHS];

  for (j=0; j<N; j++) {
    for (k=0; k<NRHS; k++) X[j+k*LDX] = 1.0/((double) (j+5+k));
    for (i=0; i<N; i++) {
      if (i==j) A[i+j*LDA] = 100.0 + i;
      else A[i+j*LDA] = -1.0/((double) (i+10)*(j+10));
    }
  }

  // Define Epetra_SerialDenseMatrix object

  Epetra_SerialSymDenseMatrix BigMatrix(Copy, A, LDA, N);
  Epetra_SerialSymDenseMatrix OrigBigMatrix(View, A, LDA, N);

  Epetra_SerialSpdDenseSolver BigSolver;
  BigSolver.FactorWithEquilibration(true);
  BigSolver.SetMatrix(BigMatrix);

  // Time factorization

  Epetra_Flops counter;
  BigSolver.SetFlopCounter(counter);
  Epetra_Time Timer(Comm);
  double tstart = Timer.ElapsedTime();
  ierr = BigSolver.Factor();
  if (ierr!=0 && verbose) std::cout << "Error in factorization = "<<ierr<< std::endl;
  assert(ierr==0);
  double time = Timer.ElapsedTime() - tstart;

  double FLOPS = counter.Flops();
  double MFLOPS = FLOPS/time/1000000.0;
  if (verbose) std::cout << "MFLOPS for Factorization = " << MFLOPS << std::endl;

  // Define Left hand side and right hand side
  Epetra_SerialDenseMatrix LHS(View, X, LDX, N, NRHS);
  Epetra_SerialDenseMatrix RHS;
  RHS.Shape(N,NRHS); // Allocate RHS

  // Compute RHS from A and X

  Epetra_Flops RHS_counter;
  RHS.SetFlopCounter(RHS_counter);
  tstart = Timer.ElapsedTime();
  RHS.Multiply('L', 1.0, OrigBigMatrix, LHS, 0.0); // Symmetric Matrix-multiply
  time = Timer.ElapsedTime() - tstart;

  Epetra_SerialDenseMatrix OrigRHS = RHS;

  FLOPS = RHS_counter.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) std::cout << "MFLOPS to build RHS (NRHS = " << NRHS <<") = " << MFLOPS << std::endl;

  // Set LHS and RHS and solve
  BigSolver.SetVectors(LHS, RHS);

  tstart = Timer.ElapsedTime();
  ierr = BigSolver.Solve();
  if (ierr==1 && verbose) std::cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << std::endl;
  else if (ierr!=0 && verbose) std::cout << "Error in solve = "<<ierr<< std::endl;
  assert(ierr>=0);
  time = Timer.ElapsedTime() - tstart;

  FLOPS = BigSolver.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) std::cout << "MFLOPS for Solve (NRHS = " << NRHS <<") = " << MFLOPS << std::endl;

  double * resid = new double[NRHS];
  bool OK = Residual(N, NRHS, A, LDA, BigSolver.X(), BigSolver.LDX(),
		     OrigRHS.A(), OrigRHS.LDA(), resid);

  if (verbose) {
    if (!OK) std::cout << "************* Residual do not meet tolerance *************" << std::endl;
    for (i=0; i<NRHS; i++)
      std::cout << "Residual[" << i <<"] = "<< resid[i] << std::endl;
    std::cout  << std::endl;
  }

  // Solve again using the Epetra_SerialDenseVector class for LHS and RHS

  Epetra_SerialDenseVector X2;
  Epetra_SerialDenseVector B2;
  X2.Size(BigMatrix.N());
  B2.Size(BigMatrix.M());
  int length = BigMatrix.N();
  {for (int kk=0; kk<length; kk++) X2[kk] = ((double ) kk)/ ((double) length);} // Define entries of X2

  RHS_counter.ResetFlops();
  B2.SetFlopCounter(RHS_counter);
  tstart = Timer.ElapsedTime();
  B2.Multiply('N', 'N', 1.0, OrigBigMatrix, X2, 0.0); // Define B2 = A*X2
  time = Timer.ElapsedTime() - tstart;

  Epetra_SerialDenseVector OrigB2 = B2;

  FLOPS = RHS_counter.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) std::cout << "MFLOPS to build single RHS = " << MFLOPS << std::endl;

  // Set LHS and RHS and solve
  BigSolver.SetVectors(X2, B2);

  tstart = Timer.ElapsedTime();
  ierr = BigSolver.Solve();
  time = Timer.ElapsedTime() - tstart;
  if (ierr==1 && verbose) std::cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << std::endl;
  else if (ierr!=0 && verbose) std::cout << "Error in solve = "<<ierr<< std::endl;
  assert(ierr>=0);

  FLOPS = counter.Flops();
  MFLOPS = FLOPS/time/1000000.0;
  if (verbose) std::cout << "MFLOPS to solve single RHS = " << MFLOPS << std::endl;

  OK = Residual(N, 1, A, LDA, BigSolver.X(), BigSolver.LDX(), OrigB2.A(),
		OrigB2.LDA(), resid);

  if (verbose) {
    if (!OK) std::cout << "************* Residual do not meet tolerance *************" << std::endl;
      std::cout << "Residual = "<< resid[0] << std::endl;
  }
  delete [] resid;
  delete [] A;
  delete [] X;

  ///////////////////////////////////////////////////
  // Now test default constructor and index operators
  ///////////////////////////////////////////////////

  N = 5;
  Epetra_SerialSymDenseMatrix C; // Implicit call to default constructor, should not need to call destructor
  C.Shape(5); // Make it 5 by 5
  double * C1 = new double[N*N];
  GenerateHilbert(C1, N, N); // Generate Hilber matrix

  C1[1+2*N] = 1000.0;  // Make matrix nonsymmetric

  // Fill values of C with Hilbert values
  for (i=0; i<N; i++)
    for (j=0; j<N; j++)
      C(i,j) = C1[i+j*N];

  // Test if values are correctly written and read
  for (i=0; i<N; i++)
    for (j=0; j<N; j++) {
      assert(C(i,j) == C1[i+j*N]);
      assert(C(i,j) == C[j][i]);
    }

  if (verbose)
    std::cout << "Default constructor and index operator check OK.  Values of Hilbert matrix = "
	 << std::endl << C << std::endl
	 << "Values should be 1/(i+j+1), except value (1,2) should be 1000" << std::endl;

  delete [] C1;


#ifdef EPETRA_MPI
  MPI_Finalize() ;
#endif

/* end main
*/
return ierr ;
}
Beispiel #4
0
// main driver
int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  MPI_Init(&argc, &argv);
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  if (Comm.NumProc() != 2) {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return(0);
  }

  int NumMyElements = 0;         // NODES assigned to this processor
  int NumMyExternalElements = 0; // nodes used by this proc, but not hosted
  int NumMyTotalElements = 0;
  int FE_NumMyElements = 0;      // TRIANGLES assigned to this processor
  int * MyGlobalElements = 0;    // nodes assigned to this processor
  Epetra_IntSerialDenseMatrix T; // store the grid connectivity

  int MyPID=Comm.MyPID();

  cout << MyPID << endl;

  switch( MyPID ) {

  case 0:
    NumMyElements = 3;
    NumMyExternalElements = 2;
    NumMyTotalElements = NumMyElements + NumMyExternalElements;
    FE_NumMyElements = 3;

    MyGlobalElements = new int[NumMyTotalElements];
    MyGlobalElements[0] = 0;
    MyGlobalElements[1] = 4;
    MyGlobalElements[2] = 3;
    MyGlobalElements[3] = 1;
    MyGlobalElements[4] = 5;

    break;
  case 1:
    NumMyElements = 3;
    NumMyExternalElements = 2;
    NumMyTotalElements = NumMyElements + NumMyExternalElements;
    FE_NumMyElements = 3;

    MyGlobalElements = new int[NumMyTotalElements];
    MyGlobalElements[0] = 1;
    MyGlobalElements[1] = 2;
    MyGlobalElements[2] = 5;
    MyGlobalElements[3] = 0;
    MyGlobalElements[4] = 4;
    break;

  }

  // build Map corresponding to update
  Epetra_Map Map(-1,NumMyElements,MyGlobalElements,0,Comm);

  // vector containing coordinates BEFORE exchanging external nodes
  Epetra_Vector CoordX_noExt(Map);
  Epetra_Vector CoordY_noExt(Map);

  switch( MyPID ) {

  case 0:
    T.Shape(3,FE_NumMyElements);

    // fill x-coordinates
    CoordX_noExt[0] = 0.0; 
    CoordX_noExt[1] = 1.0; 
    CoordX_noExt[2] = 0.0;
    // fill y-coordinates
    CoordY_noExt[0] = 0.0; 
    CoordY_noExt[1] = 1.0; 
    CoordY_noExt[2] = 1.0;
    // fill connectivity
    T(0,0) = 0; T(0,1) = 4; T(0,2) = 3;
    T(1,0) = 0; T(1,1) = 1; T(1,2) = 4;
    T(2,0) = 4; T(2,1) = 1; T(2,2) = 5;
    break;
    
  case 1:

    T.Shape(3,FE_NumMyElements);

    // fill x-coordinates
    CoordX_noExt[0] = 1.0; 
    CoordX_noExt[1] = 2.0; 
    CoordX_noExt[2] = 2.0;
    // fill y-coordinates
    CoordY_noExt[0] = 0.0; 
    CoordY_noExt[1] = 0.0; 
    CoordY_noExt[2] = 1.0;
    // fill connectivity
    T(0,0) = 0; T(0,1) = 1; T(0,2) = 4;
    T(1,0) = 1; T(1,1) = 5; T(1,2) = 4;
    T(2,0) = 1; T(2,1) = 2; T(2,2) = 5;
    break;
  }

  // - - - - - - - - - - - - - - - - - - - - //
  // E X T E R N A L   N O D E S   S E T U P //
  // - - - - - - - - - - - - - - - - - - - - //

  // build target map to exchange the valus of external nodes
  Epetra_Map TargetMap(-1,NumMyTotalElements,
			  MyGlobalElements, 0, Comm);
  // !@# rename Map -> SourceMap ?????
  Epetra_Import Importer(TargetMap,Map);
  Epetra_Vector CoordX(TargetMap);
  Epetra_Vector CoordY(TargetMap);

  CoordX.Import(CoordX_noExt,Importer,Insert);
  CoordY.Import(CoordY_noExt,Importer,Insert);
 
  // now CoordX_noExt and CoordY_noExt are no longer required
  // NOTE: better to construct CoordX and CoordY as MultiVector

  // - - - - - - - - - - - - //
  // M A T R I X   S E T U P //
  // - - - - - - - - - - - - //

  // build the CRS matrix corresponding to the grid
  // some vectors are allocated
  const int MaxNnzRow = 5;

  Epetra_CrsMatrix A(Copy,Map,MaxNnzRow);

  int Element, MyRow, GlobalRow, GlobalCol, i, j, k;
  Epetra_IntSerialDenseMatrix Struct; // temp to create the matrix connectivity
  Struct.Shape(NumMyElements,MaxNnzRow);
  for( i=0 ; i<NumMyElements ; ++i ) 
    for( j=0 ; j<MaxNnzRow ; ++j )
      Struct(i,j) = -1;

  // cycle over all the finite elements
  for( Element=0 ; Element<FE_NumMyElements ; ++Element ) {
    // cycle over each row
    for( i=0 ; i<3 ; ++i ) {
      // get the global and local number of this row
      GlobalRow = T(Element,i);
      MyRow = A.LRID(GlobalRow);
      if( MyRow != -1 ) { // only rows stored on this proc
	// cycle over the columns
	for( j=0 ; j<3 ; ++j ) {
	  // get the global number only of this column
	  GlobalCol = T(Element,j);
	  // look if GlobalCol was already put in Struct
	  for( k=0 ; k<MaxNnzRow ; ++k ) {
	    if( Struct(MyRow,k) == GlobalCol ||
		Struct(MyRow,k) == -1 ) break; 
	  }
	  if( Struct(MyRow,k) == -1 ) { // new entry
	    Struct(MyRow,k) = GlobalCol;
	  } else if( Struct(MyRow,k) != GlobalCol ) {
	    // maybe not enough space has beenn allocated
	    cerr << "ERROR: not enough space for element "
		 << GlobalRow << "," << GlobalCol << endl;
	    return( 0 );
	  }
	}
      }
    }
  }

  int * Indices = new int [MaxNnzRow];
  double * Values  = new double [MaxNnzRow];
  for( i=0 ; i<MaxNnzRow ; ++i ) Values[i] = 0.0;

  // now use Struct to fill build the matrix structure
  for( int Row=0 ; Row<NumMyElements ; ++Row ) {
    int Length = 0;
    for( int j=0 ; j<MaxNnzRow ; ++j ) {
      if( Struct(Row,j) == -1 ) break;
      Indices[Length] = Struct(Row,j);
      Length++;
    }
    GlobalRow = MyGlobalElements[Row];    
    A.InsertGlobalValues(GlobalRow, Length, Values, Indices);
  }

  // replace global numbering with local one in T
  for( int Element=0 ; Element<FE_NumMyElements ; ++Element ) {
    for( int i=0 ; i<3 ; ++i ) {
      int global = T(Element,i);
      int local = find(MyGlobalElements,NumMyTotalElements,
			global);
      if( global == -1 ) {
	cerr << "ERROR\n";
	return( EXIT_FAILURE );
      }
      T(Element,i) = local;
    }
  }

  // - - - - - - - - - - - - - - //
  // M A T R I X   F I L L - I N //
  // - - - - - - - - - - - - - - //

  // room for the local matrix
  Epetra_SerialDenseMatrix Ke;
  Ke.Shape(3,3);

  // now fill the matrix
  for(  int Element=0 ; Element<FE_NumMyElements ; ++Element ) {
    // variables used inside
    int GlobalRow;
    int MyRow;
    int GlobalCol;
    double x_triangle[3];
    double y_triangle[3];
    // get the spatial coordinate of each local node
    for( int i=0 ; i<3 ; ++i ) {
      MyRow = T(Element,i);
      y_triangle[i] = CoordX[MyRow]; 
      x_triangle[i] = CoordY[MyRow]; 
    }
    // compute the local matrix for Element

    compute_loc_matrix( x_triangle, y_triangle,Ke ); 

    // insert it in the global one
    // cycle over each row
    for( int i=0 ; i<3 ; ++i ) {
      // get the global and local number of this row
      MyRow = T(Element,i);
      if( MyRow < NumMyElements ) {
	for( int j=0 ; j<3 ; ++j ) {
	  // get global column number
	  GlobalRow = MyGlobalElements[MyRow];
	  GlobalCol = MyGlobalElements[T(Element,j)];
	  A.SumIntoGlobalValues(GlobalRow,1,&(Ke(i,j)),&GlobalCol);
	}
      }
    }
  }

  A.FillComplete();

  // - - - - - - - - - - - - - //
  // R H S  &  S O L U T I O N //
  // - - - - - - - - - - - - - //

  Epetra_Vector x(Map), b(Map);
  x.Random(); b.PutScalar(0.0);

  // Solution can be obtained using Aztecoo

  // free memory before leaving
  delete MyGlobalElements;
  delete Indices;
  delete Values;

#ifdef HAVE_MPI
  MPI_Finalize();
#endif

  return( EXIT_SUCCESS );

} /* main */