Beispiel #1
0
int power_method(bool TransA, Epetra_RowMatrix& A, Epetra_Vector& q, Epetra_Vector& z0,
		 Epetra_Vector& resid, double* lambda, int niters, double tolerance, bool verbose)
{
	
  // Fill z with random Numbers
  Epetra_Vector z(z0);
	
  // variable needed for iteration
  double normz, residual;

  int ierr = 1;
	
  for(int iter = 0; iter < niters; iter++) {
		z.Norm2(&normz); // Compute 2-norm of z
		q.Scale(1.0/normz, z);
		A.Multiply(TransA, q, z); // Compute z = A*q // SEGFAULT HAPPENS HERE
		q.Dot(z, lambda); // Approximate maximum eigenvaluE
		if(iter%100==0 || iter+1==niters) {
			resid.Update(1.0, z, -(*lambda), q, 0.0); // Compute A*q - lambda*q
			resid.Norm2(&residual);
			if(verbose) cout << "Iter = " << iter << "  Lambda = " << *lambda
											 << "  Residual of A*q - lambda*q = " << residual << endl;
		}
		if(residual < tolerance) {
			ierr = 0;
			break;
		}
	}
  return(ierr);
}
/*----------------------------------------------------------------------*
 |  evaluate nonlinear function (public, derived)             m.gee 3/06|
 *----------------------------------------------------------------------*/
bool NLNML::NLNML_CoarseLevelNoxInterface::computeF(
                                 const Epetra_Vector& x, Epetra_Vector& F,
               const FillType fillFlag)
{
  bool err;
  if (!Level())
  {
    err = fineinterface_->computeF(x,F,fillFlag);
    if (err==false)
    {
      cout << "**ERR**: NLNML::NLNML_CoarseLevelNoxInterface::computeF:\n"
           << "**ERR**: call to fine-userinterface returned false on level " << level_ << "\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
    }
  }
  else
  {
    RefCountPtr<Epetra_Vector> Ffine = rcp(new Epetra_Vector(fineinterface_->getGraph()->RowMap(),false));
    RefCountPtr<Epetra_Vector> xfine = rcp(prolong_this_to_fine(x));
    err = fineinterface_->computeF(*xfine,*Ffine,fillFlag);
    if (err==false)
    {
      cout << "**ERR**: NLNML::NLNML_CoarseLevelNoxInterface::computeF:\n"
           << "**ERR**: call to fine-userinterface returned false on level " << level_ << "\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
    }
    RefCountPtr<Epetra_Vector> Fcoarse = rcp(restrict_fine_to_this(*Ffine));
    F.Scale(1.0,*Fcoarse);
  }
  if (isFAS())
    F.Update(-1.0,*fxbar_,1.0,*fbar_,1.0);
  return err;
}
int
powerMethod (double & lambda, 
             Epetra_CrsMatrix& A, 
             const int niters, 
             const double tolerance,
             const bool verbose)
{
  // In the power iteration, z = A*q.  Thus, q must be in the domain
  // of A, and z must be in the range of A.  The residual vector is of
  // course in the range of A.
  Epetra_Vector q (A.OperatorDomainMap ());
  Epetra_Vector z (A.OperatorRangeMap ());
  Epetra_Vector resid (A.OperatorRangeMap ());

  Epetra_Flops* counter = A.GetFlopCounter();
  if (counter != 0) {
    q.SetFlopCounter(A);
    z.SetFlopCounter(A);
    resid.SetFlopCounter(A);
  }

  // Initialize the starting vector z with random data.
  z.Random();

  double normz, residual;
  int ierr = 1;
  for (int iter = 0; iter < niters; ++iter)
    {
      z.Norm2 (&normz);        // normz  := ||z||_2
      q.Scale (1.0/normz, z);  // q      := z / normz
      A.Multiply(false, q, z); // z      := A * q
      q.Dot(z, &lambda);       // lambda := dot (q, z)

      // Compute the residual vector and display status output every
      // 100 iterations, or if we have reached the maximum number of
      // iterations.
      if (iter % 100 == 0 || iter + 1 == niters)
        {
          resid.Update (1.0, z, -lambda, q, 0.0); // resid := A*q - lambda*q
          resid.Norm2 (&residual);                // residual := ||resid||_2
          if (verbose) 
            cout << "Iter = " << iter << "  Lambda = " << lambda 
                 << "  Residual of A*q - lambda*q = " << residual << endl;
        } 
      if (residual < tolerance) { // We've converged!
        ierr = 0;
        break;
      }
    }
  return ierr;
}
/*----------------------------------------------------------------------*
 |  make application apply all constraints (public)           m.gee 3/06|
 *----------------------------------------------------------------------*/
void NLNML::NLNML_CoarseLevelNoxInterface::ApplyAllConstraints(
                                                  Epetra_Vector& gradient)
{
  if (!Level())
    fineinterface_->ApplyAllConstraints(gradient,0);
  else
  {
    RefCountPtr<Epetra_Vector> gradientfine = rcp(prolong_this_to_fine(gradient));
    fineinterface_->ApplyAllConstraints(*gradientfine,Level());
    RefCountPtr<Epetra_Vector> gradientcoarse = rcp(restrict_fine_to_this(*gradientfine));
    gradient.Scale(1.0,*gradientcoarse);
  }
  return;
}
// ================================================ ====== ==== ==== == =
// the tentative null space is in input because the user
// has to remember to allocate and fill it, and then to delete
// it after calling this method.
int ML_Epetra::MultiLevelPreconditioner::
ComputeAdaptivePreconditioner(int TentativeNullSpaceSize,
                              double* TentativeNullSpace)
{

  if ((TentativeNullSpaceSize == 0) || (TentativeNullSpace == 0))
    ML_CHK_ERR(-1);
   
  // ================================== //
  // get parameters from the input list //
  // ================================== //
  
  // maximum number of relaxation sweeps
  int MaxSweeps = List_.get("adaptive: max sweeps", 10);
  // number of std::vector to be added to the tentative null space
  int NumAdaptiveVectors = List_.get("adaptive: num vectors", 1);

  if (verbose_) {
    std::cout << PrintMsg_ << "*** Adaptive Smoother Aggregation setup ***" << std::endl;
    std::cout << PrintMsg_ << "    Maximum relaxation sweeps     = " << MaxSweeps << std::endl;
    std::cout << PrintMsg_ << "    Additional vectors to compute = " << NumAdaptiveVectors << std::endl;
  }

  // ==================================================== //
  // compute the preconditioner, set null space from user //
  // (who will have to delete std::vector TentativeNullSpace)  //
  // ==================================================== //
  
  double* NewNullSpace = 0;
  double* OldNullSpace = TentativeNullSpace;
  int OldNullSpaceSize = TentativeNullSpaceSize;

  // need some work otherwise matvec() with Epetra_Vbr fails.
  // Also, don't differentiate between range and domain here
  // as ML will not work if range != domain
  const Epetra_VbrMatrix* VbrA = NULL;
  VbrA = dynamic_cast<const Epetra_VbrMatrix*>(RowMatrix_);

  Epetra_Vector* LHS = 0;
  Epetra_Vector* RHS = 0;

  if (VbrA != 0) {
    LHS = new Epetra_Vector(VbrA->DomainMap());
    RHS = new Epetra_Vector(VbrA->DomainMap());
  } else {
    LHS = new Epetra_Vector(RowMatrix_->OperatorDomainMap());
    RHS = new Epetra_Vector(RowMatrix_->OperatorDomainMap());
  }

  // destroy what we may already have
  if (IsComputePreconditionerOK_ == true) {
    DestroyPreconditioner();
  }

  // build the preconditioner for the first time
  List_.set("null space: type", "pre-computed");
  List_.set("null space: dimension", OldNullSpaceSize);
  List_.set("null space: vectors", OldNullSpace);
  ComputePreconditioner();

  // ====================== //
  // add one std::vector at time //
  // ====================== //
  
  for (int istep = 0 ; istep < NumAdaptiveVectors ; ++istep) {

    if (verbose_) {
      std::cout << PrintMsg_ << "\tAdaptation step " << istep << std::endl;
      std::cout << PrintMsg_ << "\t---------------" << std::endl;
    }

    // ==================== //
    // look for "bad" modes //
    // ==================== //

    // note: should an error occur, ML_CHK_ERR will return,
    // and LHS and RHS will *not* be delete'd (--> memory leak).
    // Anyway, this means that something wrong happened in the code
    // and should be fixed by the user.

    LHS->Random();
    double Norm2;

    for (int i = 0 ; i < MaxSweeps ; ++i) {
      // RHS = (I - ML^{-1} A) LHS
      ML_CHK_ERR(RowMatrix_->Multiply(false,*LHS,*RHS));
      // FIXME: can do something slightly better here
      ML_CHK_ERR(ApplyInverse(*RHS,*RHS));
      ML_CHK_ERR(LHS->Update(-1.0,*RHS,1.0));
      LHS->Norm2(&Norm2);
      if (verbose_) {
        std::cout << PrintMsg_ << "\titer " << i << ", ||x||_2 = ";
        std::cout << Norm2 << std::endl;
      }
    }

    // scaling vectors
    double NormInf;
    LHS->NormInf(&NormInf);
    LHS->Scale(1.0 / NormInf);

    // ========================================================= //
    // copy tentative and computed null space into NewNullSpace, //
    // which now becomes the standard null space                 //
    // ========================================================= //

    int NewNullSpaceSize = OldNullSpaceSize + 1;
    NewNullSpace = new double[NumMyRows() * NewNullSpaceSize];
    assert (NewNullSpace != 0);
    int itmp = OldNullSpaceSize * NumMyRows();
    for (int i = 0 ; i < itmp ; ++i) {
      NewNullSpace[i] = OldNullSpace[i];
    }

    for (int j = 0 ; j < NumMyRows() ; ++j) {
      NewNullSpace[itmp + j] = (*LHS)[j];
    }

    // =============== //
    // visualize modes //
    // =============== //

    if (List_.get("adaptive: visualize", false)) {

      double* x_coord = List_.get("viz: x-coordinates", (double*)0);
      double* y_coord = List_.get("viz: y-coordinates", (double*)0);
      double* z_coord = List_.get("viz: z-coordinates", (double*)0);
      assert (x_coord != 0);

      std::vector<double> plot_me(NumMyRows()/NumPDEEqns_);
      ML_Aggregate_Viz_Stats info;
      info.Amatrix = &(ml_->Amat[LevelID_[0]]);
      info.x = x_coord;
      info.y = y_coord;
      info.z = z_coord;
      info.Nlocal = NumMyRows() / NumPDEEqns_;
      info.Naggregates = 1;
      ML_Operator_AmalgamateAndDropWeak(&(ml_->Amat[LevelID_[0]]),
                                        NumPDEEqns_, 0.0);

      for (int ieqn = 0 ; ieqn < NumPDEEqns_ ; ++ieqn) {
        for (int j = 0 ; j < NumMyRows() ; j+=NumPDEEqns_) {
          plot_me[j / NumPDEEqns_] = (*LHS)[j + ieqn];
        }
        char FileName[80];
        sprintf(FileName,"nullspace-mode%d-eq%d.xyz", istep, ieqn);
        if (verbose_)
          std::cout << PrintMsg_ << "writing file " << FileName << "..." << std::endl;
        ML_Aggregate_VisualizeXYZ(info,FileName,
                                  ml_->comm,&plot_me[0]);
      }

      ML_Operator_UnAmalgamateAndDropWeak(&(ml_->Amat[LevelID_[0]]),
                                          NumPDEEqns_, 0.0);
    }
    
    // Destroy the old preconditioner
    DestroyPreconditioner();

    // ==================================================== //
    // build the new preconditioner with the new null space //
    // ==================================================== //

    List_.set("null space: type", "pre-computed");
    List_.set("null space: dimension", NewNullSpaceSize);
    List_.set("null space: vectors", NewNullSpace);

    ML_CHK_ERR(ComputePreconditioner());

    if (istep && (istep != NumAdaptiveVectors))
      delete OldNullSpace;

    OldNullSpace = NewNullSpace;
    OldNullSpaceSize = NewNullSpaceSize;

  }

  // keep trace of this pointer, it will be delete'd later
  NullSpaceToFree_ = NewNullSpace;

  delete LHS;
  delete RHS;

  return(0);

}
void normalize(Epetra_Vector &v)
{
  double norm2[1];
  v.Norm2(&norm2[0]);
  v.Scale(1.0 / norm2[0]);
}