returnValue DiscreteTimeExport::setup( )
{
	int sensGen;
	get( DYNAMIC_SENSITIVITY,sensGen );
	if ( (ExportSensitivityType)sensGen != FORWARD ) ACADOERROR( RET_INVALID_OPTION );

	int useOMP;
	get(CG_USE_OPENMP, useOMP);
	ExportStruct structWspace;
	structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;

	LOG( LVL_DEBUG ) << "Preparing to export DiscreteTimeExport... " << endl;

	ExportIndex run( "run" );
	ExportIndex i( "i" );
	ExportIndex j( "j" );
	ExportIndex k( "k" );
	ExportIndex tmp_index("tmp_index");
	diffsDim = NX*(NX+NU);
	inputDim = NX*(NX+NU+1) + NU + NOD;
	// setup INTEGRATE function
	rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, true );
	rk_eta = ExportVariable( "rk_eta", 1, inputDim, REAL );
	if( equidistantControlGrid() ) {
		integrate = ExportFunction( "integrate", rk_eta, reset_int );
	}
	else {
		integrate = ExportFunction( "integrate", rk_eta, reset_int, rk_index );
	}
	integrate.setReturnValue( error_code );
	rk_eta.setDoc( "Working array to pass the input values and return the results." );
	reset_int.setDoc( "The internal memory of the integrator can be reset." );
	rk_index.setDoc( "Number of the shooting interval." );
	error_code.setDoc( "Status code of the integrator." );
	integrate.doc( "Performs the integration and sensitivity propagation for one shooting interval." );
	integrate.addIndex( run );
	integrate.addIndex( i );
	integrate.addIndex( j );
	integrate.addIndex( k );
	integrate.addIndex( tmp_index );
	rhs_in = ExportVariable( "x", inputDim-diffsDim, 1, REAL, ACADO_LOCAL );
	rhs_out = ExportVariable( "f", NX, 1, REAL, ACADO_LOCAL );
	fullRhs = ExportFunction( "full_rhs", rhs_in, rhs_out );
	rhs_in.setDoc( "The state and parameter values." );
	rhs_out.setDoc( "Right-hand side evaluation." );
	fullRhs.doc( "Evaluates the right-hand side of the full model." );
	rk_xxx = ExportVariable( "rk_xxx", 1, inputDim-diffsDim, REAL, structWspace );
	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		rk_diffsPrev1 = ExportVariable( "rk_diffsPrev1", NX1, NX1+NU, REAL, structWspace );
		rk_diffsPrev2 = ExportVariable( "rk_diffsPrev2", NX2, NX1+NX2+NU, REAL, structWspace );
		rk_diffsPrev3 = ExportVariable( "rk_diffsPrev3", NX3, NX+NU, REAL, structWspace );
	}
	rk_diffsNew1 = ExportVariable( "rk_diffsNew1", NX1, NX1+NU, REAL, structWspace );
	rk_diffsNew2 = ExportVariable( "rk_diffsNew2", NX2, NX1+NX2+NU, REAL, structWspace );
	rk_diffsNew3 = ExportVariable( "rk_diffsNew3", NX3, NX+NU, REAL, structWspace );
	rk_diffsTemp3 = ExportVariable( "rk_diffsTemp3", NX3, NX1+NX2+NU, REAL, structWspace );

	ExportVariable numInt( "numInts", 1, 1, INT );
	if( !equidistantControlGrid() ) {
		ExportVariable numStepsV( "numSteps", numSteps, STATIC_CONST_INT );
		integrate.addStatement( std::string( "int " ) + numInt.getName() + " = " + numStepsV.getName() + "[" + rk_index.getName() + "];\n" );
	}

	integrate.addStatement( rk_xxx.getCols( NX,inputDim-diffsDim ) == rk_eta.getCols( NX+diffsDim,inputDim ) );
	integrate.addLinebreak( );
	// evaluate sensitivities linear input:
	if( NX1 > 0 ) {
		for( uint i1 = 0; i1 < NX1; i1++ ) {
			for( uint i2 = 0; i2 < NX1; i2++ ) {
				integrate.addStatement( rk_diffsNew1.getSubMatrix(i1,i1+1,i2,i2+1) == A11(i1,i2) );
			}
			for( uint i2 = 0; i2 < NU; i2++ ) {
				integrate.addStatement( rk_diffsNew1.getSubMatrix(i1,i1+1,NX1+i2,NX1+i2+1) == B11(i1,i2) );
			}
		}
	}
	// evaluate sensitivities linear output:
	if( NX1 > 0 ) {
		for( uint i1 = 0; i1 < NX3; i1++ ) {
			for( uint i2 = 0; i2 < NX3; i2++ ) {
				integrate.addStatement( rk_diffsNew3.getSubMatrix(i1,i1+1,NX-NX3+i2,NX-NX3+i2+1) == A33(i1,i2) );
			}
		}
	}
	integrate.addLinebreak( );

	// integrator loop:
	ExportForLoop tmpLoop( run, 0, grid.getNumIntervals() );
	ExportStatementBlock *loop;
	if( equidistantControlGrid() ) {
		loop = &tmpLoop;
	}
	else {
		loop = &integrate;
		loop->addStatement( std::string("for(") + run.getName() + " = 0; " + run.getName() + " < " + numInt.getName() + "; " + run.getName() + "++ ) {\n" );
	}

	loop->addStatement( rk_xxx.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) );

	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		// Set rk_diffsPrev:
		loop->addStatement( std::string("if( run > 0 ) {\n") );
		if( NX1 > 0 ) {
			ExportForLoop loopTemp1( i,0,NX1 );
			loopTemp1.addStatement( rk_diffsPrev1.getSubMatrix( i,i+1,0,NX1 ) == rk_eta.getCols( i*NX+NX+NXA,i*NX+NX+NXA+NX1 ) );
			if( NU > 0 ) loopTemp1.addStatement( rk_diffsPrev1.getSubMatrix( i,i+1,NX1,NX1+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1),i*NU+(NX+NXA)*(NX+1)+NU ) );
			loop->addStatement( loopTemp1 );
		}
		if( NX2 > 0 ) {
			ExportForLoop loopTemp2( i,0,NX2 );
			loopTemp2.addStatement( rk_diffsPrev2.getSubMatrix( i,i+1,0,NX1+NX2 ) == rk_eta.getCols( i*NX+NX+NXA+NX1*NX,i*NX+NX+NXA+NX1*NX+NX1+NX2 ) );
			if( NU > 0 ) loopTemp2.addStatement( rk_diffsPrev2.getSubMatrix( i,i+1,NX1+NX2,NX1+NX2+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1)+NX1*NU,i*NU+(NX+NXA)*(NX+1)+NX1*NU+NU ) );
			loop->addStatement( loopTemp2 );
		}
		if( NX3 > 0 ) {
			ExportForLoop loopTemp3( i,0,NX3 );
			loopTemp3.addStatement( rk_diffsPrev3.getSubMatrix( i,i+1,0,NX ) == rk_eta.getCols( i*NX+NX+NXA+(NX1+NX2)*NX,i*NX+NX+NXA+(NX1+NX2)*NX+NX ) );
			if( NU > 0 ) loopTemp3.addStatement( rk_diffsPrev3.getSubMatrix( i,i+1,NX,NX+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1)+(NX1+NX2)*NU,i*NU+(NX+NXA)*(NX+1)+(NX1+NX2)*NU+NU ) );
			loop->addStatement( loopTemp3 );
		}
		loop->addStatement( std::string("}\n") );
	}

	// evaluate states:
	if( NX1 > 0 ) {
		loop->addFunctionCall( lin_input.getName(), rk_xxx, rk_eta.getAddress(0,0) );
	}
	if( NX2 > 0 ) {
		loop->addFunctionCall( getNameRHS(), rk_xxx, rk_eta.getAddress(0,NX1) );
	}
	if( NX3 > 0 ) {
		loop->addFunctionCall( getNameOutputRHS(), rk_xxx, rk_eta.getAddress(0,NX1+NX2) );
	}

	// evaluate sensitivities
	if( NX2 > 0 ) {
		loop->addFunctionCall( getNameDiffsRHS(), rk_xxx, rk_diffsNew2.getAddress(0,0) );
	}
	if( NX3 > 0 ) {
		loop->addFunctionCall( getNameOutputDiffs(), rk_xxx, rk_diffsTemp3.getAddress(0,0) );
		ExportForLoop loop1( i,0,NX3 );
		ExportForLoop loop2( j,0,NX1+NX2 );
		loop2.addStatement( rk_diffsNew3.getSubMatrix(i,i+1,j,j+1) == rk_diffsTemp3.getSubMatrix(i,i+1,j,j+1) );
		loop1.addStatement( loop2 );
		loop2 = ExportForLoop( j,0,NU );
		loop2.addStatement( rk_diffsNew3.getSubMatrix(i,i+1,NX+j,NX+j+1) == rk_diffsTemp3.getSubMatrix(i,i+1,NX1+NX2+j,NX1+NX2+j+1) );
		loop1.addStatement( loop2 );
		loop->addStatement( loop1 );
	}

	// computation of the sensitivities using chain rule:
	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		loop->addStatement( std::string( "if( run == 0 ) {\n" ) );
	}
	// PART 1
	updateInputSystem(loop, i, j, tmp_index);
	// PART 2
	updateImplicitSystem(loop, i, j, tmp_index);
	// PART 3
	updateOutputSystem(loop, i, j, tmp_index);

	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		loop->addStatement( std::string( "}\n" ) );
		loop->addStatement( std::string( "else {\n" ) );
		// PART 1
		propagateInputSystem(loop, i, j, k, tmp_index);
		// PART 2
		propagateImplicitSystem(loop, i, j, k, tmp_index);
		// PART 3
		propagateOutputSystem(loop, i, j, k, tmp_index);
		loop->addStatement( std::string( "}\n" ) );
	}

	// end of the integrator loop.
	if( !equidistantControlGrid() ) {
		loop->addStatement( "}\n" );
	}
	else {
		integrate.addStatement( *loop );
	}
	// PART 1
	if( NX1 > 0 ) {
		DMatrix zeroR = zeros<double>(1, NX2+NX3);
		ExportForLoop loop1( i,0,NX1 );
		loop1.addStatement( rk_eta.getCols( i*NX+NX+NXA+NX1,i*NX+NX+NXA+NX ) == zeroR );
		integrate.addStatement( loop1 );
	}
    // PART 2
    DMatrix zeroR = zeros<double>(1, NX3);
    if( NX2 > 0 ) {
    	ExportForLoop loop2( i,NX1,NX1+NX2 );
    	loop2.addStatement( rk_eta.getCols( i*NX+NX+NXA+NX1+NX2,i*NX+NX+NXA+NX ) == zeroR );
    	integrate.addStatement( loop2 );
    }

    LOG( LVL_DEBUG ) << "done" << endl;

	return SUCCESSFUL_RETURN;
}
Beispiel #2
0
returnValue DiscreteTimeExport::setup( )
{
	int useOMP;
	get(CG_USE_OPENMP, useOMP);
	ExportStruct structWspace;
	structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;

	// non equidistant integration grids not implemented for NARX integrators
	if( !equidistant ) return ACADOERROR( RET_INVALID_OPTION );

	String fileName( "integrator.c" );

	int printLevel;
	get( PRINTLEVEL,printLevel );

	if ( (PrintLevel)printLevel >= HIGH )
		acadoPrintf( "--> Preparing to export %s... ",fileName.getName() );

	ExportIndex run( "run" );
	ExportIndex i( "i" );
	ExportIndex j( "j" );
	ExportIndex k( "k" );
	ExportIndex tmp_index("tmp_index");
	uint diffsDim = NX*(NX+NU);
	uint inputDim = NX*(NX+NU+1) + NU + NP;
	// setup INTEGRATE function
	rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, BT_TRUE );
	rk_eta = ExportVariable( "rk_eta", 1, inputDim, REAL );
	if( equidistantControlGrid() ) {
		integrate = ExportFunction( "integrate", rk_eta, reset_int );
	}
	else {
		integrate = ExportFunction( "integrate", rk_eta, reset_int, rk_index );
	}
	integrate.setReturnValue( error_code );
	integrate.addIndex( run );
	integrate.addIndex( i );
	integrate.addIndex( j );
	integrate.addIndex( k );
	integrate.addIndex( tmp_index );
	rhs_in = ExportVariable( "x", inputDim-diffsDim, 1, REAL, ACADO_LOCAL );
	rhs_out = ExportVariable( "f", NX, 1, REAL, ACADO_LOCAL );
	fullRhs = ExportFunction( "full_rhs", rhs_in, rhs_out );
	rk_xxx = ExportVariable( "rk_xxx", 1, inputDim-diffsDim, REAL, structWspace );
	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		rk_diffsPrev1 = ExportVariable( "rk_diffsPrev1", NX1, NX1+NU, REAL, structWspace );
		rk_diffsPrev2 = ExportVariable( "rk_diffsPrev2", NX2, NX1+NX2+NU, REAL, structWspace );
	}
	rk_diffsNew1 = ExportVariable( "rk_diffsNew1", NX1, NX1+NU, REAL, structWspace );
	rk_diffsNew2 = ExportVariable( "rk_diffsNew2", NX2, NX1+NX2+NU, REAL, structWspace );

	ExportVariable numInt( "numInts", 1, 1, INT );
	if( !equidistantControlGrid() ) {
		ExportVariable numStepsV( "numSteps", numSteps, STATIC_CONST_INT );
		integrate.addStatement( String( "int " ) << numInt.getName() << " = " << numStepsV.getName() << "[" << rk_index.getName() << "];\n" );
	}

	integrate.addStatement( rk_xxx.getCols( NX,inputDim-diffsDim ) == rk_eta.getCols( NX+diffsDim,inputDim ) );
	integrate.addLinebreak( );

	// integrator loop:
	ExportForLoop tmpLoop( run, 0, grid.getNumIntervals() );
	ExportStatementBlock *loop;
	if( equidistantControlGrid() ) {
		loop = &tmpLoop;
	}
	else {
		loop = &integrate;
		loop->addStatement( String("for(") << run.getName() << " = 0; " << run.getName() << " < " << numInt.getName() << "; " << run.getName() << "++ ) {\n" );
	}

	loop->addStatement( rk_xxx.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) );

	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		// Set rk_diffsPrev:
		loop->addStatement( String("if( run > 0 ) {\n") );
		if( NX1 > 0 ) {
			ExportForLoop loopTemp1( i,0,NX1 );
			loopTemp1.addStatement( rk_diffsPrev1.getSubMatrix( i,i+1,0,NX1 ) == rk_eta.getCols( i*NX+NX+NXA,i*NX+NX+NXA+NX1 ) );
			if( NU > 0 ) loopTemp1.addStatement( rk_diffsPrev1.getSubMatrix( i,i+1,NX1,NX1+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1),i*NU+(NX+NXA)*(NX+1)+NU ) );
			loop->addStatement( loopTemp1 );
		}
		if( NX2 > 0 ) {
			ExportForLoop loopTemp2( i,0,NX2 );
			loopTemp2.addStatement( rk_diffsPrev2.getSubMatrix( i,i+1,0,NX1+NX2 ) == rk_eta.getCols( i*NX+NX+NXA+NX1*NX,i*NX+NX+NXA+NX1*NX+NX1+NX2 ) );
			if( NU > 0 ) loopTemp2.addStatement( rk_diffsPrev2.getSubMatrix( i,i+1,NX1+NX2,NX1+NX2+NU ) == rk_eta.getCols( i*NU+(NX+NXA)*(NX+1)+NX1*NU,i*NU+(NX+NXA)*(NX+1)+NX1*NU+NU ) );
			loop->addStatement( loopTemp2 );
		}
		loop->addStatement( String("}\n") );
	}

	// evaluate states:
	if( NX1 > 0 ) {
		loop->addFunctionCall( lin_input.getName(), rk_xxx, rk_eta.getAddress(0,0) );
	}
	if( NX2 > 0 ) {
		loop->addFunctionCall( getNameRHS(), rk_xxx, rk_eta.getAddress(0,NX1) );
	}

	// evaluate sensitivities:
	if( NX1 > 0 ) {
		for( uint i1 = 0; i1 < NX1; i1++ ) {
			for( uint i2 = 0; i2 < NX1; i2++ ) {
				loop->addStatement( rk_diffsNew1.getSubMatrix(i1,i1+1,i2,i2+1) == A11(i1,i2) );
			}
			for( uint i2 = 0; i2 < NU; i2++ ) {
				loop->addStatement( rk_diffsNew1.getSubMatrix(i1,i1+1,NX1+i2,NX1+i2+1) == B11(i1,i2) );
			}
		}
	}
	if( NX2 > 0 ) {
		loop->addFunctionCall( getNameDiffsRHS(), rk_xxx, rk_diffsNew2.getAddress(0,0) );
	}

	// computation of the sensitivities using chain rule:
	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		loop->addStatement( String( "if( run == 0 ) {\n" ) );
	}
	// PART 1
	updateInputSystem(loop, i, j, tmp_index);
	// PART 2
	updateImplicitSystem(loop, i, j, tmp_index);

	if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) {
		loop->addStatement( String( "}\n" ) );
		loop->addStatement( String( "else {\n" ) );
		// PART 1
		propagateInputSystem(loop, i, j, k, tmp_index);
		// PART 2
		propagateImplicitSystem(loop, i, j, k, tmp_index);
		loop->addStatement( String( "}\n" ) );
	}

	// end of the integrator loop.
	if( !equidistantControlGrid() ) {
		loop->addStatement( "}\n" );
	}
	else {
		integrate.addStatement( *loop );
	}
	// PART 1
	if( NX1 > 0 ) {
		Matrix zeroR = zeros(1, NX2);
		ExportForLoop loop1( i,0,NX1 );
		loop1.addStatement( rk_eta.getCols( i*NX+NX+NXA+NX1,i*NX+NX+NXA+NX ) == zeroR );
		integrate.addStatement( loop1 );
	}

	if ( (PrintLevel)printLevel >= HIGH )
		acadoPrintf( "done.\n" );

	return SUCCESSFUL_RETURN;
}