float AMinimapActor::GetRadianHeading() const
{
	FVector vec;
	FRotator rot;
	float radians;

	//only need a vector with this actor's 
	rot.Yaw = GetActorRotation().Yaw;
	vec = rot.Vector();

	radians = vec.HeadingAngle();
	radians = FMath::UnwindRadians(radians);

	while (radians < 0.f)
		radians += PI * 2.0f;

	return radians;
}
Beispiel #2
0
float APlayerHUD::GetUnitHeading(AGameCharacter* unit) const
{
	if (!IsValid(unit))
		return -1.f;

	FVector vec;
	FRotator rot;
	float radians;

	//only need a vector with this actor's 
	rot.Yaw = unit->GetActorRotation().Yaw;
	vec = rot.Vector();

	radians = vec.HeadingAngle();
	radians = FMath::UnwindRadians(radians);

	while (radians < 0.f)
		radians += PI * 2.0f;

	return radians;
}
//RickH - We could probably significantly improve speed if we put separate Z checks in place and did everything else in 2D.
FVector UAvoidanceManager::GetAvoidanceVelocity_Internal(const FNavAvoidanceData& inAvoidanceData, float DeltaTime, int32* inIgnoreThisUID)
{
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
	if (!bSystemActive)
	{
		return inAvoidanceData.Velocity;
	}
#endif
	if (DeltaTime <= 0.0f)
	{
		return inAvoidanceData.Velocity;
	}

	FVector ReturnVelocity = inAvoidanceData.Velocity * DeltaTime;
	float MaxSpeed = ReturnVelocity.Size2D();
	float CurrentTime;

	UWorld* MyWorld = Cast<UWorld>(GetOuter());
	if (MyWorld)
	{
		CurrentTime = MyWorld->TimeSeconds;
	}
	else
	{
		//No world? OK, just quietly back out and don't alter anything.
		return inAvoidanceData.Velocity;
	}

	bool Unobstructed = true;
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
	bool DebugMode = IsDebugOnForAll() || (inIgnoreThisUID ? IsDebugOnForUID(*inIgnoreThisUID) : false);
#endif

	//If we're moving very slowly, just push forward. Not sure it's worth avoiding at this speed, though I could be wrong.
	if (MaxSpeed < 0.01f)
	{
		return inAvoidanceData.Velocity;
	}
	AllCones.Empty(AllCones.Max());

	//DrawDebugDirectionalArrow(GetWorld(), inAvoidanceData.Center, inAvoidanceData.Center + inAvoidanceData.Velocity, 2.5f, FColor(0,255,255), true, 0.05f, SDPG_MAX);

	for (auto& AvoidanceObj : AvoidanceObjects)
	{
		if ((inIgnoreThisUID) && (*inIgnoreThisUID == AvoidanceObj.Key))
		{
			continue;
		}
		FNavAvoidanceData& OtherObject = AvoidanceObj.Value;

		//
		//Start with a few fast-rejects
		//

		//If the object has expired, ignore it
		if (OtherObject.ShouldBeIgnored())
		{
			continue;
		}

		//If other object is not in avoided group, ignore it
		if (inAvoidanceData.ShouldIgnoreGroup(OtherObject.GroupMask))
		{
			continue;
		}

		//RickH - We should have a max-radius parameter/option here, so I'm just going to hardcode one for now.
		//if ((OtherObject.Radius + _AvoidanceData.Radius + MaxSpeed + OtherObject.Velocity.Size2D()) < FVector::Dist(OtherObject.Center, _AvoidanceData.Center))
		if (FVector2D(OtherObject.Center - inAvoidanceData.Center).SizeSquared() > FMath::Square(inAvoidanceData.TestRadius2D))
		{
			continue;
		}

		if (FMath::Abs(OtherObject.Center.Z - inAvoidanceData.Center.Z) > OtherObject.HalfHeight + inAvoidanceData.HalfHeight + HeightCheckMargin)
		{
			continue;
		}

		//If we are moving away from the obstacle, ignore it. Even if we're the slower one, let the other obstacle path around us.
		if ((ReturnVelocity | (OtherObject.Center - inAvoidanceData.Center)) <= 0.0f)
		{
			continue;
		}

		//Create data for the avoidance routine
		{
			FVector PointAWorld = inAvoidanceData.Center;
			FVector PointBRelative = OtherObject.Center - PointAWorld;
			FVector TowardB, SidewaysFromB;
			FVector VelAdjustment;
			FVector VelAfterAdjustment;
			float RadiusB = OtherObject.Radius + inAvoidanceData.Radius;

			PointBRelative.Z = 0.0f;
			TowardB = PointBRelative.GetSafeNormal2D();		//Don't care about height for this game. Rough height-checking will come in later, but even then it will be acceptable to do this.
			if (TowardB.IsZero())
			{
				//Already intersecting, or aligned vertically, scrap this whole object.
				continue;
			}
			SidewaysFromB.Set(-TowardB.Y, TowardB.X, 0.0f);

			//Build collision cone (two planes) and store for later use. We might consider some fast rejection here to see if we can skip the cone entirely.
			//RickH - If we built these cones in 2D, we could avoid all the cross-product matrix stuff and just use (y, -x) 90-degree rotation.
			{
				FVector PointPlane[2];
				FVector EffectiveVelocityB;
				FVelocityAvoidanceCone NewCone;

				//Use RVO (as opposed to VO) only for objects that are not overridden to max weight AND that are currently moving toward us.
				if ((OtherObject.OverrideWeightTime <= CurrentTime) && ((OtherObject.Velocity|PointBRelative) < 0.0f))
				{
					float OtherWeight = (OtherObject.Weight + (1.0f - inAvoidanceData.Weight)) * 0.5f;			//Use the average of what the other wants to be and what we want it to be.
					EffectiveVelocityB = ((inAvoidanceData.Velocity * (1.0f - OtherWeight)) + (OtherObject.Velocity * OtherWeight)) * DeltaTime;
				}
				else
				{
					EffectiveVelocityB = OtherObject.Velocity * DeltaTime;		//This is equivalent to VO (not RVO) because the other object is not going to reciprocate our avoidance.
				}
				checkSlow(EffectiveVelocityB.Z == 0.0f);

				//Make the left plane
				PointPlane[0] = EffectiveVelocityB + (PointBRelative + (SidewaysFromB * RadiusB));
				PointPlane[1].Set(PointPlane[0].X, PointPlane[0].Y, PointPlane[0].Z + 100.0f);
				NewCone.ConePlane[0] = FPlane(EffectiveVelocityB, PointPlane[0], PointPlane[1]);		//First point is relative to A, which is ZeroVector in this implementation
				checkSlow((((PointBRelative+EffectiveVelocityB)|NewCone.ConePlane[0]) - NewCone.ConePlane[0].W) > 0.0f);
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
				if (DebugMode)
				{
//					DrawDebugDirectionalArrow(MyWorld, EffectiveVelocityB + PointAWorld, PointPlane[0] + PointAWorld, 50.0f, FColor(64,64,64), true, 0.05f, SDPG_MAX);
//					DrawDebugLine(MyWorld, PointAWorld, EffectiveVelocityB + PointAWorld, FColor(64,64,64), true, 0.05f, SDPG_MAX, 5.0f);
				}
#endif

				//Make the right plane
				PointPlane[0] = EffectiveVelocityB + (PointBRelative - (SidewaysFromB * RadiusB));
				PointPlane[1].Set(PointPlane[0].X, PointPlane[0].Y, PointPlane[0].Z - 100.0f);
				NewCone.ConePlane[1] = FPlane(EffectiveVelocityB, PointPlane[0], PointPlane[1]);		//First point is relative to A, which is ZeroVector in this implementation
				checkSlow((((PointBRelative+EffectiveVelocityB)|NewCone.ConePlane[1]) - NewCone.ConePlane[1].W) > 0.0f);
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
				if (DebugMode)
				{
//					DrawDebugDirectionalArrow(MyWorld, EffectiveVelocityB + PointAWorld, PointPlane[0] + PointAWorld, 50.0f, FColor(64,64,64), true, 0.05f, SDPG_MAX);
				}
#endif

				if ((((ReturnVelocity|NewCone.ConePlane[0]) - NewCone.ConePlane[0].W) > 0.0f)
					&& (((ReturnVelocity|NewCone.ConePlane[1]) - NewCone.ConePlane[1].W) > 0.0f))
				{
					Unobstructed = false;
				}

				AllCones.Add(NewCone);
			}
		}
	}
	if (Unobstructed)
	{
		//Trivial case, our ideal velocity is available.
		return inAvoidanceData.Velocity;
	}

	TArray<FNavEdgeSegment> NavEdges;
	if (EdgeProviderOb.IsValid())
	{
		DECLARE_SCOPE_CYCLE_COUNTER(TEXT("Avoidance: collect nav edges"), STAT_AIAvoidanceEdgeCollect, STATGROUP_AI);
		EdgeProviderInterface->GetEdges(inAvoidanceData.Center, inAvoidanceData.TestRadius2D, NavEdges);
	}

	//Find a good velocity that isn't inside a cone.
	if (AllCones.Num())
	{
		float AngleCurrent;
		float AngleF = ReturnVelocity.HeadingAngle();
		float BestScore = 0.0f;
		float BestScorePotential;
		FVector BestVelocity = FVector::ZeroVector;		//Worst case is we just stand completely still. Should we also allow backing up? Should we test standing still?
		const int AngleCount = 4;		//Every angle will be tested both right and left.
		float AngleOffset[AngleCount] = {FMath::DegreesToRadians<float>(23.0f), FMath::DegreesToRadians<float>(40.0f), FMath::DegreesToRadians<float>(55.0f), FMath::DegreesToRadians<float>(85.0f)};
		FVector AngleVector[AngleCount<<1];

		//Determine check angles
		for (int i = 0; i < AngleCount; ++i)
		{
			AngleCurrent = AngleF - AngleOffset[i];
			AngleVector[(i<<1)].Set(FMath::Cos(AngleCurrent), FMath::Sin(AngleCurrent), 0.0f);
			AngleCurrent = AngleF + AngleOffset[i];
			AngleVector[(i<<1) + 1].Set(FMath::Cos(AngleCurrent), FMath::Sin(AngleCurrent), 0.0f);
		}

		//Sample velocity-space destination points and drag them back to form lines
		for (int AngleToCheck = 0; AngleToCheck < (AngleCount<<1); ++AngleToCheck)
		{
			FVector VelSpacePoint = AngleVector[AngleToCheck] * MaxSpeed;

			//Skip testing if we know we can't possibly get a better score than what we have already.
			//Note: This assumes the furthest point is the highest-scoring value (i.e. VelSpacePoint is not moving backward relative to ReturnVelocity)
			BestScorePotential = (VelSpacePoint|ReturnVelocity) * (VelSpacePoint|VelSpacePoint);
			if (BestScorePotential > BestScore)
			{
				const bool bAvoidsNavEdges = NavEdges.Num() > 0 ? AvoidsNavEdges(inAvoidanceData.Center, VelSpacePoint, NavEdges, inAvoidanceData.HalfHeight) : true;
				if (bAvoidsNavEdges)
				{
					FVector CandidateVelocity = AvoidCones(AllCones, FVector::ZeroVector, VelSpacePoint, AllCones.Num());
					float CandidateScore = (CandidateVelocity|ReturnVelocity) * (CandidateVelocity|CandidateVelocity);

					//Vectors are rated by their length and their overall forward movement.
					if (CandidateScore > BestScore)
					{
						BestScore = CandidateScore;
						BestVelocity = CandidateVelocity;
					}
				}
			}
		}
		ReturnVelocity = BestVelocity;
#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
		if (DebugMode)
		{
			DrawDebugDirectionalArrow(MyWorld, inAvoidanceData.Center + inAvoidanceData.Velocity, inAvoidanceData.Center + (ReturnVelocity / DeltaTime), 75.0f, FColor(64,255,64), true, 2.0f, SDPG_MAX);
		}
#endif
	}

	return ReturnVelocity / DeltaTime;		//Remove prediction-time scaling
}