Beispiel #1
0
/**
 * 标记清除的方式回收内存堆的垃圾对象
 * 		1.第一步: 标记所有存活的对象
 * 		2.第二步: 计算存活的对象在其内存区压缩后的偏移位置
 * 		3.第三步: 遍历所有存活的对象并修改其对应的地址映射表
 * 		4.第四步: 移动存活的对象压缩内存区
 */
void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp,
  bool clear_all_softrefs) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");

  GenCollectedHeap* gch = GenCollectedHeap::heap();

#ifdef ASSERT
  if (gch->collector_policy()->should_clear_all_soft_refs()) {
    assert(clear_all_softrefs, "Policy should have been checked earlier");
  }
#endif

  // hook up weak ref data so it can be used during Mark-Sweep
  assert(ref_processor() == NULL, "no stomping");
  assert(rp != NULL, "should be non-NULL");
  _ref_processor = rp;
  rp->setup_policy(clear_all_softrefs);

  TraceTime t1("Full GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);

  // When collecting the permanent generation methodOops may be moving,
  // so we either have to flush all bcp data or convert it into bci.
  CodeCache::gc_prologue();
  Threads::gc_prologue();

  // Increment the invocation count for the permanent generation, since it is
  // implicitly collected whenever we do a full mark sweep collection.
  gch->perm_gen()->stat_record()->invocations++;

  //本次Gc之前内存堆的使用量
  size_t gch_prev_used = gch->used();

  // Some of the card table updates below assume that the perm gen is
  // also being collected.
  assert(level == gch->n_gens() - 1, "All generations are being collected, ergo perm gen too.");

  // Capture used regions for each generation that will be
  // subject to collection, so that card table adjustments can
  // be made intelligently (see clear / invalidate further below).
  gch->save_used_regions(level, true /* perm */);

  allocate_stacks();

  mark_sweep_phase1(level, clear_all_softrefs);

  mark_sweep_phase2();

  // Don't add any more derived pointers during phase3
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

  mark_sweep_phase3(level);

  VALIDATE_MARK_SWEEP_ONLY(
    if (ValidateMarkSweep) {
      guarantee(_root_refs_stack->length() == 0, "should be empty by now");
    }
  )
Beispiel #2
0
void GenMarkSweep::invoke_at_safepoint(ReferenceProcessor* rp, bool clear_all_softrefs) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");

  GenCollectedHeap* gch = GenCollectedHeap::heap();
#ifdef ASSERT
  if (gch->collector_policy()->should_clear_all_soft_refs()) {
    assert(clear_all_softrefs, "Policy should have been checked earlier");
  }
#endif

  // hook up weak ref data so it can be used during Mark-Sweep
  assert(ref_processor() == NULL, "no stomping");
  assert(rp != NULL, "should be non-NULL");
  set_ref_processor(rp);
  rp->setup_policy(clear_all_softrefs);

  gch->trace_heap_before_gc(_gc_tracer);

  // When collecting the permanent generation Method*s may be moving,
  // so we either have to flush all bcp data or convert it into bci.
  CodeCache::gc_prologue();

  // Increment the invocation count
  _total_invocations++;

  // Capture used regions for each generation that will be
  // subject to collection, so that card table adjustments can
  // be made intelligently (see clear / invalidate further below).
  gch->save_used_regions();

  allocate_stacks();

  mark_sweep_phase1(clear_all_softrefs);

  mark_sweep_phase2();

  // Don't add any more derived pointers during phase3
#if defined(COMPILER2) || INCLUDE_JVMCI
  assert(DerivedPointerTable::is_active(), "Sanity");
  DerivedPointerTable::set_active(false);
#endif

  mark_sweep_phase3();

  mark_sweep_phase4();

  restore_marks();

  // Set saved marks for allocation profiler (and other things? -- dld)
  // (Should this be in general part?)
  gch->save_marks();

  deallocate_stacks();

  // If compaction completely evacuated the young generation then we
  // can clear the card table.  Otherwise, we must invalidate
  // it (consider all cards dirty).  In the future, we might consider doing
  // compaction within generations only, and doing card-table sliding.
  CardTableRS* rs = gch->rem_set();
  Generation* old_gen = gch->old_gen();

  // Clear/invalidate below make use of the "prev_used_regions" saved earlier.
  if (gch->young_gen()->used() == 0) {
    // We've evacuated the young generation.
    rs->clear_into_younger(old_gen);
  } else {
    // Invalidate the cards corresponding to the currently used
    // region and clear those corresponding to the evacuated region.
    rs->invalidate_or_clear(old_gen);
  }

  CodeCache::gc_epilogue();
  JvmtiExport::gc_epilogue();

  // refs processing: clean slate
  set_ref_processor(NULL);

  // Update heap occupancy information which is used as
  // input to soft ref clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  // Update time of last gc for all generations we collected
  // (which currently is all the generations in the heap).
  // We need to use a monotonically non-decreasing time in ms
  // or we will see time-warp warnings and os::javaTimeMillis()
  // does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  gch->update_time_of_last_gc(now);

  gch->trace_heap_after_gc(_gc_tracer);
}
void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp, bool clear_all_softrefs) {
  guarantee(level == 1, "We always collect both old and young.");
  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");

  GenCollectedHeap* gch = GenCollectedHeap::heap();
#ifdef ASSERT
  if (gch->collector_policy()->should_clear_all_soft_refs()) {
    assert(clear_all_softrefs, "Policy should have been checked earlier");
  }
#endif

  // hook up weak ref data so it can be used during Mark-Sweep
  assert(ref_processor() == NULL, "no stomping");
  assert(rp != NULL, "should be non-NULL");
  _ref_processor = rp;
  rp->setup_policy(clear_all_softrefs);

  GCTraceTime t1(GCCauseString("Full GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer->gc_id());

  gch->trace_heap_before_gc(_gc_tracer);

  // When collecting the permanent generation Method*s may be moving,
  // so we either have to flush all bcp data or convert it into bci.
  CodeCache::gc_prologue();
  Threads::gc_prologue();

  // Increment the invocation count
  _total_invocations++;

  // Capture heap size before collection for printing.
  size_t gch_prev_used = gch->used();

  // Capture used regions for each generation that will be
  // subject to collection, so that card table adjustments can
  // be made intelligently (see clear / invalidate further below).
  gch->save_used_regions(level);

  allocate_stacks();

  mark_sweep_phase1(level, clear_all_softrefs);

  mark_sweep_phase2();

  // Don't add any more derived pointers during phase3
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  COMPILER2_PRESENT(DerivedPointerTable::set_active(false));

  mark_sweep_phase3(level);

  mark_sweep_phase4();

  restore_marks();

  // Set saved marks for allocation profiler (and other things? -- dld)
  // (Should this be in general part?)
  gch->save_marks();

  deallocate_stacks();

  // If compaction completely evacuated all generations younger than this
  // one, then we can clear the card table.  Otherwise, we must invalidate
  // it (consider all cards dirty).  In the future, we might consider doing
  // compaction within generations only, and doing card-table sliding.
  bool all_empty = true;
  for (int i = 0; all_empty && i < level; i++) {
    Generation* g = gch->get_gen(i);
    all_empty = all_empty && gch->get_gen(i)->used() == 0;
  }
  GenRemSet* rs = gch->rem_set();
  Generation* old_gen = gch->get_gen(level);
  // Clear/invalidate below make use of the "prev_used_regions" saved earlier.
  if (all_empty) {
    // We've evacuated all generations below us.
    rs->clear_into_younger(old_gen);
  } else {
    // Invalidate the cards corresponding to the currently used
    // region and clear those corresponding to the evacuated region.
    rs->invalidate_or_clear(old_gen);
  }

  Threads::gc_epilogue();
  CodeCache::gc_epilogue();
  JvmtiExport::gc_epilogue();

  if (PrintGC && !PrintGCDetails) {
    gch->print_heap_change(gch_prev_used);
  }

  // refs processing: clean slate
  _ref_processor = NULL;

  // Update heap occupancy information which is used as
  // input to soft ref clearing policy at the next gc.
  Universe::update_heap_info_at_gc();

  // Update time of last gc for all generations we collected
  // (which curently is all the generations in the heap).
  // We need to use a monotonically non-deccreasing time in ms
  // or we will see time-warp warnings and os::javaTimeMillis()
  // does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  gch->update_time_of_last_gc(now);

  gch->trace_heap_after_gc(_gc_tracer);
}