void BallAndStick::process(const Molecule &molecule,
                           Rendering::GroupNode &node)
{
  // Add a sphere node to contain all of the spheres.
  GeometryNode *geometry = new GeometryNode;
  node.addChild(geometry);
  SphereGeometry *spheres = new SphereGeometry;
  spheres->identifier().molecule = &molecule;
  spheres->identifier().type = Rendering::AtomType;
  geometry->addDrawable(spheres);

  for (Index i = 0; i < molecule.atomCount(); ++i) {
    Core::Atom atom = molecule.atom(i);
    unsigned char atomicNumber = atom.atomicNumber();
    const unsigned char *c = Elements::color(atomicNumber);
    Vector3ub color(c[0], c[1], c[2]);
    spheres->addSphere(atom.position3d().cast<float>(), color,
                       static_cast<float>(Elements::radiusVDW(atomicNumber))
                       * 0.3f);
  }

  float bondRadius = 0.1f;
  CylinderGeometry *cylinders = new CylinderGeometry;
  cylinders->identifier().molecule = &molecule;
  cylinders->identifier().type = Rendering::BondType;
  geometry->addDrawable(cylinders);
  for (Index i = 0; i < molecule.bondCount(); ++i) {
    Core::Bond bond = molecule.bond(i);
    Vector3f pos1 = bond.atom1().position3d().cast<float>();
    Vector3f pos2 = bond.atom2().position3d().cast<float>();
    Vector3ub color1(Elements::color(bond.atom1().atomicNumber()));
    Vector3ub color2(Elements::color(bond.atom2().atomicNumber()));
    Vector3f bondVector = pos2 - pos1;
    float bondLength = bondVector.norm();
    bondVector /= bondLength;
    switch (bond.order()) {
    case 3: {
      Vector3f delta = bondVector.unitOrthogonal() * (2.0f * bondRadius);
      cylinders->addCylinder(pos1 + delta, bondVector, bondLength, bondRadius,
                             color1, color2, i);
      cylinders->addCylinder(pos1 - delta, bondVector, bondLength, bondRadius,
                             color1, color2, i);
    }
    default:
    case 1:
      cylinders->addCylinder(pos1, bondVector, bondLength, bondRadius,
                             color1, color2, i);
      break;
    case 2: {
      Vector3f delta = bondVector.unitOrthogonal() * bondRadius;
      cylinders->addCylinder(pos1 + delta, bondVector, bondLength, bondRadius,
                             color1, color2, i);
      cylinders->addCylinder(pos1 - delta, bondVector, bondLength, bondRadius,
                             color1, color2, i);
    }
    }
  }
}
Beispiel #2
0
void VanDerWaals::process(const Core::Molecule &molecule,
                          Rendering::GroupNode &node)
{
  // Add a sphere node to contain all of the VdW spheres.
  GeometryNode *geometry = new GeometryNode;
  node.addChild(geometry);
  SphereGeometry *spheres = new SphereGeometry;
  spheres->identifier().molecule = &molecule;
  spheres->identifier().type = Rendering::AtomType;
  geometry->addDrawable(spheres);

  for (size_t i = 0; i < molecule.atomCount(); ++i) {
    Core::Atom atom = molecule.atom(i);
    unsigned char atomicNumber = atom.atomicNumber();
    const unsigned char *c = Elements::color(atomicNumber);
    Vector3ub color(c[0], c[1], c[2]);
    spheres->addSphere(atom.position3d().cast<float>(), color,
                       static_cast<float>(Elements::radiusVDW(atomicNumber)));
  }
}
int glwidgettest(int argc, char* argv[])
{
  // Set up the default format for our GL contexts.
  QSurfaceFormat defaultFormat = QSurfaceFormat::defaultFormat();
  defaultFormat.setSamples(4);
  QSurfaceFormat::setDefaultFormat(defaultFormat);

  QApplication app(argc, argv);
  GLWidget widget;
  widget.setGeometry(10, 10, 250, 250);
  widget.show();

  GeometryNode* geometry = new GeometryNode;
  SphereGeometry* spheres = new SphereGeometry;
  geometry->addDrawable(spheres);
  spheres->addSphere(Vector3f(0, 0, 0), Vector3ub(255, 0, 0), 0.5);
  spheres->addSphere(Vector3f(2, 0, 0), Vector3ub(0, 255, 0), 1.5);
  spheres->addSphere(Vector3f(0, 2, 1), Vector3ub(0, 0, 255), 1.0);
  widget.renderer().scene().rootNode().addChild(geometry);

  // Make sure the widget renders the scene, and store it in a QImage.
  widget.raise();
  widget.repaint();

  // Run the application for a while, and then quit so we can save an image.
  QTimer timer;
  timer.setSingleShot(true);
  app.connect(&timer, SIGNAL(timeout()), SLOT(quit()));
  timer.start(200);
  app.exec();

  // Grab the frame buffer of the GLWidget and save it to a QImage.
  QImage image = widget.grabFramebuffer();

  // Set up the image regression test.
  ImageRegressionTest test(argc, argv);

  // Do the image threshold test, printing output to the std::cout for ctest.
  return test.imageThresholdTest(image, std::cout);
}
  void QTAIMEngine::process(const Core::Molecule &coreMolecule,
                            Rendering::GroupNode &node)
  {
    const QtGui::Molecule *molecule =
        dynamic_cast<const QtGui::Molecule*>(&coreMolecule);
    if (!molecule)
      return;

    // Create sphere/cylinder nodes.
    GeometryNode *geometry = new GeometryNode;
    node.addChild(geometry);
    SphereGeometry *spheres = new SphereGeometry;
    geometry->addDrawable(spheres);
    CylinderGeometry *cylinders = new CylinderGeometry;
    geometry->addDrawable(cylinders);

    // Render the bond paths
    if(
        molecule->property("QTAIMFirstNCPIndexVariantList").isValid() &&
        molecule->property("QTAIMSecondNCPIndexVariantList").isValid() &&
        molecule->property("QTAIMLaplacianAtBondCriticalPoints").isValid() &&
        molecule->property("QTAIMEllipticityAtBondCriticalPoints").isValid() &&
        molecule->property("QTAIMBondPathSegmentStartIndex").isValid() &&
        molecule->property("QTAIMBondPathSegmentEndIndex").isValid() &&
        molecule->property("QTAIMXBondPaths").isValid() &&
        molecule->property("QTAIMYBondPaths").isValid() &&
        molecule->property("QTAIMZBondPaths").isValid()
        )
    {
      QVariant firstNCPIndexVariant=molecule->property("QTAIMFirstNCPIndexVariantList");
      QVariant secondNCPIndexVariant=molecule->property("QTAIMSecondNCPIndexVariantList");
      QVariant laplacianAtBondCriticalPointsVariant=molecule->property("QTAIMLaplacianAtBondCriticalPoints");
      QVariant ellipticityAtBondCriticalPointsVariant=molecule->property("QTAIMEllipticityAtBondCriticalPoints");
      QVariant bondPathSegmentStartIndexVariant=molecule->property("QTAIMBondPathSegmentStartIndex");
      QVariant bondPathSegmentEndIndexVariant=molecule->property("QTAIMBondPathSegmentEndIndex");
      QVariant xBondPathsVariant=molecule->property("QTAIMXBondPaths");
      QVariant yBondPathsVariant=molecule->property("QTAIMYBondPaths");
      QVariant zBondPathsVariant=molecule->property("QTAIMZBondPaths");

      QVariantList firstNCPIndexVariantList=firstNCPIndexVariant.toList();
      QVariantList secondNCPIndexVariantList=secondNCPIndexVariant.toList();
      QVariantList laplacianAtBondCriticalPointsVariantList=laplacianAtBondCriticalPointsVariant.toList();
      QVariantList ellipticityAtBondCriticalPointsVariantList=ellipticityAtBondCriticalPointsVariant.toList();
      QVariantList bondPathSegmentStartIndexVariantList=bondPathSegmentStartIndexVariant.toList();
      QVariantList bondPathSegmentEndIndexVariantList=bondPathSegmentEndIndexVariant.toList();
      QVariantList xBondPathsVariantList=xBondPathsVariant.toList();
      QVariantList yBondPathsVariantList=yBondPathsVariant.toList();
      QVariantList zBondPathsVariantList=zBondPathsVariant.toList();

      for( qint64 i=0 ;  i < firstNCPIndexVariantList.length() ; ++i )
      {

        qint64 start=bondPathSegmentStartIndexVariantList.at(i).toLongLong();
        qint64 end=bondPathSegmentEndIndexVariantList.at(i).toLongLong();

        if( laplacianAtBondCriticalPointsVariantList.at(i).toReal() > 0.0 )
        {

          const qint64 step=4;

          Vector3f xyz;
          Vector3ub color(255, 255, 255);
          for( qint64 j=start ; j < end-1 ; j=j+step )
          {
            xyz << xBondPathsVariantList.at(j).toFloat(),
                   yBondPathsVariantList.at(j).toFloat(),
                   zBondPathsVariantList.at(j).toFloat();
            spheres->addSphere(xyz, color, 0.025f);
          }
        }
        else
        {

          const qint64 step=1;

          Vector3ub color(255, 255, 255);
          double radius=0.025;

          Vector3f v1;
          Vector3f v2;
          Vector3f direction;
          for( qint64 j=start ; j < end-1 ; j=j+step )
          {

            v1 << xBondPathsVariantList.at(j).toFloat(),
                  yBondPathsVariantList.at(j).toFloat(),
                  zBondPathsVariantList.at(j).toFloat();
            v2 << xBondPathsVariantList.at(j+1).toFloat(),
                  yBondPathsVariantList.at(j+1).toFloat(),
                  zBondPathsVariantList.at(j+1).toFloat();

            direction = v2 - v1;
            float length = direction.norm();
            direction /= length;

            cylinders->addCylinder(v1, direction, length, radius, color);
          }
        }
      }  // bond path
    }

    if( molecule->property("QTAIMXNuclearCriticalPoints").isValid() &&
        molecule->property("QTAIMYNuclearCriticalPoints").isValid() &&
        molecule->property("QTAIMZNuclearCriticalPoints").isValid() )
    {
      QVariant xNuclearCriticalPointsVariant=molecule->property("QTAIMXNuclearCriticalPoints");
      QVariant yNuclearCriticalPointsVariant=molecule->property("QTAIMYNuclearCriticalPoints");
      QVariant zNuclearCriticalPointsVariant=molecule->property("QTAIMZNuclearCriticalPoints");
      QVariantList xNuclearCriticalPointsVariantList=xNuclearCriticalPointsVariant.toList();
      QVariantList yNuclearCriticalPointsVariantList=yNuclearCriticalPointsVariant.toList();
      QVariantList zNuclearCriticalPointsVariantList=zNuclearCriticalPointsVariant.toList();
      if( xNuclearCriticalPointsVariantList.length() == yNuclearCriticalPointsVariantList.length() &&
          xNuclearCriticalPointsVariantList.length() == zNuclearCriticalPointsVariantList.length() )
      {
        Vector3f xyz;
        Vector3ub color(255, 64, 255);
        for( qint64 i=0 ; i < xNuclearCriticalPointsVariantList.length() ; ++i )
        {
          xyz << xNuclearCriticalPointsVariantList.at(i).toFloat(),
                 yNuclearCriticalPointsVariantList.at(i).toFloat(),
                 zNuclearCriticalPointsVariantList.at(i).toFloat();

          // map->setFromPrimitive(ncp);

          spheres->addSphere(xyz, color, 0.1f);
        }
      }
    }


    if( molecule->property("QTAIMXBondCriticalPoints").isValid() &&
        molecule->property("QTAIMYBondCriticalPoints").isValid() &&
        molecule->property("QTAIMZBondCriticalPoints").isValid() )
    {
      QVariant xBondCriticalPointsVariant=molecule->property("QTAIMXBondCriticalPoints");
      QVariant yBondCriticalPointsVariant=molecule->property("QTAIMYBondCriticalPoints");
      QVariant zBondCriticalPointsVariant=molecule->property("QTAIMZBondCriticalPoints");
      QVariantList xBondCriticalPointsVariantList=xBondCriticalPointsVariant.toList();
      QVariantList yBondCriticalPointsVariantList=yBondCriticalPointsVariant.toList();
      QVariantList zBondCriticalPointsVariantList=zBondCriticalPointsVariant.toList();
      if( xBondCriticalPointsVariantList.length() == yBondCriticalPointsVariantList.length() &&
          xBondCriticalPointsVariantList.length() == zBondCriticalPointsVariantList.length() )
      {
        Vector3ub color(255, 255, 32);
        Vector3f xyz;
        for( qint64 i=0 ; i < xBondCriticalPointsVariantList.length() ; ++i )
        {
          xyz << xBondCriticalPointsVariantList.at(i).toFloat(),
                 yBondCriticalPointsVariantList.at(i).toFloat(),
                 zBondCriticalPointsVariantList.at(i).toFloat();

          // map->setFromPrimitive(ncp);

          spheres->addSphere(xyz, color, 0.1f);
        }
      }
    }

    if( molecule->property("QTAIMXElectronDensitySources").isValid() &&
        molecule->property("QTAIMYElectronDensitySources").isValid() &&
        molecule->property("QTAIMZElectronDensitySources").isValid() )
    {
      QVariant xElectronDensitySourcesVariant=molecule->property("QTAIMXElectronDensitySources");
      QVariant yElectronDensitySourcesVariant=molecule->property("QTAIMYElectronDensitySources");
      QVariant zElectronDensitySourcesVariant=molecule->property("QTAIMZElectronDensitySources");
      QVariantList xElectronDensitySourcesVariantList=xElectronDensitySourcesVariant.toList();
      QVariantList yElectronDensitySourcesVariantList=yElectronDensitySourcesVariant.toList();
      QVariantList zElectronDensitySourcesVariantList=zElectronDensitySourcesVariant.toList();
      if( xElectronDensitySourcesVariantList.length() == yElectronDensitySourcesVariantList.length() &&
          xElectronDensitySourcesVariantList.length() == zElectronDensitySourcesVariantList.length() )
      {
        Vector3ub color(64, 64, 255);
        Vector3f xyz;
        for( qint64 i=0 ; i < xElectronDensitySourcesVariantList.length() ; ++i )
        {
          xyz << xElectronDensitySourcesVariantList.at(i).toFloat(),
                 yElectronDensitySourcesVariantList.at(i).toFloat(),
                 zElectronDensitySourcesVariantList.at(i).toFloat();

          // map->setFromPrimitive(ncp);

          spheres->addSphere(xyz, color, 0.1f);
        }
      }
    }
  }
int qttextlabeltest(int argc, char *argv[])
{
  // Set up the default format for our GL contexts.
  QGLFormat defaultFormat = QGLFormat::defaultFormat();
  defaultFormat.setSampleBuffers(true);
  QGLFormat::setDefaultFormat(defaultFormat);

  // Create and show widget
  QApplication app(argc, argv);
  GLWidget widget;
  widget.setGeometry(10, 10, 500, 500);
  widget.show();

  // Create scene
  GeometryNode *geometry = new GeometryNode;
  widget.renderer().scene().rootNode().addChild(geometry);

  // Add a small sphere at the origin for reference:
  SphereGeometry *spheres = new SphereGeometry;
  spheres->addSphere(Vector3f::Zero(), Vector3ub(128, 128, 128), 0.1f);
  geometry->addDrawable(spheres);

  // Default text property:
  TextProperties tprop;

  // Test alignment:
  TextLabel3D *l3 = NULL;
  TextLabel2D *l2 = NULL;

  // 3D:
  tprop.setColorRgb(255, 0, 0);
  tprop.setAlign(TextProperties::HLeft, TextProperties::VTop);
  l3 = new TextLabel3D;
  l3->setText("Upper Left Anchor");
  l3->setAnchor(Vector3f::Zero());
  l3->setTextProperties(tprop);
  geometry->addDrawable(l3);

  tprop.setColorRgb(0, 255, 0);
  tprop.setAlign(TextProperties::HLeft, TextProperties::VBottom);
  l3 = new TextLabel3D;
  l3->setText("Bottom Left Anchor");
  l3->setAnchor(Vector3f::Zero());
  l3->setTextProperties(tprop);
  geometry->addDrawable(l3);

  tprop.setColorRgb(0, 0, 255);
  tprop.setAlign(TextProperties::HRight, TextProperties::VTop);
  l3 = new TextLabel3D;
  l3->setText("Upper Right Anchor");
  l3->setAnchor(Vector3f::Zero());
  l3->setTextProperties(tprop);
  geometry->addDrawable(l3);

  tprop.setColorRgb(255, 255, 0);
  tprop.setAlign(TextProperties::HRight, TextProperties::VBottom);
  l3 = new TextLabel3D;
  l3->setText("Bottom Right Anchor");
  l3->setAnchor(Vector3f::Zero());
  l3->setTextProperties(tprop);
  geometry->addDrawable(l3);

  tprop.setColorRgba(255, 255, 255, 220);
  tprop.setRotationDegreesCW(90.f);
  tprop.setAlign(TextProperties::HCenter, TextProperties::VCenter);
  l3 = new TextLabel3D;
  l3->setText("Centered Anchor (3D)");
  l3->setAnchor(Vector3f::Zero());
  l3->setTextProperties(tprop);
  l3->setRenderPass(Avogadro::Rendering::TranslucentPass);
  geometry->addDrawable(l3);
  tprop.setRotationDegreesCW(0.f);
  tprop.setAlpha(255);

  // 2D:
  tprop.setColorRgb(255, 0, 0);
  tprop.setAlign(TextProperties::HLeft, TextProperties::VTop);
  l2 = new TextLabel2D;
  l2->setText("Upper Left Corner");
  l2->setAnchor(Vector2i(0, widget.height()));
  l2->setTextProperties(tprop);
  geometry->addDrawable(l2);

  tprop.setColorRgb(0, 255, 0);
  tprop.setAlign(TextProperties::HLeft, TextProperties::VBottom);
  l2 = new TextLabel2D;
  l2->setText("Bottom Left Corner");
  l2->setAnchor(Vector2i(0, 0));
  l2->setTextProperties(tprop);
  geometry->addDrawable(l2);

  tprop.setColorRgb(0, 0, 255);
  tprop.setAlign(TextProperties::HRight, TextProperties::VTop);
  l2 = new TextLabel2D;
  l2->setText("Upper Right Corner");
  l2->setAnchor(Vector2i(widget.width(), widget.height()));
  l2->setTextProperties(tprop);
  geometry->addDrawable(l2);

  tprop.setColorRgb(255, 255, 0);
  tprop.setAlign(TextProperties::HRight, TextProperties::VBottom);
  l2 = new TextLabel2D;
  l2->setText("Bottom Right Corner");
  l2->setAnchor(Vector2i(widget.width(), 0));
  l2->setTextProperties(tprop);
  geometry->addDrawable(l2);

  tprop.setColorRgba(255, 255, 255, 220);
  tprop.setAlign(TextProperties::HCenter, TextProperties::VCenter);
  l2 = new TextLabel2D;
  l2->setText("Centered Anchor (2D)");
  l2->setAnchor(Vector2i(widget.width() / 2, widget.height() / 2));
  l2->setTextProperties(tprop);
  geometry->addDrawable(l2);

  // Test the TextLabel3D's radius feature:
  spheres->addSphere(Vector3f(0.f, 6.f, 0.f), Vector3ub(255, 255, 255), 1.f);

  tprop.setColorRgba(255, 128, 64, 255);
  tprop.setRotationDegreesCW(90.f);
  l3 = new TextLabel3D;
  l3->setText("Clipped");
  l3->setAnchor(Vector3f(0.f, 6.f, 0.f));
  l3->setTextProperties(tprop);
  geometry->addDrawable(l3);

  tprop.setColorRgba(64, 128, 255, 255);
  tprop.setRotationDegreesCW(45.f);
  l3 = new TextLabel3D;
  l3->setText("Projected");
  l3->setAnchor(Vector3f(0.f, 6.f, 0.f));
  l3->setTextProperties(tprop);
  l3->setRadius(1.f);
  geometry->addDrawable(l3);

  // Make sure the widget renders the scene, and store it in a QImage.
  widget.raise();
  widget.repaint();

  // Run the application for a while, and then quit so we can save an image.
  QTimer timer;
  timer.setSingleShot(true);
  app.connect(&timer, SIGNAL(timeout()), SLOT(quit()));
  timer.start(200);
  app.exec();

  // Grab the frame buffer of the GLWidget and save it to a QImage.
  QImage image = widget.grabFrameBuffer(false);

  // Set up the image regression test.
  ImageRegressionTest test(argc, argv);

  // Do the image threshold test, printing output to the std::cout for ctest.
  return test.imageThresholdTest(image, std::cout);
}