bool GrPorterDuffXPFactory::SrcOverWillNeedDstTexture(const GrCaps& caps,
                                                     const GrPipelineOptimizations& optimizations) {
    if (caps.shaderCaps()->dstReadInShaderSupport() ||
        caps.shaderCaps()->dualSourceBlendingSupport()) {
        return false;
    }

    // When we have four channel coverage we always need to read the dst in order to correctly
    // blend. The one exception is when we are using srcover mode and we know the input color
    // into the XP.
    if (optimizations.fCoveragePOI.isFourChannelOutput()) {
        if (kRGBA_GrColorComponentFlags == optimizations.fColorPOI.validFlags() &&
            !caps.shaderCaps()->dstReadInShaderSupport()) {
            return false;
        }
        return get_lcd_blend_formula(optimizations.fCoveragePOI,
                                     SkBlendMode::kSrcOver).hasSecondaryOutput();
    }

    // We fallback on the shader XP when the blend formula would use dual source blending but we
    // don't have support for it.
    static const bool kHasMixedSamples = false;
    SkASSERT(!caps.usesMixedSamples()); // We never use mixed samples without dual source blending.
    return get_blend_formula(optimizations.fColorPOI, optimizations.fCoveragePOI,
                             kHasMixedSamples, SkBlendMode::kSrcOver).hasSecondaryOutput();
}
Beispiel #2
0
bool GrXPFactory::willNeedDstTexture(const GrCaps& caps,
                                     const GrProcOptInfo& colorPOI,
                                     const GrProcOptInfo& coveragePOI,
                                     bool hasMixedSamples) const {
    return (this->willReadDstColor(caps, colorPOI, coveragePOI, hasMixedSamples) &&
            !caps.shaderCaps()->dstReadInShaderSupport());
}
bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps,
                                             const GrProcOptInfo& colorPOI,
                                             const GrProcOptInfo& coveragePOI) const {
    if (coveragePOI.isFourChannelOutput()) {
        return false; // The LCD XP never does a dst read.
    }

    // We fallback on the shader XP when the blend formula would use dual source blending but we
    // don't have support for it.
    return !caps.shaderCaps()->dualSourceBlendingSupport() &&
           get_blend_formula(fXfermode, colorPOI, coveragePOI).hasSecondaryOutput();
}
sk_sp<const GrXferProcessor> GrXPFactory::MakeXferProcessor(const GrXPFactory* factory,
                                                            const GrProcessorAnalysisColor& color,
                                                            GrProcessorAnalysisCoverage coverage,
                                                            bool hasMixedSamples,
                                                            const GrCaps& caps) {
    SkASSERT(!hasMixedSamples || caps.shaderCaps()->dualSourceBlendingSupport());
    if (factory) {
        return factory->makeXferProcessor(color, coverage, hasMixedSamples, caps);
    } else {
        return GrPorterDuffXPFactory::MakeSrcOverXferProcessor(color, coverage, hasMixedSamples,
                                                               caps);
    }
}
bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps,
                                             const GrProcOptInfo& colorPOI,
                                             const GrProcOptInfo& covPOI,
                                             bool hasMixedSamples) const {
    if (caps.shaderCaps()->dualSourceBlendingSupport()) {
        return false;
    }
    if (covPOI.isFourChannelOutput()) {
        return false; // The LCD XP will abort rather than doing a dst read.
    }
    // We fallback on the shader XP when the blend formula would use dual source blending but we
    // don't have support for it.
    return get_blend_formula(colorPOI, covPOI, hasMixedSamples, fXfermode).hasSecondaryOutput();
}
Beispiel #6
0
bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps,
                                             const GrProcOptInfo& colorPOI,
                                             const GrProcOptInfo& covPOI,
                                             bool hasMixedSamples) const {
    if (caps.shaderCaps()->dualSourceBlendingSupport()) {
        return false;
    }
    
    // When we have four channel coverage we always need to read the dst in order to correctly
    // blend. The one exception is when we are using srcover mode and we know the input color into
    // the XP.
    if (covPOI.isFourChannelOutput()) {
        if (SkXfermode::kSrcOver_Mode == fXfermode &&
            kRGBA_GrColorComponentFlags == colorPOI.validFlags() &&
            !caps.shaderCaps()->dstReadInShaderSupport()) {
            return false;
        }
        return get_lcd_blend_formula(covPOI, fXfermode).hasSecondaryOutput();
    }
    // We fallback on the shader XP when the blend formula would use dual source blending but we
    // don't have support for it.
    return get_blend_formula(colorPOI, covPOI, hasMixedSamples, fXfermode).hasSecondaryOutput();
}
GrXPFactory::AnalysisProperties GrXPFactory::GetAnalysisProperties(
        const GrXPFactory* factory,
        const GrProcessorAnalysisColor& color,
        const GrProcessorAnalysisCoverage& coverage,
        const GrCaps& caps) {
    AnalysisProperties result;
    if (factory) {
        result = factory->analysisProperties(color, coverage, caps);
    } else {
        result = GrPorterDuffXPFactory::SrcOverAnalysisProperties(color, coverage, caps);
    }
    SkASSERT(!(result & AnalysisProperties::kRequiresDstTexture));
    if ((result & AnalysisProperties::kReadsDstInShader) &&
        !caps.shaderCaps()->dstReadInShaderSupport()) {
        result |= AnalysisProperties::kRequiresDstTexture;
        if (caps.textureBarrierSupport()) {
            result |= AnalysisProperties::kRequiresBarrierBetweenOverlappingDraws;
        }
    }
    return result;
}
Beispiel #8
0
bool GrXPFactory::willNeedDstTexture(const GrCaps& caps,
                                     const GrPipelineOptimizations& optimizations,
                                     bool hasMixedSamples) const {
    return (this->willReadDstColor(caps, optimizations, hasMixedSamples) &&
            !caps.shaderCaps()->dstReadInShaderSupport());
}
Beispiel #9
0
std::unique_ptr<GrFillRRectOp> GrFillRRectOp::Make(
        GrRecordingContext* ctx, GrAAType aaType, const SkMatrix& viewMatrix, const SkRRect& rrect,
        const GrCaps& caps, GrPaint&& paint) {
    if (!caps.instanceAttribSupport()) {
        return nullptr;
    }

    Flags flags = Flags::kNone;
    if (GrAAType::kCoverage == aaType) {
        // TODO: Support perspective in a follow-on CL. This shouldn't be difficult, since we
        // already use HW derivatives. The only trick will be adjusting the AA outset to account for
        // perspective. (i.e., outset = 0.5 * z.)
        if (viewMatrix.hasPerspective()) {
            return nullptr;
        }
        if (can_use_hw_derivatives_with_coverage(*caps.shaderCaps(), viewMatrix, rrect)) {
            // HW derivatives (more specifically, fwidth()) are consistently faster on all platforms
            // in coverage mode. We use them as long as the approximation will be accurate enough.
            flags |= Flags::kUseHWDerivatives;
        }
    } else {
        if (GrAAType::kMSAA == aaType) {
            if (!caps.sampleLocationsSupport() || !caps.shaderCaps()->sampleVariablesSupport()) {
                return nullptr;
            }
        }
        if (viewMatrix.hasPerspective()) {
            // HW derivatives are consistently slower on all platforms in sample mask mode. We
            // therefore only use them when there is perspective, since then we can't interpolate
            // the symbolic screen-space gradient.
            flags |= Flags::kUseHWDerivatives | Flags::kHasPerspective;
        }
    }

    // Produce a matrix that draws the round rect from normalized [-1, -1, +1, +1] space.
    float l = rrect.rect().left(), r = rrect.rect().right(),
          t = rrect.rect().top(), b = rrect.rect().bottom();
    SkMatrix m;
    // Unmap the normalized rect [-1, -1, +1, +1] back to [l, t, r, b].
    m.setScaleTranslate((r - l)/2, (b - t)/2, (l + r)/2, (t + b)/2);
    // Map to device space.
    m.postConcat(viewMatrix);

    SkRect devBounds;
    if (!(flags & Flags::kHasPerspective)) {
        // Since m is an affine matrix that maps the rect [-1, -1, +1, +1] into the shape's
        // device-space quad, it's quite simple to find the bounding rectangle:
        devBounds = SkRect::MakeXYWH(m.getTranslateX(), m.getTranslateY(), 0, 0);
        devBounds.outset(SkScalarAbs(m.getScaleX()) + SkScalarAbs(m.getSkewX()),
                         SkScalarAbs(m.getSkewY()) + SkScalarAbs(m.getScaleY()));
    } else {
        viewMatrix.mapRect(&devBounds, rrect.rect());
    }

    if (GrAAType::kMSAA == aaType && caps.preferTrianglesOverSampleMask()) {
        // We are on a platform that prefers fine triangles instead of using the sample mask. See if
        // the round rect is large enough that it will be faster for us to send it off to the
        // default path renderer instead. The 200x200 threshold was arrived at using the
        // "shapes_rrect" benchmark on an ARM Galaxy S9.
        if (devBounds.height() * devBounds.width() > 200 * 200) {
            return nullptr;
        }
    }

    GrOpMemoryPool* pool = ctx->priv().opMemoryPool();
    return pool->allocate<GrFillRRectOp>(aaType, rrect, flags, m, std::move(paint), devBounds);
}