void LightsourceSimplePass::find_lights(GraphicContext &gc, Scene_Impl *scene)
{
	lights.clear();

	Size viewport_size = viewport->get_size();

	Mat4f eye_to_projection = Mat4f::perspective(field_of_view.get(), viewport_size.width/(float)viewport_size.height, 0.1f, 1.e10f, handed_left, gc.get_clip_z_range());
	Mat4f eye_to_cull_projection = Mat4f::perspective(field_of_view.get(), viewport_size.width/(float)viewport_size.height, 0.1f, 150.0f, handed_left, clip_negative_positive_w);
	FrustumPlanes frustum(eye_to_cull_projection * world_to_eye.get());
	scene->visit_lights(gc, world_to_eye.get(), eye_to_projection, frustum, this);
}
void LightsourceSimplePass::upload(GraphicContext &gc, Scene_Impl *scene)
{
	ScopeTimeFunction();

	Size viewport_size = viewport->get_size();
	Mat4f eye_to_projection = Mat4f::perspective(field_of_view.get(), viewport_size.width/(float)viewport_size.height, 0.1f, 1.e4f, handed_left, gc.get_clip_z_range());

	float aspect = viewport->get_width()/(float)viewport->get_height();
	float field_of_view_y_degrees = field_of_view.get();
	float field_of_view_y_rad = (float)(field_of_view_y_degrees * PI / 180.0);
	float f = 1.0f / tan(field_of_view_y_rad * 0.5f);
	float rcp_f = 1.0f / f;
	float rcp_f_div_aspect = 1.0f / (f / aspect);
	Vec2f two_rcp_viewport_size(2.0f / viewport->get_width(), 2.0f / viewport->get_height());

	Uniforms cpu_uniforms;
	cpu_uniforms.eye_to_projection = eye_to_projection;
	cpu_uniforms.object_to_eye = Quaternionf::inverse(scene->get_camera().get_orientation()).to_matrix();
	cpu_uniforms.rcp_f = rcp_f;
	cpu_uniforms.rcp_f_div_aspect = rcp_f_div_aspect;
	cpu_uniforms.two_rcp_viewport_size = two_rcp_viewport_size;
	uniforms.upload_data(gc, &cpu_uniforms, 1);

	int num_lights = lights.size();

	Mat4f normal_world_to_eye = Mat4f(Mat3f(world_to_eye.get())); // This assumes uniform scale
	Mat4f eye_to_world = Mat4f::inverse(world_to_eye.get());

	PixelBufferLock4f lock(light_instance_transfer);
	Vec4f *instance_data = lock.get_row(0);

	for (int i = 0; i < num_lights; i++)
	{
		float radius = lights[i]->attenuation_end;
		if (lights[i]->rectangle_shape)
			radius *= 1.414213562373f;

		float attenuation_delta = lights[i]->attenuation_end - lights[i]->attenuation_start;
		if (attenuation_delta == 0.0f)
			attenuation_delta = 1e-6f;
		float sqr_radius = radius * radius;
#ifdef USE_QUADRATIC_ATTENUATION
		float sqr_attenuation_start = lights[i]->attenuation_start * lights[i]->attenuation_start;
		float sqr_attenuation_delta = attenuation_delta * attenuation_delta;
#else
		float attenuation_start = lights[i]->attenuation_start;
#endif
		float sqr_falloff_begin = 0.0f;
		float light_type = 0.0f;
		if (lights[i]->type == SceneLight::type_spot)
		{
			light_type = lights[i]->rectangle_shape ? 2.0f : 1.0f;
			float falloff_begin = lights[i]->hotspot / lights[i]->falloff;
			sqr_falloff_begin = falloff_begin * falloff_begin;
		}
		Vec3f position_in_eye = Vec3f(world_to_eye.get() * Vec4f(lights[i]->position, 1.0f));
		Mat4f eye_to_shadow_projection = lights[i]->vsm_data->world_to_shadow_projection * eye_to_world;

		int shadow_map_index = lights[i]->vsm_data->shadow_map.get_index();

		instance_data[i * vectors_per_light + 0] = Vec4f(position_in_eye, (float)shadow_map_index);
		instance_data[i * vectors_per_light + 1] = Vec4f(lights[i]->color, lights[i]->ambient_illumination);
#ifdef USE_QUADRATIC_ATTENUATION
		instance_data[i * vectors_per_light + 2] = Vec4f(sqr_radius, sqr_attenuation_start, 1.0f / sqr_attenuation_delta, sqr_falloff_begin);
#else
		instance_data[i * vectors_per_light + 2] = Vec4f(sqr_radius, attenuation_start, 1.0f / attenuation_delta, sqr_falloff_begin);
#endif
		instance_data[i * vectors_per_light + 3] = Vec4f(eye_to_shadow_projection[0], eye_to_shadow_projection[4], eye_to_shadow_projection[8], light_type);
		instance_data[i * vectors_per_light + 4] = Vec4f(eye_to_shadow_projection[1], eye_to_shadow_projection[5], eye_to_shadow_projection[9], 0.0f);
		instance_data[i * vectors_per_light + 5] = Vec4f(eye_to_shadow_projection[2], eye_to_shadow_projection[6], eye_to_shadow_projection[10], 0.0f);
	}

	instance_data[num_lights * vectors_per_light + 0] = Vec4f(0.0f);
	instance_data[num_lights * vectors_per_light + 1] = Vec4f(0.0f);
	instance_data[num_lights * vectors_per_light + 2] = Vec4f(0.0f);
	instance_data[num_lights * vectors_per_light + 3] = Vec4f(0.0f);
	instance_data[num_lights * vectors_per_light + 4] = Vec4f(0.0f);
	instance_data[num_lights * vectors_per_light + 5] = Vec4f(0.0f);

	lock.unlock();

	light_instance_texture.set_image(gc, light_instance_transfer);
}
void ParticleEmitterPass::run(GraphicContext &gc, Scene_Impl *scene)
{
	setup(gc);

	Size viewport_size = viewport->get_size();
	Mat4f eye_to_projection = Mat4f::perspective(field_of_view.get(), viewport_size.width/(float)viewport_size.height, 0.1f, 1.e10f, handed_left, gc.get_clip_z_range());
	Mat4f eye_to_cull_projection = Mat4f::perspective(field_of_view.get(), viewport_size.width/(float)viewport_size.height, 0.1f, 150.0f, handed_left, clip_negative_positive_w);
	FrustumPlanes frustum(eye_to_cull_projection * world_to_eye.get());

	for (size_t i = 0; i < active_emitters.size(); i++)
		active_emitters[i]->visible = false;
	scene->visit_emitters(gc, world_to_eye.get(), eye_to_projection, frustum, this);

	const int vectors_per_particle = 2;

	size_t total_particle_count = 0;
	for (size_t i = 0; i < active_emitters.size(); i++)
	{
		float depth_fade_distance = 1.0f;
		ParticleUniforms uniforms;
		uniforms.eye_to_projection = eye_to_projection;
		uniforms.object_to_eye = world_to_eye.get();
		uniforms.rcp_depth_fade_distance = 1.0f / depth_fade_distance;
		uniforms.instance_vectors_offset = total_particle_count * vectors_per_particle;
		active_emitters[i]->gpu_uniforms.upload_data(gc, &uniforms, 1);

		total_particle_count += active_emitters[i]->cpu_particles.size();
	}

	if (total_particle_count == 0)
		return;

	if (instance_texture.is_null() || instance_texture.get_width() < (int)total_particle_count)
	{
		instance_texture = Texture2D(gc, total_particle_count * vectors_per_particle, 1, tf_rgba32f);
		instance_transfer = TransferTexture(gc, total_particle_count * vectors_per_particle, 1, data_to_gpu, tf_rgba32f, 0, usage_stream_draw);
	}

	instance_transfer.lock(gc, access_write_discard);
	Vec4f *vectors = instance_transfer.get_data<Vec4f>();
	size_t vector_offset = 0;
	for (size_t j = 0; j < active_emitters.size(); j++)
	{
		Vec3f eye_pos = scene->get_camera().get_position();
		std::vector<ParticleOrderIndex> sorted_particles;
		sorted_particles.reserve(active_emitters[j]->cpu_particles.size());
		for (size_t i = 0; i < active_emitters[j]->cpu_particles.size(); i++)
		{
			Vec3f delta = active_emitters[j]->cpu_particles[i].position - eye_pos;
			sorted_particles.push_back(ParticleOrderIndex(i, Vec3f::dot(delta, delta)));
		}
		std::sort(sorted_particles.begin(), sorted_particles.end());

		for (size_t k = 0; k < sorted_particles.size(); k++)
		{
			int i = sorted_particles[k].index;
			float size = mix(active_emitters[j]->cpu_particles[i].start_size, active_emitters[j]->cpu_particles[i].end_size, active_emitters[j]->cpu_particles[i].life);
			vectors[vector_offset + k * vectors_per_particle + 0] = Vec4f(active_emitters[j]->cpu_particles[i].position, size);
			vectors[vector_offset + k * vectors_per_particle + 1] = Vec4f(active_emitters[j]->cpu_particles[i].life, 0.0f, 0.0f, 0.0f);
		}

		vector_offset += active_emitters[j]->cpu_particles.size() * vectors_per_particle;
	}
	instance_transfer.unlock();
	instance_texture.set_image(gc, instance_transfer);

	gc.set_depth_range(0.0f, 0.9f);

	gc.set_frame_buffer(fb);
	gc.set_viewport(viewport_size);
	gc.set_depth_stencil_state(depth_stencil_state);
	gc.set_blend_state(blend_state);
	gc.set_rasterizer_state(rasterizer_state);
	gc.set_primitives_array(prim_array);

	gc.set_program_object(program);
	gc.set_texture(0, normal_z_gbuffer.get());
	gc.set_texture(1, instance_texture);

	for (size_t i = 0; i < active_emitters.size(); i++)
	{
		gc.set_uniform_buffer(0, active_emitters[i]->gpu_uniforms);
		gc.set_texture(2, active_emitters[i]->particle_animation.get());
		gc.set_texture(3, active_emitters[i]->life_color_gradient.get());
		gc.draw_primitives_array_instanced(type_triangles, 0, 6, active_emitters[i]->cpu_particles.size());
	}

	gc.reset_primitives_array();
	gc.reset_rasterizer_state();
	gc.reset_depth_stencil_state();
	gc.reset_program_object();
	gc.reset_primitives_elements();
	gc.reset_texture(0);
	gc.reset_texture(1);
	gc.reset_texture(2);
	gc.reset_texture(3);
	gc.reset_uniform_buffer(0);
	gc.reset_frame_buffer();

	gc.set_depth_range(0.0f, 1.0f);
}