Beispiel #1
0
int Image32::RotateGaussian(const float& angle,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();

	double rad = -1.0 * angle * (M_PI/180.0);

	double midHeight = (height/2.0);
	double midWidth = (width/2.0);

	double diagonal = sqrt(midHeight*midHeight + midWidth*midWidth);

	int offset = ceil(diagonal - min(midWidth, midHeight));

	Image32 interImage;
	interImage.setSize(width+(2*offset), height+(2*offset));

	outputImage.setSize(width+(2*offset), height+(2*offset));

	float variance = 2;
	float radius = 2;

	for(int y=0; y < height; ++y){
		for(int x=0; x < width; ++x){
			int xOffset = x + offset;
			int yOffset = y + offset;

			interImage.pixel(xOffset, yOffset).r = this->pixel(x,y).r;
			interImage.pixel(xOffset, yOffset).g = this->pixel(x,y).g;
			interImage.pixel(xOffset, yOffset).b = this->pixel(x,y).b;
		}
	}

	for(int y=-1*offset; y < height + offset; ++y){
		for(int x=-1*offset; x < width + offset; ++x){
			int xOffset = x + offset;
			int yOffset = y + offset;

			float u = cos(rad)*(x - midWidth) - sin(rad)*(y - midHeight) + offset + midWidth;
			float v = sin(rad)*(x - midWidth) + cos(rad)*(y - midHeight) + offset + midHeight;


			Pixel32 pix = interImage.GaussianSample(u,v, variance, radius);


			outputImage.pixel(xOffset,yOffset).r = pix.r;
			outputImage.pixel(xOffset,yOffset).g = pix.g;
			outputImage.pixel(xOffset,yOffset).b = pix.b;
			outputImage.pixel(xOffset,yOffset).a = pix.a;

			// useful for debugging
			// outputImage.pixel(xOffset,yOffset).r = interImage.pixel(xOffset, yOffset).r;
			// outputImage.pixel(xOffset,yOffset).g = interImage.pixel(xOffset, yOffset).g;
			// outputImage.pixel(xOffset,yOffset).b = interImage.pixel(xOffset, yOffset).b;
		}
	}

	return 1;
}
Beispiel #2
0
/** This function reads the current frame buffer and sets the pixels of the image accordingly. */
int RayWindow::TakeSnapshot(Image32& img){
	GLfloat *pixels;
	int i,j,temp;
	Pixel p;
	GLint vp[4];
	glGetIntegerv(GL_VIEWPORT,vp);

	if(!img.setSize(vp[2],vp[3])){return 0;}
	pixels=new GLfloat[vp[2]*vp[3]*3];
	if(!pixels){return 0;}
	glReadBuffer(GL_FRONT);
	glReadPixels(vp[0],vp[1],vp[2],vp[3],GL_RGB,GL_FLOAT,pixels);

	for(i=0;i<vp[3];i++){
		for(j=0;j<vp[2];j++){
			temp=0+j*3+(vp[3]-i-1)*(vp[2])*3;
			p.r=255*pixels[temp];
			temp=1+j*3+(vp[3]-i-1)*(vp[2])*3;
			p.g=255*pixels[temp];
			temp=2+j*3+(vp[3]-i-1)*(vp[2])*3;
			p.b=255*pixels[temp];
			img(j,i)=p;
		}
	}
	delete[] pixels;
	return 1;
}
Beispiel #3
0
int Image32::Warp(const OrientedLineSegmentPairs& olsp,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width,height);

	int numOfLineSegments = olsp.count;

	float dSumX, dSumY, weight, weightSum;
	cout << "warp" << "\n";
	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			for(int i=0; i<numOfLineSegments; ++i){
				dSumX = 0, dSumY = 0, weightSum = 0;
				weight = olsp.segments2[i].getWeight(x,y);
				weightSum += weight;

				float sourceX, sourceY;

				olsp.segments1[i].GetSourcePosition(olsp.segments1[i], olsp.segments2[i], x, y, sourceX, sourceY);

				dSumX += (sourceX - x) * weight;
				dSumY += (sourceY - y) * weight;
			}
			
			 
			outputImage.pixel(x,y).r = this->pixel(x + (dSumX/weightSum), y + (dSumY/weightSum)).r;
			outputImage.pixel(x,y).g = this->pixel(x + (dSumX/weightSum), y + (dSumY/weightSum)).g;
			outputImage.pixel(x,y).b = this->pixel(x + (dSumX/weightSum), y + (dSumY/weightSum)).b;
		}
	}
	return 1;
}
Beispiel #4
0
int Image32::Brighten(const float& brightness,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width, height);

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int r = this->pixel(x,y).r;
			int g = this->pixel(x,y).g;
			int b = this->pixel(x,y).b;
			int rBright = int(r * brightness);
			int gBright = int(g * brightness);
			int bBright = int(b * brightness);
			if(rBright <= 255 && gBright <= 255 && bBright <= 255 ){
				outputImage.pixel(x,y).r = rBright;
				outputImage.pixel(x,y).g = gBright;
				outputImage.pixel(x,y).b = bBright;
				outputImage.pixel(x,y).a = this->pixel(x,y).a;
			}
			else{
				// must clamp if any r,g,b values are over 255
				int maxBrightness = 255 / max(r,max(g,b));
				outputImage.pixel(x,y).r = int(r * maxBrightness);
				outputImage.pixel(x,y).g = int(g * maxBrightness);
				outputImage.pixel(x,y).b = int(b * maxBrightness);
				outputImage.pixel(x,y).a = this->pixel(x,y).a;
			}
		}
	}
	return 1;
}
Beispiel #5
0
int Image32::Quantize(const int& bits,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width, height);

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int r = this->pixel(x,y).r;
			int g = this->pixel(x,y).g;
			int b = this->pixel(x,y).b;

			int multiple = int(pow(2,8-bits)); 

			int quanR = r + multiple/2;
			quanR = min(255, quanR - (quanR % multiple)); // clamped to 255

			int quanG = g + multiple/2;
			quanG = min(255, quanG - (quanG % multiple)); // clamped to 255

			int quanB = b + multiple/2;
			quanB = min(255, quanB - (quanB % multiple)); // clamped to 255
			
			outputImage.pixel(x,y).r = quanR;
			outputImage.pixel(x,y).g = quanG;
			outputImage.pixel(x,y).b = quanB;
			outputImage.pixel(x,y).a = this->pixel(x,y).a;
		}
	}
	return 1;
}
Beispiel #6
0
int Image32::OrderedDither2X2(const int& bits,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	int i;
	int j;
	float D[2][2];
	D[0][0] = 1.0;
	D[0][1] = 3.0;
	D[1][0] = 4.0;
	D[1][1] = 2.0;

	Image32 interImage;
	interImage.setSize(width,height);

	float scaler255 = (255.0/pow(2,bits-1));

	this->Quantize(bits,interImage);


	for(int y=0; y<height; ++y){
		for (int x = 0; x<width; ++x){
			i = x % 2;
			j = y % 2;

			float r = float(this->pixel(x,y).r) / 255.0;
			float g = float(this->pixel(x,y).g) / 255.0;
			float b = float(this->pixel(x,y).b) / 255.0;

			float cR = r*pow(2,bits-1);
			float cG = g*pow(2,bits-1);
			float cB = b*pow(2,bits-1);

			float eR =  cR - floor(cR);
			float eG =  cG - floor(cG);
			float eB =  cB - floor(cB);

			if(eR > (D[i][j] / 8)) {outputImage.pixel(x,y).r = int(ceil(cR)*scaler255);}
			else{outputImage.pixel(x,y).r = int(floor(cR) * scaler255);}

			if(eG > (D[i][j] / 8)) {outputImage.pixel(x,y).g = int(ceil(cG)*scaler255);}
			else{outputImage.pixel(x,y).g = int(floor(cG) * scaler255);}

			if(eB > (D[i][j] / 8)) {outputImage.pixel(x,y).b = int(ceil(cB)*scaler255);}
			else{outputImage.pixel(x,y).b = int(floor(cB) * scaler255);}

			outputImage.pixel(x,y).a = this->pixel(x,y).a;
		}
	}
	return 1;
}
Beispiel #7
0
int Image32::Contrast(const float& contrast,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width, height);

	float totalLum = 0.0;
	int numPixels = 0;

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int r = this->pixel(x,y).r;
			int g = this->pixel(x,y).g;
			int b = this->pixel(x,y).b;
			float l = 0.30*r + 0.59*g + 0.11*b;
			totalLum += l;
			numPixels += 1;
		}
	}	
	float meanLum = totalLum / numPixels;

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int r = this->pixel(x,y).r;
			int g = this->pixel(x,y).g;
			int b = this->pixel(x,y).b;
			int a = this->pixel(x,y).a;

			float l = 0.30*r + 0.59*g + 0.11*b;
			float lDiff = l - meanLum;

			float maxContrast;
			if(lDiff >= 0){ 
				maxContrast = (255 - (max(r,max(g,b)) - lDiff)) / lDiff;
			}
			else{
				maxContrast = fabs(((min(r,min(g,b))) - lDiff) / lDiff); // lDiff is negative, so adding to minimum of r,g,b
			} 

			float contrastClamped = min(maxContrast,contrast);

			outputImage.pixel(x,y).r = contrastClamped*lDiff + (r-lDiff);
			outputImage.pixel(x,y).g = contrastClamped*lDiff + (g-lDiff);
			outputImage.pixel(x,y).b = contrastClamped*lDiff + (b-lDiff);
			outputImage.pixel(x,y).a = a;
		}
	}	
	return 1;
}
Beispiel #8
0
int Image32::ScaleBilinear(const float& scaleFactor,Image32& outputImage) const
{
	int widthSRC = this->width();
	int heightSRC = this->height();

	int widthDST = int(floor(widthSRC * scaleFactor + 0.5));
	int heightDST = int(floor(heightSRC * scaleFactor + 0.5));

	outputImage.setSize(widthDST, heightDST);

	for(int yDST=0; yDST<heightDST-(int)scaleFactor; ++yDST){
		for(int xDST=0; xDST<widthDST-(int)scaleFactor; ++xDST){
			outputImage.pixel(xDST, yDST) = this->BilinearSample(((float)xDST / scaleFactor),((float)yDST / scaleFactor));
		}
	}
	return 1;
}
Beispiel #9
0
int Image32::AddRandomNoise(const float& noise,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width, height);
	int noiseRange = (noise * 256) * 2;
	
	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int randNum;
			if(noiseRange != 0) randNum = (rand() % noiseRange) - (.5*noiseRange);
			else{ randNum = 0; }
			outputImage.pixel(x,y).r = max(0,min(255,randNum + this->pixel(x,y).r));
			outputImage.pixel(x,y).g = max(0,min(255,randNum + this->pixel(x,y).g));
			outputImage.pixel(x,y).b = max(0,min(255,randNum + this->pixel(x,y).b));
			outputImage.pixel(x,y).a = this->pixel(x,y).a;
		}	
	}
	return 1;	
}
Beispiel #10
0
int Image32::Crop(const int& x1,const int& y1,const int& x2,const int& y2,Image32& outputImage) const
{
	int width = (x2 - x1) + 1;
	int height = (y2 - y1) + 1;
	outputImage.setSize(width,height);
	int i = 0;
	int j = 0;

	for(int y=y1; y <= y2; ++y){
		i = 0;
		for(int x=x1; x <= x2; ++x){
			outputImage.pixel(i,j).r = this->pixel(x,y).r;
			outputImage.pixel(i,j).g = this->pixel(x,y).g;
			outputImage.pixel(i,j).b = this->pixel(x,y).b;
			outputImage.pixel(i,j).a = this->pixel(x,y).a;
			i += 1;
		}
		j += 1;
	}
	return 1;
}
Beispiel #11
0
int Image32::Composite(const Image32& overlay,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	int heightOverlay = overlay.height();
	int widthOverlay = overlay.width();

	outputImage.setSize(width, height);

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int alpha256 = overlay.pixel(x,y).a;
			float alpha = (float) alpha256 / 255.0;
			outputImage.pixel(x,y).r = alpha*(overlay.pixel(x,y).r) + (1.0-alpha)*(this->pixel(x,y).r);
			outputImage.pixel(x,y).g = alpha*(overlay.pixel(x,y).g) + (1.0-alpha)*(this->pixel(x,y).g);
			outputImage.pixel(x,y).b = alpha*(overlay.pixel(x,y).b) + (1.0-alpha)*(this->pixel(x,y).b);
			outputImage.pixel(x,y).a = 255;
		}
	}
	return 1;
}
Beispiel #12
0
int Image32::Saturate(const float& saturation,Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width, height);

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int r = this->pixel(x,y).r;
			int g = this->pixel(x,y).g;
			int b = this->pixel(x,y).b;

			float l = 0.30*r + 0.59*g + 0.11*b;

			float rDiff = r-l;
			float gDiff = g-l;
			float bDiff = b-l;

			bool rOverflow = (r-rDiff) + rDiff*saturation > 255 || (r-rDiff) + rDiff*saturation < 0;
			bool gOverflow = (g-gDiff) + gDiff*saturation > 255 || (g-gDiff) + gDiff*saturation < 0;
			bool bOverflow = (b-bDiff) + bDiff*saturation > 255 || (b-bDiff) + bDiff*saturation < 0;

			float satClamped = saturation; // if no overflows, satClamped is saturation
			if(rOverflow){ // if r overflows, clamp sat to max so r doesn't overflow
				satClamped = min((r-rDiff), 255-(r-rDiff)) / rDiff;
			}
			if(gOverflow){ // if g overflows, clamp sat to max so g doesn't overflow (or satClamped if less)
				satClamped = min(min((g-gDiff), 255-(g-gDiff)) / gDiff, satClamped);
			}
			if(bOverflow){ // if b overflows, clamp sat to max so b doesn't overflow (or satClamped if less)
				satClamped = min(min((b-bDiff), 255-(b-bDiff)) / bDiff, satClamped);
			}
			outputImage.pixel(x,y).r = satClamped*rDiff + (r-rDiff);
			outputImage.pixel(x,y).g = satClamped*gDiff + (g-gDiff);
			outputImage.pixel(x,y).b = satClamped*bDiff + (b-bDiff);
			outputImage.pixel(x,y).a = this->pixel(x,y).a;
		}
	}	
	return 1;
}
Beispiel #13
0
int Image32::Luminance(Image32& outputImage) const
{
	int height = this->height();
	int width = this->width();
	outputImage.setSize(width, height);

	for(int y=0; y<height; ++y){
		for(int x=0; x<width; ++x){
			int r = this->pixel(x,y).r;
			int g = this->pixel(x,y).g;
			int b = this->pixel(x,y).b;

			int l = int(0.30*r + 0.59*g + 0.11*b);

			outputImage.pixel(x,y).r = l;
			outputImage.pixel(x,y).g = l;
			outputImage.pixel(x,y).b = l;
			outputImage.pixel(x,y).a = this->pixel(x,y).a;
		}
	}	
	return 1;
}
Beispiel #14
0
int Image32::ScaleGaussian(const float& scaleFactor,Image32& outputImage) const
{
	int widthSRC = this->width();
	int heightSRC = this->height();

	int widthDST = int(floor((float)widthSRC * scaleFactor)-ceil(scaleFactor));
	int heightDST = int(floor((float)heightSRC * scaleFactor)-ceil(scaleFactor));


	outputImage.setSize(widthDST, heightDST);

	
	float variance = 1.0 / scaleFactor;
	float r = 3.0;

	for(int yDST=0; yDST < heightDST; ++yDST){
		for(int xDST=0; xDST < widthDST; ++xDST){
			outputImage.pixel(xDST, yDST) = this->GaussianSample(((float)xDST / scaleFactor), ((float)yDST / scaleFactor), variance, r);
		}
	}
	return 1;
}
Beispiel #15
0
int RayScene::RayTrace(const int& width,const int& height,const int& rLimit,const double& cLimit,Image32& img){
	int i,j;
	Ray3D ray;
	Point3D c;
	Pixel32 p;
	int rayCount=0;

	if(!img.setSize(width,height)){return 0;}
	ray.position=camera->position;
	for(i=0;i<width;i++){
		printf("           \r");
		printf("%3.1f\r",(float)i/width*100);
		for(j=0;j<height;j++){
			ray=GetRay(camera,i,height-j-1,width,height);
			c=GetColor(ray,rLimit,Point3D(cLimit,cLimit,cLimit));
			p.r=(int)(c[0]*255);
			p.g=(int)(c[1]*255);
			p.b=(int)(c[2]*255);
			img(i,j)=p;
		}
	}
	return 1;
}