Beispiel #1
0
		/**
		*  @brief
		*    Constructor
		*
		*  @param[in]  cOldImageBuffer
		*    Old image buffer (MUST have valid data)
		*  @param[out] cImageBuffer
		*    Image buffer (MUST have valid data)
		*  @param[in]  nNewWidth
		*    New width
		*  @param[in]  nNewHeight
		*    New height
		*  @param[in]  nOldWidth
		*    Old height
		*  @param[in]  nOldHeight
		*    Old height
		*  @param[in]  mFilter
		*    Filter matrix
		*/
		ScaleDownData(const ImageBuffer &cOldImageBuffer, ImageBuffer &cImageBuffer, uint32 nNewWidth, uint32 nNewHeight, uint32 nOldWidth, uint32 nOldHeight, const Matrix3x3 &mFilter)
		{
			// [TODO] Resize images in linear space instead of gamma space! Maybe we should add image space information to a image so we now in which space the image data is stored? (linear, gamma...)

			// Scale factors
			const float fToOriginalWidthFactor  = static_cast<float>(nOldWidth) /nNewWidth;
			const float fToOriginalHeightFactor = static_cast<float>(nOldHeight)/nNewHeight;

			// Get the number of components
			const uint32 nNumOfComponents = cOldImageBuffer.GetComponentsPerPixel();

			// Loop through all components
				  DataType *pNewData = reinterpret_cast<DataType*>(cImageBuffer.GetData());
			const DataType *pOldData = reinterpret_cast<const DataType*>(cOldImageBuffer.GetData());
			for (uint32 nComponent=0; nComponent<nNumOfComponents; nComponent++) {
				// Loop through x
				for (uint32 nX=0; nX<nNewWidth; nX++) {
					// Loop through y
					for (uint32 nY=0; nY<nNewHeight; nY++) {
						// Get the original byte
						const uint32 nOriginalX = static_cast<uint32>(nX*fToOriginalWidthFactor);
						const uint32 nOriginalY = static_cast<uint32>(nY*fToOriginalHeightFactor);

						// Sum up
						double fSum      = 0.0f;
						double fTotalSum = 0.0f;
						for (uint32 nFilterX=0; nFilterX<3; nFilterX++) {
							for (uint32 nFilterY=0; nFilterY<3; nFilterY++) {
								// Get the current position on the original image
								const int nCurrentX = (nOriginalX-1) + nFilterX;
								const int nCurrentY = (nOriginalY-1) + nFilterY;

								// Is this current position inside the original image?
								if (nCurrentX >= 0 && nCurrentY >= 0 &&
									nCurrentX < static_cast<int>(nOldWidth) && nCurrentY < static_cast<int>(nOldHeight)) {
									// Jap, get the factor to use this component with
									const float fFactor = mFilter.fM33[nFilterX][nFilterY];

									// Now we've got one more component within our sum
									fTotalSum += fFactor;

									// Get the component value of the original image
									const DataType nOriginalByte = pOldData[(nCurrentY*nOldWidth + nCurrentX)*nNumOfComponents + nComponent];

									// Add component value of the original image with the given factor
									fSum += nOriginalByte*fFactor;
								}
							}
						}

						// Set new byte
						pNewData[(nY*nNewWidth + nX)*nNumOfComponents + nComponent] = DataType(fSum/fTotalSum);
					}
				}
			}
		}
Beispiel #2
0
//[-------------------------------------------------------]
//[ Global functions                                      ]
//[-------------------------------------------------------]
// [TODO] This is just an experimental half image scale function without any filter - better as nothing for now!
void ScaleDownHalfData(const ImageBuffer &cOldImageBuffer, ImageBuffer &cImageBuffer, uint32 nNewWidth, uint32 nNewHeight, uint32 nOldWidth, uint32 nOldHeight, const Matrix3x3 &mFilter)
{
	// Scale factors
	const float fToOriginalWidthFactor  = static_cast<float>(nOldWidth) /nNewWidth;
	const float fToOriginalHeightFactor = static_cast<float>(nOldHeight)/nNewHeight;

	// Get the number of components
	const uint32 nNumOfComponents = cOldImageBuffer.GetComponentsPerPixel();

	// Loop through all components
		  short *pNewData = reinterpret_cast<short*>(cImageBuffer.GetData());
	const short *pOldData = reinterpret_cast<const short*>(cOldImageBuffer.GetData());
	for (uint32 nComponent=0; nComponent<nNumOfComponents; nComponent++) {
		// Loop through x
		for (uint32 nX=0; nX<nNewWidth; nX++) {
			// Loop through y
			for (uint32 nY=0; nY<nNewHeight; nY++) {
				// Get the original byte
				const uint32 nOriginalX = static_cast<uint32>(nX*fToOriginalWidthFactor);
				const uint32 nOriginalY = static_cast<uint32>(nY*fToOriginalHeightFactor);

				// Get data
				short nOriginalByte = 0;
				{
					// Get the current position on the original image
					const int nCurrentX = (nOriginalX-1) + 1;
					const int nCurrentY = (nOriginalY-1) + 1;

					// Is this current position inside the original image?
					if (nCurrentX >= 0 && nCurrentY >= 0 &&
						nCurrentX < static_cast<int>(nOldWidth) && nCurrentY < static_cast<int>(nOldHeight)) {
						// Get the component value of the original image
						nOriginalByte = pOldData[(nCurrentY*nOldWidth + nCurrentX)*nNumOfComponents + nComponent];
					}
				}

				// Set new byte
				pNewData[(nY*nNewWidth + nX)*nNumOfComponents + nComponent] = nOriginalByte;
			}
		}
	}
}
Beispiel #3
0
//[-------------------------------------------------------]
//[ Private virtual PLScene::SceneNode functions          ]
//[-------------------------------------------------------]
void PGImage::InitFunction()
{
	// Call base implementation
	SNParticleGroup::InitFunction();

	// Load image
	Image cImage;
	if (cImage.LoadByFilename(ImageFilename.Get())) {
		// Get the image buffer
		ImageBuffer *pImageBuffer = cImage.GetBuffer();
		if (pImageBuffer) {
			const uint32  nWidth		   = pImageBuffer->GetSize().x;
			const uint32  nHeight		   = pImageBuffer->GetSize().y;
			const uint32  nPixels		   = nWidth*nHeight;
			const uint8  *pData			   = pImageBuffer->GetData();
			const uint32  nColorComponents = pImageBuffer->GetComponentsPerPixel();
			if (nColorComponents == 3 || nColorComponents == 4) {
				// Get total number of required particles
				uint32 nParticles = 0;
				for (uint32 i=0; i<nPixels; i++) {
					// Place particle at this image position?
					uint8 nDifR = static_cast<uint8>(Math::Abs(pData[0]-RedColorKey));
					uint8 nDifG = static_cast<uint8>(Math::Abs(pData[1]-GreenColorKey));
					uint8 nDifB = static_cast<uint8>(Math::Abs(pData[2]-BlueColorKey));
					if (!(nDifR <= ColorKeyTolerance && nDifG <= ColorKeyTolerance && nDifB <= ColorKeyTolerance))
						nParticles++; // A particle here, please
					pData += nColorComponents;
				}
				pData = pImageBuffer->GetData();

				// Create the particles
				InitParticles(nParticles);

				// Setup the particles
				for (int nY=nHeight-1; nY>=0; nY--) {
					for (uint32 nX=0; nX<nWidth; nX++) {
						// Place particle at this image position?
						uint8 nDifR = static_cast<uint8>(Math::Abs(pData[0]-RedColorKey));
						uint8 nDifG = static_cast<uint8>(Math::Abs(pData[1]-GreenColorKey));
						uint8 nDifB = static_cast<uint8>(Math::Abs(pData[2]-BlueColorKey));
						if (nDifR <= ColorKeyTolerance && nDifG <= ColorKeyTolerance && nDifB <= ColorKeyTolerance) {
							// No particle here, please
							pData += nColorComponents;
						} else {
							// Setup particle
							Particle *pParticle = AddParticle();
							if (pParticle) {
								pParticle->vColor.r = pData[0]/255.0f;
								pParticle->vColor.g = pData[1]/255.0f;
								pParticle->vColor.b = pData[2]/255.0f;
								pParticle->vColor.a = nColorComponents == 4 ? pData[3]/255.0f : 1.0f;
								pData += nColorComponents;
								pParticle->fEnergy  = 1.0f;
								pParticle->fCustom2 = 0.5f+Math::GetRandFloat()*2.0f;
								if (Math::GetRandFloat() > 0.5f)
									pParticle->fCustom2 = -pParticle->fCustom2;
								pParticle->fSize = (1.0f+(static_cast<float>(Math::GetRand() % 1000)/500))*ImageScale;
								pParticle->vPos.x = pParticle->vFixPos.x = pParticle->vDistortion.x = static_cast<float>(nX*ImageScale);
								pParticle->vPos.y = pParticle->vFixPos.y = pParticle->vDistortion.y = static_cast<float>(nY*ImageScale);
								pParticle->vPos.z = pParticle->vFixPos.z = pParticle->vDistortion.z = 0.0f;
								pParticle->fCustom1 = pParticle->fSize;
								pParticle->fCustom2 *= 2;
							} else {
								// Error!
								nY = nHeight;
								nX = nWidth;
							}
						}
					}
				}
			}
		}
	}
}
Beispiel #4
0
bool ImageLoaderJPG::SaveParams(const Image &cImage, File &cFile, uint32 nQuality)
{
    // Get the image buffer
    ImageBuffer *pImageBuffer = cImage.GetBuffer();
    if (pImageBuffer && pImageBuffer->GetBytesPerRow()) {
        // We only support 1 or 3 byte per pixel component
        if (pImageBuffer->GetBytesPerPixelComponent() == 1 || pImageBuffer->GetBytesPerPixelComponent() == 3) {
            jpeg_compress_struct sInfo;
            jpeg_error_mgr sError;

            sInfo.err = jpeg_std_error(&sError);
            sInfo.err->error_exit = ExitErrorHandle;
            jpeg_create_compress(&sInfo);

            const int nComponents = pImageBuffer->GetComponentsPerPixel();

            sInfo.in_color_space = (nComponents == 1)? JCS_GRAYSCALE : JCS_RGB;
            jpeg_set_defaults(&sInfo);

            sInfo.input_components	= nComponents;
            sInfo.num_components	= (nComponents == 1) ? 1 : 3;
            sInfo.image_width		= pImageBuffer->GetSize().x;
            sInfo.image_height		= pImageBuffer->GetSize().y;
            sInfo.data_precision	= 8;
            sInfo.input_gamma		= 1.0;

            // Set the user given parameter
            jpeg_set_quality(&sInfo, nQuality, FALSE);

            jpeg_write_init(&sInfo, &cFile);
            jpeg_start_compress(&sInfo, TRUE);

            // Is the input image RGBA? If so, we really need to throw away the alpha channel...
            if (nComponents == 4) {
                // Allocate memory for an converted output row
                uint8 *pOutputRow = new uint8[sInfo.image_width*sInfo.num_components];

                // Write the data
                const uint8 *pCurrentImageData = pImageBuffer->GetData();
                for (uint32 y=0; y<sInfo.image_height; y++) {
                    // Convert the current row
                    for (uint32 x=0; x<sInfo.image_width; x++) {
                        const uint8 *pnPixelIn = &pCurrentImageData[x*4];
                        uint8 *pnPixelOut = &pOutputRow[x*3];
                        pnPixelOut[0] = pnPixelIn[0];
                        pnPixelOut[1] = pnPixelIn[1];
                        pnPixelOut[2] = pnPixelIn[2];
                    }

                    // Write out the current row
                    jpeg_write_scanlines(&sInfo, &pOutputRow, 1);

                    // Next, please
                    pCurrentImageData += pImageBuffer->GetBytesPerRow();
                }

                // Free the allocated output row memory
                delete [] pOutputRow;
            } else {
                // Write the data
                uint8 *pCurrentImageData = pImageBuffer->GetData();
                for (uint32 y=0; y<sInfo.image_height; y++) {
                    jpeg_write_scanlines(&sInfo, &pCurrentImageData, 1);
                    pCurrentImageData += pImageBuffer->GetBytesPerRow();
                }
            }

            // Cleanup
            jpeg_finish_compress(&sInfo);
            jpeg_destroy_compress(&sInfo);

            // Done
            return true;
        } else {
            // Error: Unsupported number of bytes per pixel component
        }
    } else {
        // Error: Failed to get image buffer
    }

    // Error!
    return false;
}