Beispiel #1
0
double KinematicsLatLon::closestDistOnTurn(const LatLonAlt& s0, const Velocity& v0, double R, int dir, const LatLonAlt& x, double maxDist) {
	LatLonAlt cent = center(s0, v0.trk(), R, dir);
	if (x.mkAlt(0).almostEquals(cent.mkAlt(0))) return -1.0;
	double ang1 = GreatCircle::initial_course(cent,s0);
	double ang2 = GreatCircle::initial_course(cent,x);
	double delta = Util::turnDelta(ang1, ang2, dir);
	double t = GreatCircle::small_circle_arc_length(R, delta);
	if (maxDist > 0 && (t < 0 || t > maxDist)) {
		double maxD = 2*M_PI*R;
		if (t > (maxD + maxDist) / 2) {
			return 0.0;
		} else {
			return maxDist;
		}
	}
	return t;
}
Beispiel #2
0
std::pair<LatLonAlt,Velocity> KinematicsLatLon::vsAccel(const LatLonAlt& so, const Velocity& vo,  double t, double a) {
	double dist = vo.gs()*t;
	double currentTrk = vo.trk();
	LatLonAlt sn = GreatCircle::linear_initial(so, currentTrk, dist);
	double nsz = so.alt() + vo.z*t + 0.5*a*t*t;
	sn = sn.mkAlt(nsz);
	Velocity  vn = vo.mkVs(vo.z + a*t);
	return std::pair<LatLonAlt,Velocity>(sn,vn);
}
Beispiel #3
0
double KinematicsLatLon::closestTimeOnTurn(const LatLonAlt& s0, const Velocity& v0, double omega, const LatLonAlt& x, double endTime) {
	LatLonAlt cent = center(s0,v0,omega);
	if (x.mkAlt(0).almostEquals(cent.mkAlt(0))) return -1.0;
	double ang1 = GreatCircle::initial_course(cent,s0);
	double ang2 = GreatCircle::initial_course(cent,x);
	double delta = Util::turnDelta(ang1, ang2, Util::sign(omega));
	double t = std::abs(delta/omega);
	if (endTime > 0 && (t < 0 || t > endTime)) {
		double maxTime = 2*M_PI/std::abs(omega);
		if (t > (maxTime + endTime) / 2) {
			return 0.0;
		} else {
			return endTime;
		}
	}
	return t;

}
Beispiel #4
0
std::pair<LatLonAlt,Velocity> KinematicsLatLon::gsAccel(const LatLonAlt& so, const Velocity& vo,  double t, double a) {
	double dist = vo.gs()*t + 0.5*a*t*t;
	double currentTrk = vo.trk();
	LatLonAlt sn = GreatCircle::linear_initial(so, currentTrk, dist);
	sn = sn.mkAlt(so.alt() + vo.z*t);
	double vnGs = vo.gs() + a*t;
	Velocity vn = vo.mkGs(vnGs);
	//fpln(" $$$$$ gsAccel: sn = "+sn+" vn = "+vn);
	return std::pair<LatLonAlt,Velocity>(sn,vn);
}
Beispiel #5
0
std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnByDist2D(const LatLonAlt& so, const LatLonAlt& center, int dir, double d, double gsAtd) {
    double R = GreatCircle::distance(so, center);
	double alpha = dir*d/R;
	double vFinalTrk = GreatCircle::initial_course(center,so);
	double nTrk = vFinalTrk + alpha;
	LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, R);
	sn = sn.mkAlt(0.0);
	double final_course = GreatCircle::final_course(center,sn);
	double finalTrk = final_course + dir*M_PI/2;
    Velocity vn = Velocity::mkTrkGsVs(finalTrk,gsAtd,0.0);
	//double finalTrk = vo.trk()+alpha;
	//double finalTrk = final_course + Util.sign(d)*Math.PI/2;
	//Velocity vn = vo.mkTrk(finalTrk);          // TODO:  THIS IS WRONG -- cannot assume gs is constant!!!!
	return std::pair<LatLonAlt,Velocity>(sn,vn);
}
Beispiel #6
0
std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnOmega(const LatLonAlt& so, const Velocity& vo, double t, double omega) {
	double currentTrk = vo.trk();
	double perpTrk;
	if (omega > 0) perpTrk = currentTrk+M_PI/2;
	else perpTrk = currentTrk-M_PI/2;
	double radius = Kinematics::turnRadiusByRate(vo.gs(), omega);
	LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);
	double alpha = omega*t;
	double vFinalTrk = GreatCircle::initial_course(center,so);
	double nTrk = vFinalTrk + alpha;
	LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius);
	sn = sn.mkAlt(so.alt() + vo.z*t);
	//double finalTrk = currentTrk+theta;
	double final_course = GreatCircle::final_course(center,sn);   // TODO: THIS IS PROBABLY BETTER
	double finalTrk = final_course + Util::sign(omega)*M_PI/2;
	Velocity vn = vo.mkTrk(finalTrk);
	return std::pair<LatLonAlt,Velocity>(sn,vn);
}
Beispiel #7
0
  std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnByDist(const LatLonAlt& so, const Velocity& vo, double signedRadius, double d) {
		double currentTrk = vo.trk();
		double perpTrk;
		if (signedRadius > 0) perpTrk = currentTrk+M_PI/2;
		else perpTrk = currentTrk-M_PI/2;
		double radius = std::abs(signedRadius);
		LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);
		double alpha = d/signedRadius;
		double vFinalTrk = GreatCircle::initial_course(center,so);
		double nTrk = vFinalTrk + alpha;
		LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius);
		double t = d/vo.gs();
		sn = sn.mkAlt(so.alt() + vo.z*t);	
		double final_course = GreatCircle::final_course(center,sn);
		//double finalTrk = currentTrk+alpha;
		double finalTrk = final_course + Util::sign(d)*M_PI/2;
		Velocity vn = vo.mkTrk(finalTrk);  
		return std::pair<LatLonAlt,Velocity>(sn,vn);
	}
Beispiel #8
0
 std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnRadius(const LatLonAlt& so, const Velocity& vo, double t, double signedRadius) {
   double currentTrk = vo.trk();
   double dir = Util::sign(signedRadius);
   double perpTrk = currentTrk+dir*M_PI/2;
   double radius = std::abs(signedRadius);
   LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);		
   double pathDist = vo.gs()*t;	
   double theta = pathDist/radius;
   //TODO: theta = pathDist/radius, assumes radius is a chord radius, when it is actually a great circle radius.
   //      for small distances the difference is not that big, but still...
   //Note: The other problem is that this assumes a constant speed and constant ground speed through the turn.
   //      this may or may not be true.
   double vFinalTrk = GreatCircle::initial_course(center,so);
   double nTrk = vFinalTrk + dir*theta;
   LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius);
   sn = sn.mkAlt(so.alt() + vo.z*t);
   double final_course = GreatCircle::final_course(center,sn);   
   double finalTrk = final_course + dir*M_PI/2;				
   Velocity vn = vo.mkTrk(finalTrk);  
   return std::pair<LatLonAlt,Velocity>(sn,vn);
 }