Beispiel #1
0
void Homology::storeCells(CellComplex* cellComplex, int dim)
{
  std::vector<MElement*> elements;
  MElementFactory factory;

  for(CellComplex::citer cit = cellComplex->firstCell(dim);
      cit != cellComplex->lastCell(dim); cit++){
    Cell* cell = *cit;
    std::map<Cell*, int, Less_Cell > cells;
    cell->getCells(cells);
    for(Cell::citer it = cells.begin(); it != cells.end(); it++){
      Cell* subCell = it->first;
      std::vector<MVertex*> v;
      subCell->getMeshVertices(v);

      MElement* e = factory.create(subCell->getTypeMSH(), v);
      elements.push_back(e);
    }
  }

  int max[4];
  for(int i = 0; i < 4; i++) max[i] = _model->getMaxElementaryNumber(i);
  int entityNum = *std::max_element(max,max+4) + 1;
  for(int i = 0; i < 4; i++) max[i] = _model->getMaxPhysicalNumber(i);
  int physicalNum = *std::max_element(max,max+4) + 1;

  std::map<int, std::vector<MElement*> > entityMap;
  entityMap[entityNum] = elements;
  std::map<int, std::map<int, std::string> > physicalMap;
  std::map<int, std::string> physicalInfo;
  physicalInfo[physicalNum]="Cell Complex";
  physicalMap[entityNum] = physicalInfo;

  _model->storeChain(dim, entityMap, physicalMap);
  _model->setPhysicalName("Cell Complex", dim, physicalNum);
}
Beispiel #2
0
int GModel::readDIFF(const std::string &name)
{
  FILE *fp = Fopen(name.c_str(), "r");
  if(!fp){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  char str[256] = "XXX";
  std::map<int, std::vector<MElement*> > elements[10];
  std::map<int, std::map<int, std::string> > physicals[4];
  std::map<int, MVertex*> vertexMap;
  std::vector<MVertex*> vertexVector;

  {
    while(strstr(str, "Number of space dim. =") == NULL){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }

    int dim;
    if(sscanf(str, "%*s %*s %*s %*s %*s %d", &dim) != 1){ fclose(fp); return 0; }
    Msg::Info("dimension %d", dim);

    int numElements;
    if(!fgets(str, sizeof(str), fp) || feof(fp)){ fclose(fp); return 0; }
    while(strstr(str, "Number of elements   =") == NULL){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }
    if(sscanf(str, "%*s %*s %*s %*s %d", &numElements) != 1){ fclose(fp); return 0; }
    Msg::Info("%d elements", numElements);

    int numVertices;
    if(!fgets(str, sizeof(str), fp) || feof(fp)){ fclose(fp); return 0; }
    while(strstr(str, "Number of nodes      =") == NULL){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }
    if(sscanf(str, "%*s %*s %*s %*s %d", &numVertices) != 1){ fclose(fp); return 0; }
    Msg::Info("%d vertices", numVertices);

    int numVerticesPerElement;
    if(!fgets(str, sizeof(str), fp) || feof(fp)){ fclose(fp); return 0; }
    while(strstr(str, "Max number of nodes in an element:")==NULL){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }
    if(sscanf(str, "%*s %*s %*s %*s %*s %*s %*s %d", &numVerticesPerElement) != 1){
      fclose(fp);
      return 0;
    }
    Msg::Info("numVerticesPerElement %d", numVerticesPerElement);

    bool several_subdomains;
    if(!fgets(str, sizeof(str), fp) || feof(fp)){ fclose(fp); return 0; }
    if(!strncmp(&str[2], "Only one material", 17) ||
       !strncmp(&str[2], "Only one subdomain", 18)){
      if(!strncmp(&str[37], "dpTRUE", 6) || !strncmp(&str[37], "true", 4) ||
         !strncmp(&str[36], "dpTRUE", 6) || !strncmp(&str[36], "true", 4)){
        several_subdomains = false;
      }
      else{
        several_subdomains = true;
      }
      Msg::Info("several_subdomains %x %s", several_subdomains, str);
    }

    int nbi;
    std::vector<int> bi;
    if(!fgets(str, sizeof(str), fp) || feof(fp)){ fclose(fp); return 0; }
    while(strstr(str, "Boundary indicators:") == NULL &&
          strstr(str, "boundary indicators:") == NULL){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }
    if(sscanf(str, "%d %*s %*s", &nbi) != 1){ fclose(fp); return 0; }
    Msg::Info("nbi %d", nbi);
    if(nbi != 0)
      bi.resize(nbi);
    std::string format_read_bi = "%*d %*s %*s";
    for(int i = 0; i < nbi; i++){
      if(format_read_bi[format_read_bi.size()-1] == 'd') {
        format_read_bi[format_read_bi.size()-1] = '*';
        format_read_bi += "d %d";
      }
      else
        format_read_bi += " %d";
      if(sscanf(str, format_read_bi.c_str(), &bi[i]) != 1){ fclose(fp); return 0; }
      Msg::Info("bi[%d]=%d", i, bi[i]);
    }

    while(str[0] != '#'){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }
    vertexVector.clear();
    vertexMap.clear();
    int minVertex = numVertices + 1, maxVertex = -1;
    int num = 0;
    std::vector<std::vector<int> > elementary(numVertices);

    Msg::ResetProgressMeter();
    for(int i = 0; i < numVertices; i++){
      if(!fgets(str, sizeof(str), fp)){ fclose(fp); return 0; }
      double xyz[3];
      int tmp;
      if(sscanf(str, "%d ( %lf , %lf , %lf ) [%d]", &num,
                &xyz[0], &xyz[1], &xyz[2], &tmp) != 5){ fclose(fp); return 0; }
      elementary[i].resize(tmp + 1);
      elementary[i][0] = tmp;
      minVertex = std::min(minVertex, num);
      maxVertex = std::max(maxVertex, num);
      if(vertexMap.count(num))
        Msg::Warning("Skipping duplicate vertex %d", num);
      else
        vertexMap[num] = new MVertex(xyz[0], xyz[1], xyz[2], 0, num);
      if(numVertices > 100000)
        Msg::ProgressMeter(i + 1, numVertices, true, "Reading nodes");
      // If the vertex numbering is dense, tranfer the map into a
      // vector to speed up element creation
      if((int)vertexMap.size() == numVertices &&
         ((minVertex == 1 && maxVertex == numVertices) ||
          (minVertex == 0 && maxVertex == numVertices - 1))){
        Msg::Info("Vertex numbering is dense");
        vertexVector.resize(vertexMap.size() + 1);
        if(minVertex == 1)
          vertexVector[0] = 0;
        else
          vertexVector[numVertices] = 0;
        std::map<int, MVertex*>::const_iterator it = vertexMap.begin();
        for(; it != vertexMap.end(); ++it)
          vertexVector[it->first] = it->second;
        vertexMap.clear();
      }
      Msg::Info("%d ( %lf , %lf , %lf ) [%d]",i, xyz[0], xyz[1], xyz[2],
                elementary[i][0]);
      std::string format_read_bi = "%*d ( %*lf , %*lf , %*lf ) [%*d]";
      for(int j = 0; j < elementary[i][0]; j++){
        if(format_read_bi[format_read_bi.size() - 1] == 'd') {
          format_read_bi[format_read_bi.size() - 1] = '*';
          format_read_bi += "d %d";
        }
        else
          format_read_bi += " %d";
        if(sscanf(str, format_read_bi.c_str(), &(elementary[i][j + 1])) != 1){
          fclose(fp);
          return 0;
        }
        Msg::Info("elementary[%d][%d]=%d", i + 1, j + 1, elementary[i][j + 1]);
      }
    }
    while(str[0] != '#'){
      if(!fgets(str, sizeof(str), fp) || feof(fp))
        break;
    }
    std::vector<int> material(numElements);
    std::vector<std::vector<int> > ElementsNodes(numElements);
    for(int i = 0; i < numElements; i++){
      ElementsNodes[i].resize(numVerticesPerElement);
    }
    char eleTypec[20]="";
    std::string eleType;
    Msg::ResetProgressMeter();
    std::vector<int> mapping;
    for(int i = 1; i <= numElements; i++){
      if(!fgets(str, sizeof(str), fp)){ fclose(fp); return 0; }
      int num = 0, type, physical = 0, partition = 0;
      int indices[60];
      if(sscanf(str, "%*d %s %d", eleTypec, &material[i-1]) != 2){ fclose(fp); return 0; }
      eleType = std::string(eleTypec);
      int k2; // local number for the element
      int NoVertices; // number of vertices per element
      if(eleType == "ElmT3n2D"){
        NoVertices = 3;
        static int map[3] = {0, 1, 2}; // identical to gmsh
        mapping=std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_TRI_3;
      }
      else if(eleType == "ElmT6n2D"){
        NoVertices = 6;
        static int map[6] = {0, 1, 2, 3, 4, 5}; // identical to gmsh
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_TRI_6;
      }
      else if(eleType == "ElmB4n2D"){
        NoVertices = 4;
        static int map[4] = {0, 1, 3, 2}; // local numbering
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_QUA_4;
      }
      else if(eleType == "ElmB8n2D"){
        NoVertices = 8;
        static int map[8] = {0, 1, 3, 2, 4, 6, 7, 5}; // local numbering
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_QUA_8;
      }
      else if(eleType == "ElmB9n2D"){
        NoVertices = 9;
        static int map[9] = {0, 4, 1, 7, 8, 5, 3, 6, 2}; // local numbering
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_QUA_9;
      }
      else if(eleType == "ElmT4n3D"){
        NoVertices = 4;
        static int map[4] = {0, 1, 2, 3}; // identical to gmsh
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_TET_4;
      }
      else if(eleType == "ElmT10n3D"){
        NoVertices = 10;
        static int map[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; // local numbering
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_TET_10;
      }
      else if(eleType == "ElmB8n3D"){
        NoVertices = 8;
        static int map[8] = {4, 5, 0, 1, 7, 6, 3, 2};
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_HEX_8;
      }
      else if(eleType == "ElmB20n3D"){
        NoVertices = 20;
        static int map[20] = {4, 5, 0, 1, 7, 6, 3, 2, 16, 8, 19, 13, 15, 12,
                              14, 17, 18, 9, 11};
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_HEX_20;
      }
      else if(eleType == "ElmB27n3D"){
        NoVertices = 27;
        static int map[27] = {4, 16, 5, 10, 21, 12, 0, 8, 1, 17, 25, 18, 22,
                              26, 23, 9, 20, 11, 7, 19, 6, 15, 24, 14, 3, 13, 2};
        mapping = std::vector<int>(map, map + sizeof(map) / sizeof(int));
        type = MSH_HEX_27;
      }
      else{
        fclose(fp);
        return 0;
      }
      std::string format_read_vertices = "%*d %*s %*d";
      for(int k = 0; k < NoVertices; k++){
        if(format_read_vertices[format_read_vertices.size()-2] != '*') {
          format_read_vertices[format_read_vertices.size()-1] = '*';
          format_read_vertices += "d %d";
        }
        else
          format_read_vertices += " %d";
        k2 = mapping[k];
        if(sscanf(str, format_read_vertices.c_str(), &ElementsNodes[i-1][k2]) != 1){
          fclose(fp);
          return 0;
        }
      }
      mapping.clear();
      for(int j = 0; j < NoVertices; j++)
        indices[j] = ElementsNodes[i - 1][j];
      std::vector<MVertex*> vertices;
      if(vertexVector.size()){
        if(!getVertices(numVerticesPerElement, indices, vertexVector, vertices)){
          fclose(fp);
          return 0;
        }
      }
      else{
        if(!getVertices(numVerticesPerElement, indices, vertexMap, vertices)){
          fclose(fp);
          return 0;
        }
      }

      MElementFactory f;
      MElement *e = f.create(type, vertices, num, partition);
      if(!e){
        Msg::Error("Unknown type of element %d", type);
        fclose(fp);
        return 0;
      }
      int reg = elementary[i-1][1];
      switch(e->getType()){
      case TYPE_PNT : elements[0][reg].push_back(e); break;
      case TYPE_LIN : elements[1][reg].push_back(e); break;
      case TYPE_TRI : elements[2][reg].push_back(e); break;
      case TYPE_QUA : elements[3][reg].push_back(e); break;
      case TYPE_TET : elements[4][reg].push_back(e); break;
      case TYPE_HEX : elements[5][reg].push_back(e); break;
      case TYPE_PRI : elements[6][reg].push_back(e); break;
      case TYPE_PYR : elements[7][reg].push_back(e); break;
      default : Msg::Error("Wrong type of element"); fclose(fp); return 0;
      }
      int dim = e->getDim();
      if(physical && (!physicals[dim].count(reg) ||
                      !physicals[dim][reg].count(physical)))
        physicals[dim][reg][physical] = "unnamed";
      if(partition) getMeshPartitions().insert(partition);

      if(numElements > 100000)
        Msg::ProgressMeter(i + 1, numElements, true, "Reading elements");
    }
  }

  // store the elements in their associated elementary entity. If the
  // entity does not exist, create a new (discrete) one.
  for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
    _storeElementsInEntities(elements[i]);

  // associate the correct geometrical entity with each mesh vertex
  _associateEntityWithMeshVertices();

  // store the vertices in their associated geometrical entity
  if(vertexVector.size())
    _storeVerticesInEntities(vertexVector);
  else
    _storeVerticesInEntities(vertexMap);

  // store the physical tags
  for(int i = 0; i < 4; i++)
    _storePhysicalTagsInEntities(i, physicals[i]);

  fclose(fp);
  return 1;
}
Beispiel #3
0
int GModel::readMED(const std::string &name)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0) {
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  med_int v[3], vf[3];
  MEDversionDonner(&v[0], &v[1], &v[2]);
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);
  Msg::Info("Reading MED file V%d.%d.%d using MED library V%d.%d.%d",
            vf[0], vf[1], vf[2], v[0], v[1], v[2]);
  if(vf[0] < 2 || (vf[0] == 2 && vf[1] < 2)){
    Msg::Error("Cannot read MED file older than V2.2");
    return 0;
  }

  std::vector<std::string> meshNames;
  for(int i = 0; i < MEDnMaa(fid); i++){
    char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
    med_int spaceDim;
    med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
    med_int meshDim, nStep;
    char dtUnit[MED_SNAME_SIZE + 1];
    char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
    med_sorting_type sortingType;
    med_axis_type axisType;
    if(MEDmeshInfo(fid, i + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                   dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
    if(MEDmaaInfo(fid, i + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
      Msg::Error("Unable to read mesh information");
      return 0;
    }
    meshNames.push_back(meshName);
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  int ret = 1;
  for(unsigned int i = 0; i < meshNames.size(); i++){
    // we use the filename as a kind of "partition" indicator, allowing to
    // complete a model part by part (used e.g. in DDM, since MED does not store
    // a partition index)
    GModel *m = findByName(meshNames[i], name);
    if(!m) m = new GModel(meshNames[i]);
    ret = m->readMED(name, i);
    if(!ret) return 0;
  }
  return ret;
}

int GModel::readMED(const std::string &name, int meshIndex)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  int numMeshes = MEDnMaa(fid);
  if(meshIndex >= numMeshes){
    Msg::Info("Could not find mesh %d in MED file", meshIndex);
    return 0;
  }

  checkPointMaxNumbers();
  GModel::setCurrent(this); // make sure we increment max nums in this model

  // read mesh info
  char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
  med_int spaceDim, nStep = 1;
  med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
  med_int meshDim;
  char dtUnit[MED_SNAME_SIZE + 1];
  char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
  med_sorting_type sortingType;
  med_axis_type axisType;
  if(MEDmeshInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                 dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
  if(MEDmaaInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
    Msg::Error("Unable to read mesh information");
    return 0;
  }

  // FIXME: we should support multi-step MED3 meshes (probably by
  // storing each mesh as a separate model, with a naming convention
  // e.g. meshName_step%d). This way we could also handle multi-mesh
  // time sequences in MED3.
  if(nStep > 1)
    Msg::Warning("Discarding %d last meshes in multi-step MED mesh", nStep - 1);

  setName(meshName);
  setFileName(name);
  if(meshType == MED_NON_STRUCTURE){
    Msg::Info("Reading %d-D unstructured mesh <<%s>>", spaceDim, meshName);
  }
  else{
    Msg::Error("Reading structured MED meshes is not supported");
    return 0;
  }
  med_int vf[3];
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);

  // read nodes
#if (MED_MAJOR_NUM == 3)
  med_bool changeOfCoord, geoTransform;
  med_int numNodes = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                                    MED_NO_GEOTYPE, MED_COORDINATE, MED_NO_CMODE,
                                    &changeOfCoord, &geoTransform);
#else
  med_int numNodes = MEDnEntMaa(fid, meshName, MED_COOR, MED_NOEUD, MED_NONE,
                                MED_NOD);
#endif
  if(numNodes < 0){
    Msg::Error("Could not read number of MED nodes");
    return 0;
  }
  if(numNodes == 0){
    Msg::Error("No nodes in MED mesh");
    return 0;
  }
  std::vector<MVertex*> verts(numNodes);
  std::vector<med_float> coord(spaceDim * numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshNodeCoordinateRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_FULL_INTERLACE,
                             &coord[0]) < 0){
#else
  std::vector<char> coordName(spaceDim * MED_TAILLE_PNOM + 1);
  std::vector<char> coordUnit(spaceDim * MED_TAILLE_PNOM + 1);
  med_repere rep;
  if(MEDcoordLire(fid, meshName, spaceDim, &coord[0], MED_FULL_INTERLACE,
                  MED_ALL, 0, 0, &rep, &coordName[0], &coordUnit[0]) < 0){
#endif
    Msg::Error("Could not read MED node coordinates");
    return 0;
  }

  std::vector<med_int> nodeTags(numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                           MED_NO_GEOTYPE, &nodeTags[0]) < 0)
#else
  if(MEDnumLire(fid, meshName, &nodeTags[0], numNodes, MED_NOEUD, MED_NONE) < 0)
#endif
    nodeTags.clear();

  for(int i = 0; i < numNodes; i++)
    verts[i] = new MVertex(coord[spaceDim * i],
                           (spaceDim > 1) ? coord[spaceDim * i + 1] : 0.,
                           (spaceDim > 2) ? coord[spaceDim * i + 2] : 0.,
                           0, nodeTags.empty() ? 0 : nodeTags[i]);

  // read elements (loop over all possible MSH element types)
  for(int mshType = 0; mshType < MSH_NUM_TYPE; mshType++){
    med_geometrie_element type = msh2medElementType(mshType);
    if(type == MED_NONE) continue;
#if (MED_MAJOR_NUM == 3)
    med_bool changeOfCoord;
    med_bool geoTransform;
    med_int numEle = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_CONNECTIVITY, MED_NODAL, &changeOfCoord,
                                    &geoTransform);
#else
    med_int numEle = MEDnEntMaa(fid, meshName, MED_CONN, MED_MAILLE, type, MED_NOD);
#endif
    if(numEle <= 0) continue;
    int numNodPerEle = type % 100;
    std::vector<med_int> conn(numEle * numNodPerEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshElementConnectivityRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_NODAL, MED_FULL_INTERLACE, &conn[0]) < 0){
#else
    if(MEDconnLire(fid, meshName, spaceDim, &conn[0], MED_FULL_INTERLACE, 0, MED_ALL,
                   MED_MAILLE, type, MED_NOD) < 0){
#endif
      Msg::Error("Could not read MED elements");
      return 0;
    }
    std::vector<med_int> fam(numEle, 0);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityFamilyNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                   type, &fam[0]) < 0){
#else
    if(MEDfamLire(fid, meshName, &fam[0], numEle, MED_MAILLE, type) < 0){
#endif
      Msg::Info("No family number for elements: using 0 as default family number");
    }
    std::vector<med_int> eleTags(numEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                             type, &eleTags[0]) < 0)
#else
    if(MEDnumLire(fid, meshName, &eleTags[0], numEle, MED_MAILLE, type) < 0)
#endif
      eleTags.clear();
    std::map<int, std::vector<MElement*> > elements;
    MElementFactory factory;
    for(int j = 0; j < numEle; j++){
      std::vector<MVertex*> v(numNodPerEle);
      for(int k = 0; k < numNodPerEle; k++)
        v[k] = verts[conn[numNodPerEle * j + med2mshNodeIndex(type, k)] - 1];
      MElement *e = factory.create(mshType, v, eleTags.empty() ? 0 : eleTags[j]);
      if(e) elements[-fam[j]].push_back(e);
    }
    _storeElementsInEntities(elements);
  }
  _associateEntityWithMeshVertices();
  _storeVerticesInEntities(verts);

  // read family info
  med_int numFamilies = MEDnFam(fid, meshName);
  if(numFamilies < 0){
    Msg::Error("Could not read MED families");
    return 0;
  }
  for(int i = 0; i < numFamilies; i++){
#if (MED_MAJOR_NUM == 3)
    med_int numAttrib = (vf[0] == 2) ? MEDnFamily23Attribute(fid, meshName, i + 1) : 0;
    med_int numGroups = MEDnFamilyGroup(fid, meshName, i + 1);
#else
    med_int numAttrib = MEDnAttribut(fid, meshName, i + 1);
    med_int numGroups = MEDnGroupe(fid, meshName, i + 1);
#endif
    if(numAttrib < 0 || numGroups < 0){
      Msg::Error("Could not read MED groups or attributes");
      return 0;
    }
    std::vector<med_int> attribId(numAttrib + 1);
    std::vector<med_int> attribVal(numAttrib + 1);
    std::vector<char> attribDes(MED_TAILLE_DESC * numAttrib + 1);
    std::vector<char> groupNames(MED_TAILLE_LNOM * numGroups + 1);
    char familyName[MED_TAILLE_NOM + 1];
    med_int familyNum;
#if (MED_MAJOR_NUM == 3)
    if(vf[0] == 2){ // MED2 file
      if(MEDfamily23Info(fid, meshName, i + 1, familyName, &attribId[0],
                         &attribVal[0], &attribDes[0], &familyNum,
                         &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED2 family %d", i + 1);
        continue;
      }
    }
    else{
      if(MEDfamilyInfo(fid, meshName, i + 1, familyName, &familyNum,
                       &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED3 family %d", i + 1);
        continue;
      }
    }
#else
    if(MEDfamInfo(fid, meshName, i + 1, familyName, &familyNum, &attribId[0],
                  &attribVal[0], &attribDes[0], &numAttrib, &groupNames[0],
                  &numGroups) < 0){
      Msg::Error("Could not read info for MED family %d", i + 1);
      continue;
    }
#endif
    // family tags are unique (for all dimensions)
    GEntity *ge;
    if((ge = getRegionByTag(-familyNum))){}
    else if((ge = getFaceByTag(-familyNum))){}
    else if((ge = getEdgeByTag(-familyNum))){}
    else ge = getVertexByTag(-familyNum);
    if(ge){
      elementaryNames[std::pair<int, int>(ge->dim(), -familyNum)] = familyName;
      if(numGroups > 0){
        for(int j = 0; j < numGroups; j++){
          char tmp[MED_TAILLE_LNOM + 1];
          strncpy(tmp, &groupNames[j * MED_TAILLE_LNOM], MED_TAILLE_LNOM);
          tmp[MED_TAILLE_LNOM] = '\0';
          // don't use same physical number across dimensions, as e.g. getdp
          // does not support this
          int pnum = setPhysicalName(tmp, ge->dim(), getMaxPhysicalNumber(-1) + 1);
          if(std::find(ge->physicals.begin(), ge->physicals.end(), pnum) ==
             ge->physicals.end())
            ge->physicals.push_back(pnum);
        }
      }
    }
  }

  // check if we need to read some post-processing data later
#if (MED_MAJOR_NUM == 3)
  bool postpro = (MEDnField(fid) > 0) ? true : false;
#else
  bool postpro = (MEDnChamp(fid, 0) > 0) ? true : false;
#endif

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return postpro ? 2 : 1;
}

template<class T>
static void fillElementsMED(med_int family, std::vector<T*> &elements,
                            std::vector<med_int> &conn, std::vector<med_int> &fam,
                            med_geometrie_element &type)
{
  if(elements.empty()) return;
  type = msh2medElementType(elements[0]->getTypeForMSH());
  if(type == MED_NONE){
    Msg::Warning("Unsupported element type in MED format");
    return;
  }
  for(unsigned int i = 0; i < elements.size(); i++){
    elements[i]->setVolumePositive();
    for(int j = 0; j < elements[i]->getNumVertices(); j++)
      conn.push_back(elements[i]->getVertex(med2mshNodeIndex(type, j))->getIndex());
    fam.push_back(family);
  }
}

static void writeElementsMED(med_idt &fid, char *meshName, std::vector<med_int> &conn,
                             std::vector<med_int> &fam, med_geometrie_element type)
{
  if(fam.empty()) return;
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshElementWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_CELL, type,
                      MED_NODAL, MED_FULL_INTERLACE, (med_int)fam.size(),
                      &conn[0], MED_FALSE, 0, MED_FALSE, 0, MED_TRUE, &fam[0]) < 0)
#else
  if(MEDelementsEcr(fid, meshName, (med_int)3, &conn[0], MED_FULL_INTERLACE,
                    0, MED_FAUX, 0, MED_FAUX, &fam[0], (med_int)fam.size(),
                    MED_MAILLE, type, MED_NOD) < 0)
#endif
    Msg::Error("Could not write MED elements");
}

int GModel::writeMED(const std::string &name, bool saveAll, double scalingFactor)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_CREATION);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  // write header
  if(MEDfichDesEcr(fid, (char*)"MED file generated by Gmsh") < 0){
    Msg::Error("Unable to write MED descriptor");
    return 0;
  }

  char *meshName = (char*)getName().c_str();

  // Gmsh always writes 3D unstructured meshes
#if (MED_MAJOR_NUM == 3)
  char dtUnit[MED_SNAME_SIZE + 1] = "";
  char axisName[3 * MED_SNAME_SIZE + 1] = "";
  char axisUnit[3 * MED_SNAME_SIZE + 1] = "";
  if(MEDmeshCr(fid, meshName, 3, 3, MED_UNSTRUCTURED_MESH, "Mesh created with Gmsh",
               dtUnit, MED_SORT_DTIT, MED_CARTESIAN, axisName, axisUnit) < 0){
#else
  if(MEDmaaCr(fid, meshName, 3, MED_NON_STRUCTURE,
              (char*)"Mesh created with Gmsh") < 0){
#endif
    Msg::Error("Could not create MED mesh");
    return 0;
  }

  // if there are no physicals we save all the elements
  if(noPhysicalGroups()) saveAll = true;

  // index the vertices we save in a continuous sequence (MED
  // connectivity is given in terms of vertex indices)
  indexMeshVertices(saveAll);

  // get a vector containing all the geometrical entities in the
  // model (the ordering of the entities must be the same as the one
  // used during the indexing of the vertices)
  std::vector<GEntity*> entities;
  getEntities(entities);

  std::map<GEntity*, int> families;
  // write the families
  {
    // always create a "0" family, with no groups or attributes
#if (MED_MAJOR_NUM == 3)
    if(MEDfamilyCr(fid, meshName, "F_0", 0, 0, "") < 0)
#else
    if(MEDfamCr(fid, meshName, (char*)"F_0", 0, 0, 0, 0, 0, 0, 0) < 0)
#endif
      Msg::Error("Could not create MED family 0");

    // create one family per elementary entity, with one group per
    // physical entity and no attributes
    for(unsigned int i = 0; i < entities.size(); i++){
      if(saveAll || entities[i]->physicals.size()){
        int num = - ((int)families.size() + 1);
        families[entities[i]] = num;
        std::ostringstream fs;
        fs << entities[i]->dim() << "D_" << entities[i]->tag();
        std::string familyName = "F_" + fs.str();
        std::string groupName;
        for(unsigned j = 0; j < entities[i]->physicals.size(); j++){
          std::string tmp = getPhysicalName
            (entities[i]->dim(), entities[i]->physicals[j]);
          if(tmp.empty()){ // create unique name
            std::ostringstream gs;
            gs << entities[i]->dim() << "D_" << entities[i]->physicals[j];
            groupName += "G_" + gs.str();
          }
          else
            groupName += tmp;
          groupName.resize((j + 1) * MED_TAILLE_LNOM, ' ');
        }
#if (MED_MAJOR_NUM == 3)
        if(MEDfamilyCr(fid, meshName, familyName.c_str(),
                       (med_int)num, (med_int)entities[i]->physicals.size(),
                       groupName.c_str()) < 0)
#else
        if(MEDfamCr(fid, meshName, (char*)familyName.c_str(),
                    (med_int)num, 0, 0, 0, 0, (char*)groupName.c_str(),
                    (med_int)entities[i]->physicals.size()) < 0)
#endif
          Msg::Error("Could not create MED family %d", num);
      }
    }
  }

  // write the nodes
  {
    std::vector<med_float> coord;
    std::vector<med_int> fam;
    for(unsigned int i = 0; i < entities.size(); i++){
      for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
        MVertex *v = entities[i]->mesh_vertices[j];
        if(v->getIndex() >= 0){
          coord.push_back(v->x() * scalingFactor);
          coord.push_back(v->y() * scalingFactor);
          coord.push_back(v->z() * scalingFactor);
          fam.push_back(0); // we never create node families
        }
      }
    }
    if(fam.empty()){
      Msg::Error("No nodes to write in MED mesh");
      return 0;
    }
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshNodeWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_FULL_INTERLACE,
                     (med_int)fam.size(), &coord[0], MED_FALSE, "", MED_FALSE, 0,
                     MED_TRUE, &fam[0]) < 0)
#else
    char coordName[3 * MED_TAILLE_PNOM + 1] =
      "x               y               z               ";
    char coordUnit[3 * MED_TAILLE_PNOM + 1] =
      "unknown         unknown         unknown         ";
    if(MEDnoeudsEcr(fid, meshName, (med_int)3, &coord[0], MED_FULL_INTERLACE,
                    MED_CART, coordName, coordUnit, 0, MED_FAUX, 0, MED_FAUX,
                    &fam[0], (med_int)fam.size()) < 0)
#endif
      Msg::Error("Could not write nodes");
  }

  // write the elements
  {
    { // points
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(viter it = firstVertex(); it != lastVertex(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->points, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // lines
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(eiter it = firstEdge(); it != lastEdge(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->lines, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // triangles
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->triangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // quads
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->quadrangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // tets
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->tetrahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // hexas
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->hexahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // prisms
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->prisms, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // pyramids
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->pyramids, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return 1;
}

#else

int GModel::readMED(const std::string &name)
{
  Msg::Error("Gmsh must be compiled with MED support to read '%s'",
             name.c_str());
  return 0;
}