Beispiel #1
0
void MQuaternion::setFromVectors(const MVector3 & source, const MVector3 & destination)
{
	MVector3 axis=source.crossProduct(destination);
	
	float angle = acosf(source.getNormalized().dotProduct(destination.getNormalized()));

	setFromAngleAxis((float)(angle*RAD_TO_DEG), axis);
}
Beispiel #2
0
bool isRayPlaneIntersection(const MVector3 & origin, const MVector3 & direction, const MVector3 & planePoint, const MVector3 & planeNormal, MVector3 * point)
{
	float constant = - planeNormal.dotProduct(planePoint);

	float normalDotDir = planeNormal.dotProduct(direction);
	float planeDistance = planeNormal.dotProduct(origin) + constant;

	float t = - planeDistance / normalDotDir;

	point->x = (origin.x + (t * direction.x));
	point->y = (origin.y + (t * direction.y));
	point->z = (origin.z + (t * direction.z));

	return true;
}
Beispiel #3
0
bool isPointInTriangle(const MVector3 & point, const MVector3 & a, const MVector3 & b, const MVector3 & c, const MVector3 & normal)
{
	MVector3 nrm = getTriangleNormal(point, a, b);

	if(nrm.dotProduct(normal) < 0)
		return false;

	nrm = getTriangleNormal(point, b, c);
	if(nrm.dotProduct(normal) < 0)
		return false;

	nrm = getTriangleNormal(point, c, a);
	if(nrm.dotProduct(normal) < 0)
		return false;

	return true;
}
Beispiel #4
0
bool isRaySphereIntersection(const MVector3 & origin, const MVector3 & direction, const MVector3 & sphereCenter, float sphereRadius, MVector3 * point)
{
	MVector3 vec = origin - sphereCenter;
	float b = direction.dotProduct(vec);
	float c = vec.getSquaredLength() - (sphereRadius * sphereRadius);
	float d = (b * b) - c;

	if(d < 0)
		return false;

	float distance = -b - sqrtf(d);

	point->x = (origin.x + (distance * direction.x));
	point->y = (origin.y + (distance * direction.y));
	point->z = (origin.z + (distance * direction.z));

	return true;
}
Beispiel #5
0
MVector3 computeTangent(
	const MVector3 & P1,  const MVector3 & P2,  const MVector3 & P3,
	const MVector2 & UV1, const MVector2 & UV2, const MVector2 & UV3)
{
	MVector3 Edge1 = P2 - P1;
	MVector3 Edge2 = P3 - P1;
	MVector2 Edge1uv = UV2 - UV1;
	MVector2 Edge2uv = UV3 - UV1;

	float cp = Edge1uv.y * Edge2uv.x - Edge1uv.x * Edge2uv.y;

	if(cp != 0.0f)
	{
		float mul = 1.0f / cp;
		MVector3 tangent = (Edge1 * -Edge2uv.y + Edge2 * Edge1uv.y) * mul;

		return tangent.getNormalized();
	}

	return MVector3(0.0f, 0.0f, 0.0f);
}
Beispiel #6
0
void MQuaternion::setFromAngleAxis(float angle, const MVector3 & axis)
{
	const MVector3 normAxis = axis.getNormalized();
	
	float sinHalfAngle = (float)sin((angle * DEG_TO_RAD) / 2.0);
	float cosHalfAngle = (float)cos((angle * DEG_TO_RAD) / 2.0);

	values[0] = sinHalfAngle * normAxis.x;
	values[1] = sinHalfAngle * normAxis.y;
	values[2] = sinHalfAngle * normAxis.z;
	values[3] = cosHalfAngle;

	normalize();
}
Beispiel #7
0
bool xmlMeshLoad(const char * filename, void * data)
{
    MLOG_DEBUG("xmlMeshLoad " << filename?filename:"NULL");
	
	MLevel * level = MEngine::getInstance()->getLevel();

	// read document
	TiXmlDocument doc(filename);
	if(! doc.LoadFile())
	{
	    MLOG_WARNING("TiXmlDocument load failed : " << doc.ErrorDesc() << " line " << doc.ErrorRow());
	    return false;
	}

	TiXmlHandle hDoc(&doc);
	TiXmlElement * pRootNode;
	TiXmlHandle hRoot(0);

	// Maratis
	pRootNode = hDoc.FirstChildElement().Element();
	if(! pRootNode)
	{
	    MLOG_WARNING("Cannot find any root node");
	    return false;
	}

	if(strcmp(pRootNode->Value(), "Maratis") != 0)
	{
	    MLOG_WARNING("Cannot find Maratis root node");
	    return false;
	}

	hRoot = TiXmlHandle(pRootNode);


	// Mesh
	TiXmlElement * pMeshNode = pRootNode->FirstChildElement("Mesh");
	if(! pMeshNode)
	{
	    MLOG_WARNING("Cannot find a Mesh node");
	    return false;
	}

	// create new mesh
	MMesh * mesh = (MMesh *)data;
	mesh->clear();

	char path[256];
	char meshRep[256];
	char vertShadPath[256];
	char fragShadPath[256];

	// mesh rep
	getRepertory(meshRep, filename);

	// animation
	if(! loadAnim(pMeshNode, meshRep, mesh))
	{
		// load external anim file (depracated)
		char animFilename[256];
		strcpy(animFilename, filename);
		strcpy(animFilename + strlen(animFilename) - 4, "anim");
		loadAnimFile(mesh, animFilename, meshRep);
	}

	// Textures
	TiXmlElement * texturesNode = pMeshNode->FirstChildElement("Textures");
	if(texturesNode)
	{
	    MLOG_DEBUG("entering Textures node");
		
		unsigned int numTextures = 0;
		texturesNode->QueryUIntAttribute("num", &numTextures);
		mesh->allocTextures(numTextures);

		// Texture
		TiXmlElement * textureNode = texturesNode->FirstChildElement("Texture");
		for(textureNode; textureNode; textureNode=textureNode->NextSiblingElement("Texture"))
		{
			const char * file = NULL;
			bool mipmap = true;

			// image
			TiXmlElement * imageNode = textureNode->FirstChildElement("image");
			if(imageNode)
			{
				int value = 1;
				file = imageNode->Attribute("filename");
				imageNode->QueryIntAttribute("mipmap", &value);
				mipmap = (value == 1);
			}

			if(! file)
			{
				mesh->addNewTexture(NULL);
				continue;
			}

			// load texture
			getGlobalFilename(path, meshRep, file);

			MTextureRef * texRef = level->loadTexture(path, mipmap);
			MTexture * texture = mesh->addNewTexture(texRef);

			// tile
			TiXmlElement * tileNode = textureNode->FirstChildElement("tile");
			if(tileNode)
			{
				const char * uTile = tileNode->Attribute("u");
				const char * vTile = tileNode->Attribute("v");
				if(uTile){
					if(strcmp(uTile, "clamp") == 0)
						texture->setUWrapMode(M_WRAP_CLAMP);
					else
						texture->setUWrapMode(M_WRAP_REPEAT);
				}
				if(vTile){
					if(strcmp(vTile, "clamp") == 0)
						texture->setVWrapMode(M_WRAP_CLAMP);
					else
						texture->setVWrapMode(M_WRAP_REPEAT);
				}
			}

			// translate
			TiXmlElement * translateNode = textureNode->FirstChildElement("translate");
			if(translateNode)
			{
				MVector2 translate = texture->getTexTranslate();
				translateNode->QueryFloatAttribute("x", &translate.x);
				translateNode->QueryFloatAttribute("y", &translate.y);
				texture->setTexTranslate(translate);
			}

			// scale
			TiXmlElement * scaleNode = textureNode->FirstChildElement("scale");
			if(scaleNode)
			{
				MVector2 scale = texture->getTexScale();
				scaleNode->QueryFloatAttribute("x", &scale.x);
				scaleNode->QueryFloatAttribute("y", &scale.y);
				texture->setTexScale(scale);
			}

			// rotate
			TiXmlElement * rotateNode = textureNode->FirstChildElement("rotate");
			if(rotateNode)
			{
				float angle = 0;
				rotateNode->QueryFloatAttribute("angle", &angle);
				texture->setTexRotate(angle);
			}
		}
	}


	// Materials
	TiXmlElement * materialsNode = pMeshNode->FirstChildElement("Materials");
	if(materialsNode)
	{
	    MLOG_DEBUG("entering Materials node");
		
		unsigned int numMaterials = 0;
		materialsNode->QueryUIntAttribute("num", &numMaterials);
		mesh->allocMaterials(numMaterials);

		// Material
		TiXmlElement * materialNode = materialsNode->FirstChildElement("Material");
		for(materialNode; materialNode; materialNode=materialNode->NextSiblingElement("Material"))
		{
			MMaterial * material = mesh->addNewMaterial();

			int type = 0;
			materialNode->QueryIntAttribute("type", &type);
			material->setType(type);

			float opacity=1, shininess=0, customValue=0;
			MVector3 diffuseColor;
			MVector3 specularColor;
			MVector3 emitColor;
			MVector3 customColor;

			// blend
			int blendType = 0;
			TiXmlElement * blendNode = materialNode->FirstChildElement("blend");
			if(blendNode)
				blendNode->QueryIntAttribute("type", &blendType);

			switch(blendType)
			{
			case 2:
				material->setBlendMode(M_BLENDING_ALPHA);
				break;
			case 3:
				material->setBlendMode(M_BLENDING_ADD);
				break;
			case 4:
				material->setBlendMode(M_BLENDING_PRODUCT);
				break;
			}

			// opacity
			TiXmlElement * opacityNode = materialNode->FirstChildElement("opacity");
			if(opacityNode)
				opacityNode->QueryFloatAttribute("value", &opacity);

			// shininess
			TiXmlElement * shininessNode = materialNode->FirstChildElement("shininess");
			if(shininessNode)
				shininessNode->QueryFloatAttribute("value", &shininess);

			// customValue
			TiXmlElement * customValueNode = materialNode->FirstChildElement("customValue");
			if(customValueNode)
				customValueNode->QueryFloatAttribute("value", &customValue);

			material->setOpacity(opacity);
			material->setShininess(shininess);
			material->setCustomValue(customValue);

			// diffuseColor
			TiXmlElement * diffuseColorNode = materialNode->FirstChildElement("diffuseColor");
			if(diffuseColorNode){
				diffuseColorNode->QueryFloatAttribute("r", &diffuseColor.x);
				diffuseColorNode->QueryFloatAttribute("g", &diffuseColor.y);
				diffuseColorNode->QueryFloatAttribute("b", &diffuseColor.z);
				material->setDiffuse(diffuseColor);
			}

			// specularColor
			TiXmlElement * specularColorNode = materialNode->FirstChildElement("specularColor");
			if(specularColorNode){
				specularColorNode->QueryFloatAttribute("r", &specularColor.x);
				specularColorNode->QueryFloatAttribute("g", &specularColor.y);
				specularColorNode->QueryFloatAttribute("b", &specularColor.z);
				material->setSpecular(specularColor);
			}

			// emitColor
			TiXmlElement * emitColorNode = materialNode->FirstChildElement("emitColor");
			if(emitColorNode){
				emitColorNode->QueryFloatAttribute("r", &emitColor.x);
				emitColorNode->QueryFloatAttribute("g", &emitColor.y);
				emitColorNode->QueryFloatAttribute("b", &emitColor.z);
				material->setEmit(emitColor);
			}

			// customColor
			TiXmlElement * customColorNode = materialNode->FirstChildElement("customColor");
			if(customColorNode){
				customColorNode->QueryFloatAttribute("r", &customColor.x);
				customColorNode->QueryFloatAttribute("g", &customColor.y);
				customColorNode->QueryFloatAttribute("b", &customColor.z);
				material->setCustomColor(customColor);
			}

			// TexturesPass
			TiXmlElement * texturesPassNode = materialNode->FirstChildElement("TexturesPass");
			if(texturesPassNode)
			{
				unsigned int numTexturesPass = 0;
				texturesPassNode->QueryUIntAttribute("num", &numTexturesPass);
				material->allocTexturesPass(numTexturesPass);

				// texturePass
				TiXmlElement * texturePassNode = texturesPassNode->FirstChildElement("texturePass");
				for(texturePassNode; texturePassNode; texturePassNode=texturePassNode->NextSiblingElement("texturePass"))
				{
					int textureId = -1;
					unsigned int mapChannel = 0;

					const char * mode = texturePassNode->Attribute("mode");
					texturePassNode->QueryIntAttribute("texture", &textureId);

					if(textureId < 0)
					{
						material->addTexturePass(NULL, M_TEX_COMBINE_MODULATE, 0);
						continue;
					}

					texturePassNode->QueryUIntAttribute("mapChannel", &mapChannel);

					// combine mode
					M_TEX_COMBINE_MODES texCombine = M_TEX_COMBINE_MODULATE;

					if(strcmp(mode, "modulate") == 0)
						texCombine = M_TEX_COMBINE_MODULATE;
					else if(strcmp(mode, "replace") == 0)
						texCombine = M_TEX_COMBINE_REPLACE;
					else if(strcmp(mode, "alpha") == 0)
						texCombine = M_TEX_COMBINE_ALPHA;
					else if(strcmp(mode, "dot") == 0)
						texCombine = M_TEX_COMBINE_DOT;
					else if(strcmp(mode, "add") == 0)
						texCombine = M_TEX_COMBINE_ADD;
					else if(strcmp(mode, "sub") == 0)
						texCombine = M_TEX_COMBINE_SUB;

					// add texture pass
					material->addTexturePass(mesh->getTexture(textureId), texCombine, mapChannel);
				}
			}

			// FX
			{
				// vertexShader
				const char * vertShadFile = NULL;
				TiXmlElement * vertexShaderNode = materialNode->FirstChildElement("vertexShader");
				if(vertexShaderNode){
					vertShadFile = vertexShaderNode->Attribute("file");
				}

				// fragmentShader
				const char * fragShadFile = NULL;
				TiXmlElement * fragmentShaderNode = materialNode->FirstChildElement("fragmentShader");
				if(fragmentShaderNode){
					fragShadFile = fragmentShaderNode->Attribute("file");
				}

				// create FX
				if(vertShadFile && fragShadFile)
				{
					getGlobalFilename(vertShadPath, meshRep, vertShadFile);
					getGlobalFilename(fragShadPath, meshRep, fragShadFile);

					MShaderRef * vertShad = level->loadShader(vertShadPath, M_SHADER_VERTEX);
					MShaderRef * pixShad = level->loadShader(fragShadPath, M_SHADER_PIXEL);
					if(vertShad && pixShad)
					{
						MFXRef * FXRef = level->createFX(vertShad, pixShad);
						material->setFXRef(FXRef);
					}
				}
			}

			// ZFX (optional optim)
			{
				// ZVertexShader
				const char * vertShadFile = NULL;
				TiXmlElement * vertexShaderNode = materialNode->FirstChildElement("ZVertexShader");
				if(vertexShaderNode){
					vertShadFile = vertexShaderNode->Attribute("file");
				}

				// ZFragmentShader
				const char * fragShadFile = NULL;
				TiXmlElement * fragmentShaderNode = materialNode->FirstChildElement("ZFragmentShader");
				if(fragmentShaderNode){
					fragShadFile = fragmentShaderNode->Attribute("file");
				}

				// create ZFX
				if(vertShadFile && fragShadFile)
				{
					getGlobalFilename(vertShadPath, meshRep, vertShadFile);
					getGlobalFilename(fragShadPath, meshRep, fragShadFile);

					MShaderRef * vertShad = level->loadShader(vertShadPath, M_SHADER_VERTEX);
					MShaderRef * pixShad = level->loadShader(fragShadPath, M_SHADER_PIXEL);
					if(vertShad && pixShad)
					{
						MFXRef * ZFXRef = level->createFX(vertShad, pixShad);
						material->setZFXRef(ZFXRef);
					}
				}
			}
		}
	}


	// Bones
	TiXmlElement * bonesNode = pMeshNode->FirstChildElement("Bones");
	if(bonesNode)
	{
	    MLOG_DEBUG("entering Bones node");
		
		MArmature * armature = mesh->createArmature();

		unsigned int b, numBones = 0;
		bonesNode->QueryUIntAttribute("num", &numBones);
		armature->allocBones(numBones);

		// add bones
		for(b=0; b<numBones; b++)
			armature->addNewBone();
		b = 0;

		// Bone
		TiXmlElement * boneNode = bonesNode->FirstChildElement("Bone");
		for(boneNode; boneNode; boneNode=boneNode->NextSiblingElement("Bone"))
		{
			if(b >= armature->getBonesNumber())
				break;

			MOBone * bone = armature->getBone(b);

			const char * name = boneNode->Attribute("name");
			if(name)
				bone->setName(name);

			// parent
			TiXmlElement * parentNode = boneNode->FirstChildElement("parent");
			if(parentNode){
				unsigned int boneId = 0;
				parentNode->QueryUIntAttribute("id", &boneId);
				bone->linkTo(armature->getBone(boneId));
			}

			// position
			TiXmlElement * positionNode = boneNode->FirstChildElement("position");
			if(positionNode){
				MVector3 position;
				positionNode->QueryFloatAttribute("x", &position.x);
				positionNode->QueryFloatAttribute("y", &position.y);
				positionNode->QueryFloatAttribute("z", &position.z);
				bone->setPosition(position);
			}

			// rotation
			TiXmlElement * rotationNode = boneNode->FirstChildElement("rotation");
			if(rotationNode){

				MVector3 euler;
				rotationNode->QueryFloatAttribute("x", &euler.x);
				rotationNode->QueryFloatAttribute("y", &euler.y);
				rotationNode->QueryFloatAttribute("z", &euler.z);
				bone->setEulerRotation(euler);
			}

			// scale
			TiXmlElement * scaleNode = boneNode->FirstChildElement("scale");
			if(scaleNode){
				MVector3 scale;
				scaleNode->QueryFloatAttribute("x", &scale.x);
				scaleNode->QueryFloatAttribute("y", &scale.y);
				scaleNode->QueryFloatAttribute("z", &scale.z);
				bone->setScale(scale);
			}

			b++;
		}

		// construct bones inverse pose matrix
		armature->constructBonesInversePoseMatrix();
	}


	// SubMeshs
	TiXmlElement * subMeshsNode = pMeshNode->FirstChildElement("SubMeshs");
	if(! subMeshsNode)
		return true;

	unsigned int numSubMeshs = 0;
	subMeshsNode->QueryUIntAttribute("num", &numSubMeshs);
	if(numSubMeshs == 0)
		return true;

	// alloc subMeshs
	MSubMesh * subMeshs = mesh->allocSubMeshs(numSubMeshs);

	// BoundingBox
	TiXmlElement * boundingBoxNode = pMeshNode->FirstChildElement("BoundingBox");
	if(boundingBoxNode)
	{
		MVector3 * min = &mesh->getBoundingBox()->min;
		MVector3 * max = &mesh->getBoundingBox()->max;

		boundingBoxNode->QueryFloatAttribute("minx", &min->x);
		boundingBoxNode->QueryFloatAttribute("miny", &min->y);
		boundingBoxNode->QueryFloatAttribute("minz", &min->z);

		boundingBoxNode->QueryFloatAttribute("maxx", &max->x);
		boundingBoxNode->QueryFloatAttribute("maxy", &max->y);
		boundingBoxNode->QueryFloatAttribute("maxz", &max->z);
	}

	// SubMesh
	TiXmlElement * SubMeshNode = subMeshsNode->FirstChildElement("SubMesh");
	for(SubMeshNode; SubMeshNode; SubMeshNode=SubMeshNode->NextSiblingElement("SubMesh"))
	{
		MSubMesh * subMesh = subMeshs;

		// BoundingBox
		boundingBoxNode = SubMeshNode->FirstChildElement("BoundingBox");
		if(boundingBoxNode)
		{
			MVector3 * min = &subMesh->getBoundingBox()->min;
			MVector3 * max = &subMesh->getBoundingBox()->max;

			boundingBoxNode->QueryFloatAttribute("minx", &min->x);
			boundingBoxNode->QueryFloatAttribute("miny", &min->y);
			boundingBoxNode->QueryFloatAttribute("minz", &min->z);

			boundingBoxNode->QueryFloatAttribute("maxx", &max->x);
			boundingBoxNode->QueryFloatAttribute("maxy", &max->y);
			boundingBoxNode->QueryFloatAttribute("maxz", &max->z);
		}

		// Vertices
		TiXmlElement * verticesNode = SubMeshNode->FirstChildElement("Vertices");
		if(verticesNode)
		{
			unsigned int numVertices = 0;
			verticesNode->QueryUIntAttribute("num", &numVertices);
			MVector3 * vertices = subMesh->allocVertices(numVertices);

			// vertex
			TiXmlElement * vertexNode = verticesNode->FirstChildElement("vertex");
			for(vertexNode; vertexNode; vertexNode=vertexNode->NextSiblingElement("vertex"))
			{
				vertexNode->QueryFloatAttribute("x", &vertices->x);
				vertexNode->QueryFloatAttribute("y", &vertices->y);
				vertexNode->QueryFloatAttribute("z", &vertices->z);
				vertices++;
			}
		}

		// Normals
		TiXmlElement * normalsNode = SubMeshNode->FirstChildElement("Normals");
		if(normalsNode)
		{
			unsigned int numNormals = 0;
			normalsNode->QueryUIntAttribute("num", &numNormals);
			MVector3 * normals = subMesh->allocNormals(numNormals);

			// normal
			TiXmlElement * normalNode = normalsNode->FirstChildElement("normal");
			for(normalNode; normalNode; normalNode=normalNode->NextSiblingElement("normal"))
			{
				normalNode->QueryFloatAttribute("x", &normals->x);
				normalNode->QueryFloatAttribute("y", &normals->y);
				normalNode->QueryFloatAttribute("z", &normals->z);
				normals->normalize();
				normals++;
			}
		}

		// Tangents
		TiXmlElement * tangentsNode = SubMeshNode->FirstChildElement("Tangents");
		if(tangentsNode)
		{
			unsigned int numTangents = 0;
			tangentsNode->QueryUIntAttribute("num", &numTangents);
			MVector3 * tangents = subMesh->allocTangents(numTangents);

			// tangent
			TiXmlElement * tangentNode = tangentsNode->FirstChildElement("tangent");
			for(tangentNode; tangentNode; tangentNode=tangentNode->NextSiblingElement("tangent"))
			{
				tangentNode->QueryFloatAttribute("x", &tangents->x);
				tangentNode->QueryFloatAttribute("y", &tangents->y);
				tangentNode->QueryFloatAttribute("z", &tangents->z);
				tangents->normalize();
				tangents++;
			}
		}

		// TexCoords
		TiXmlElement * texCoordsNode = SubMeshNode->FirstChildElement("TexCoords");
		if(texCoordsNode)
		{
			// num
			unsigned int numTexCoords = 0;
			texCoordsNode->QueryUIntAttribute("num", &numTexCoords);
			MVector2 * texCoords = subMesh->allocTexCoords(numTexCoords);

			// mapChannels
			unsigned int numVertices = subMesh->getVerticesSize();
			const char * mapChannelsData = texCoordsNode->Attribute("mapChannels");

			// read channels
			if(mapChannelsData)
			{
				char str[256];
				strcpy(str, mapChannelsData);
				char * pch;

				unsigned int offset = 0;
				pch = strtok(str, " ");
				while(pch != NULL)
				{
					unsigned int channel = 0;
					sscanf(pch, "%d", &channel);

					subMesh->setMapChannelOffset(channel, offset);

					pch = strtok(NULL, " ");
					offset += numVertices;
				}
			}
			// create default channels
			else if((numVertices > 0) && (numTexCoords > numVertices))
			{
				unsigned int numChannels = numTexCoords / numVertices;
				for(unsigned int c=0; c<numChannels; c++)
					subMesh->setMapChannelOffset(c, numVertices*c);
			}

			// texCoord
			TiXmlElement * texCoordNode = texCoordsNode->FirstChildElement("texCoord");
			for(texCoordNode; texCoordNode; texCoordNode=texCoordNode->NextSiblingElement("texCoord"))
			{
				texCoordNode->QueryFloatAttribute("x", &texCoords->x);
				texCoordNode->QueryFloatAttribute("y", &texCoords->y);
				texCoords++;
			}
		}

		// Colors
		TiXmlElement * colorsNode = SubMeshNode->FirstChildElement("Colors");
		if(colorsNode)
		{
			unsigned int numColors = 0;
			colorsNode->QueryUIntAttribute("num", &numColors);
			MColor * colors = subMesh->allocColors(numColors);

			// color
			TiXmlElement * colorNode = colorsNode->FirstChildElement("color");
			for(colorNode; colorNode; colorNode=colorNode->NextSiblingElement("color"))
			{
				float x = 1, y = 1, z = 1, w = 1;
				colorNode->QueryFloatAttribute("x", &x);
				colorNode->QueryFloatAttribute("y", &y);
				colorNode->QueryFloatAttribute("z", &z);
				colorNode->QueryFloatAttribute("w", &w);

				colors->r = (unsigned char)x*255;
				colors->g = (unsigned char)y*255;
				colors->b = (unsigned char)z*255;
				colors->a = (unsigned char)w*255;;

				colors++;
			}
		}

		// Indices
		TiXmlElement * indicesNode = SubMeshNode->FirstChildElement("Indices");
		if(indicesNode)
		{
			M_TYPES indicesType;
			unsigned int vSize = subMesh->getVerticesSize();

			if(vSize < 65536){
				indicesType = M_USHORT;
			}
			else{
				indicesType = M_UINT;
			}

			unsigned int numIndices = 0;
			indicesNode->QueryUIntAttribute("num", &numIndices);
			subMesh->allocIndices(numIndices, indicesType);

			// indices
			TiXmlElement * indexNode = indicesNode->FirstChildElement("index");
			switch(indicesType)
			{
			case M_USHORT:
				{
					unsigned short * indices = (unsigned short *)subMesh->getIndices();
					for(indexNode; indexNode; indexNode=indexNode->NextSiblingElement("index"))
					{
						unsigned int id;
						indexNode->QueryUIntAttribute("value", &id);
						*indices = (unsigned short)id;
						indices++;
					}
				}
				break;
			case M_UINT:
				{
					unsigned int * indices = (unsigned int *)subMesh->getIndices();
					for(indexNode; indexNode; indexNode=indexNode->NextSiblingElement("index"))
					{
						indexNode->QueryUIntAttribute("value", indices);
						indices++;
					}
				}
				break;
			}
		}

		// Skins
		TiXmlElement * skinsNode = SubMeshNode->FirstChildElement("Skins");
		if(skinsNode)
		{
			MSkinData * skinData = subMesh->createSkinData();

			unsigned int numSkins = 0;
			skinsNode->QueryUIntAttribute("num", &numSkins);
			MSkinPoint * skinPoints = skinData->allocPoints(numSkins);

			// skin
			TiXmlElement * skinNode = skinsNode->FirstChildElement("skin");
			for(skinNode; skinNode; skinNode=skinNode->NextSiblingElement("skin"))
			{
				unsigned int vertexId = 0;
				unsigned int numBones = 0;

				skinNode->QueryUIntAttribute("vertex", &vertexId);
				skinNode->QueryUIntAttribute("numBones", &numBones);

				if(numBones > 0)
				{
					skinPoints->setVertexId(vertexId);
					skinPoints->allocateBonesLinks(numBones);

					unsigned short * bonesIds = skinPoints->getBonesIds();
					float * bonesWeights = skinPoints->getBonesWeights();

					TiXmlElement * boneNode = skinNode->FirstChildElement("bone");
					for(boneNode; boneNode; boneNode=boneNode->NextSiblingElement("bone"))
					{
						unsigned int id;
						boneNode->QueryUIntAttribute("id", &id);
						boneNode->QueryFloatAttribute("weight", bonesWeights);

						*bonesIds = id;

						bonesIds++;
						bonesWeights++;
					}
				}

				skinPoints++;
			}
		}

		// Displays
		TiXmlElement * displaysNode = SubMeshNode->FirstChildElement("Displays");
		if(displaysNode)
		{
			unsigned int numDisplays = 0;
			displaysNode->QueryUIntAttribute("num", &numDisplays);
			subMesh->allocDisplays(numDisplays);

			// display
			TiXmlElement * displayNode = displaysNode->FirstChildElement("display");
			for(displayNode; displayNode; displayNode=displayNode->NextSiblingElement("display"))
			{
				unsigned int begin, size, material, cullFace = 0;

				displayNode->QueryUIntAttribute("begin", &begin);
				displayNode->QueryUIntAttribute("size", &size);
				displayNode->QueryUIntAttribute("material", &material);
				displayNode->QueryUIntAttribute("cullFace", &cullFace);

				// create display
				MDisplay * display = subMesh->addNewDisplay(M_PRIMITIVE_TRIANGLES, begin, size);

				// set material
				if(material < mesh->getMaterialsNumber())
					display->setMaterial(mesh->getMaterial(material));

				// set cull mode
				M_CULL_MODES cullMode = M_CULL_BACK;
				if(cullFace == 1)
					cullMode = M_CULL_FRONT;
				else if(cullFace == 2)
					cullMode = M_CULL_NONE;
				display->setCullMode(cullMode);
			}
		}

		// generate tangents if needed
		if(! subMesh->getTangents())
			generateTangents(subMesh);


		subMeshs++;
	}

    MLOG_DEBUG("xmlMeshLoad success: "<<numSubMeshs<<" submeshs found");
	
	return true;
}
Beispiel #8
0
void generateTangents(MSubMesh * subMesh)
{
	MVector3 * vertices = subMesh->getVertices();
	MVector3 * normals = subMesh->getNormals();
	MVector2 * texCoords = subMesh->getTexCoords();

	if(! (vertices && normals && texCoords))
		return;


	bool generate = false;
	unsigned int mapChannel;

	// find normal mapChannel
	unsigned int d;
	unsigned int dSize = subMesh->getDisplaysNumber();
	for(d=0; d<dSize; d++)
	{
		MDisplay * display = subMesh->getDisplay(d);
		MMaterial * material = display->getMaterial();
		if(material)
		{
			if(material->getType() == 1) // standard
			{
				if(material->getTexturesPassNumber() > 2)
				{
					MTexturePass * texturePass = material->getTexturePass(2); // Normal map pass
					if(texturePass)
					{
						mapChannel = texturePass->getMapChannel();
						generate = true;
					}
				}
			}
			else
			{
				unsigned tSize = material->getTexturesPassNumber();
				unsigned int t;
				for(t=0; t<tSize; t++)
				{
					MTexturePass * texturePass = material->getTexturePass(t);
					if(texturePass)
					{
						if(texturePass->getCombineMode() == M_TEX_COMBINE_DOT)
						{
							mapChannel = texturePass->getMapChannel();
							generate = true;
						}
					}
				}
			}
		}
	}

	// generate
	if(generate)
	{
		M_TYPES indicesType = subMesh->getIndicesType();
		void * indices = subMesh->getIndices();
		MVector3 * tangents = subMesh->allocTangents(subMesh->getNormalsSize());

		// texCoord offset
		unsigned int offset = 0;
		if(subMesh->isMapChannelExist(mapChannel))
			offset = subMesh->getMapChannelOffset(mapChannel);

		texCoords = texCoords + offset;

		// scan triangles to generate tangents from vertices and texCoords
		for(d=0; d<dSize; d++)
		{
			MDisplay * display = subMesh->getDisplay(d);

			if(display->getPrimitiveType() == M_PRIMITIVE_TRIANGLES)
			{
				unsigned int begin = display->getBegin();
				unsigned int size = display->getSize();

				if(! indices)
				{
					for(unsigned int i=begin; i<(begin+size); i+=3)
					{
						MVector3 * P1 = &vertices[i];
						MVector3 * P2 = &vertices[i+1];
						MVector3 * P3 = &vertices[i+2];

						MVector3 * N1 = &normals[i];
						MVector3 * N2 = &normals[i+1];
						MVector3 * N3 = &normals[i+2];

						MVector2 * UV1 = &texCoords[i];
						MVector2 * UV2 = &texCoords[i+1];
						MVector2 * UV3 = &texCoords[i+2];

						MVector3 tangent = computeTangent(*P1, *P2, *P3, *UV1, *UV2, *UV3);

						tangents[i]   = (tangent - ((*N1) * tangent.dotProduct(*N1))).getNormalized();
						tangents[i+1] = (tangent - ((*N2) * tangent.dotProduct(*N2))).getNormalized();
						tangents[i+2] = (tangent - ((*N3) * tangent.dotProduct(*N3))).getNormalized();
					}
				}
				else if(indicesType == M_USHORT)
				{
					unsigned short * _indices = (unsigned short *)indices;
					for(unsigned int i=begin; i<(begin+size); i+=3)
					{
						unsigned short A = _indices[i];
						unsigned short B = _indices[i+1];
						unsigned short C = _indices[i+2];

						MVector3 * P1 = &vertices[A];
						MVector3 * P2 = &vertices[B];
						MVector3 * P3 = &vertices[C];

						MVector3 * N1 = &normals[A];
						MVector3 * N2 = &normals[B];
						MVector3 * N3 = &normals[C];

						MVector2 * UV1 = &texCoords[A];
						MVector2 * UV2 = &texCoords[B];
						MVector2 * UV3 = &texCoords[C];

						MVector3 tangent = computeTangent(*P1, *P2, *P3, *UV1, *UV2, *UV3);

						tangents[A] = (tangent - ((*N1) * tangent.dotProduct(*N1))).getNormalized();
						tangents[B] = (tangent - ((*N2) * tangent.dotProduct(*N2))).getNormalized();
						tangents[C] = (tangent - ((*N3) * tangent.dotProduct(*N3))).getNormalized();
					}
				}
				else if(indicesType == M_UINT)
				{
					unsigned int * _indices = (unsigned int *)indices;
					for(unsigned int i=begin; i<(begin+size); i+=3)
					{
						unsigned int A = _indices[i];
						unsigned int B = _indices[i+1];
						unsigned int C = _indices[i+2];

						MVector3 * P1 = &vertices[A];
						MVector3 * P2 = &vertices[B];
						MVector3 * P3 = &vertices[C];

						MVector3 * N1 = &normals[A];
						MVector3 * N2 = &normals[B];
						MVector3 * N3 = &normals[C];

						MVector2 * UV1 = &texCoords[A];
						MVector2 * UV2 = &texCoords[B];
						MVector2 * UV3 = &texCoords[C];

						MVector3 tangent = computeTangent(*P1, *P2, *P3, *UV1, *UV2, *UV3);

						tangents[A] = (tangent - ((*N1) * tangent.dotProduct(*N1))).getNormalized();
						tangents[B] = (tangent - ((*N2) * tangent.dotProduct(*N2))).getNormalized();
						tangents[C] = (tangent - ((*N3) * tangent.dotProduct(*N3))).getNormalized();
					}
				}
			}
		}
	}
}
Beispiel #9
0
bool getNearestRaytracedPosition(const MVector3 & origin, const MVector3 & dest, const void * indices, M_TYPES indicesType, const MVector3 * vertices, unsigned int size, MVector3 * intersection)
{
    M_PROFILE_SCOPE(getNearestRaytracedPosition);
	bool isRaytraced = false;
	float dist;
	float nearDist;
	MVector3 I;
	MVector3 rayVector = dest - origin;

	// init near dist
	nearDist =  rayVector.getSquaredLength();

	switch(indicesType)
	{
	case M_USHORT:
		{
			unsigned int v;
			unsigned short * idx = (unsigned short *)indices;
			for (v = 0; v < size; v += 3)
			{
				const MVector3 * v1 = &vertices[idx[v]];
				const MVector3 * v2 = &vertices[idx[v+1]];
				const MVector3 * v3 = &vertices[idx[v+2]];

				// make normal
				MVector3 normal = getTriangleNormal(*v1, *v2, *v3);

				// compute ray intersection
				if(isEdgeTriangleIntersection(origin, dest, *v1, *v2, *v3, normal, &I))
				{
					rayVector = I - origin;
					dist = rayVector.getSquaredLength();
					if(dist < nearDist)
					{
						nearDist = dist;
						(*intersection) = I;
					}
					isRaytraced = true;
				}
			}
		}
		break;
            
	case M_UINT:
		{
			unsigned int v;
			unsigned int * idx = (unsigned int *)indices;
			for (v = 0; v < size; v += 3)
			{
				const MVector3 * v1 = &vertices[idx[v]];
				const MVector3 * v2 = &vertices[idx[v+1]];
				const MVector3 * v3 = &vertices[idx[v+2]];

				// make normal
				MVector3 normal = getTriangleNormal(*v1, *v2, *v3);

				// compute ray intersection
				if(isEdgeTriangleIntersection(origin, dest, *v1, *v2, *v3, normal, &I))
				{
					rayVector = I - origin;
					dist = rayVector.getSquaredLength();
					if(dist < nearDist)
					{
						nearDist = dist;
						(*intersection) = I;
					}
					isRaytraced = true;
				}
			}
		}
            break;
            
        default:
            break;
	}
	return isRaytraced;
}
Beispiel #10
0
void MBLookAt::update(void)
{
	MEngine * engine = MEngine::getInstance();
	MLevel * level = engine->getLevel();
	MScene * scene = level->getCurrentScene();

	MObject3d * parent = getParentObject();

	const char * targetName = m_targetName.getData();
	if(strcmp(targetName, "none") == 0)
		return;

	// target object
	MObject3d * object = scene->getObjectByName(targetName);
	if(! object)
		return;

	// direction
	MVector3 direction = object->getTransformedPosition() - parent->getTransformedPosition();
	if(direction.x == 0 && direction.y == 0 && direction.z == 0)
		return;

	float angle;
	float roll;

	MVector3 axis;

	// compute initial roll
	MVector3 ZAxis = parent->getInverseRotatedVector(MVector3(0, 0, 1)).getNormalized();
	ZAxis.z = 0;
	ZAxis.normalize();

	if(ZAxis.x == 0 && ZAxis.y == 0)
	{
		MVector3 YAxis = parent->getInverseRotatedVector(MVector3(0, 1, 0)).getNormalized();
		YAxis.z = 0;
		YAxis.normalize();

		axis = MVector3(0, 1, 0).crossProduct(YAxis);
		roll = acosf(MVector3(0, 1, 0).dotProduct(YAxis));

		if(MVector3(0, 0, 1).dotProduct(axis) < 0)
			roll = -roll;
	}
	else
	{
		axis = MVector3(0, 1, 0).crossProduct(ZAxis);
		roll = acosf(MVector3(0, 1, 0).dotProduct(ZAxis));

		if(MVector3(0, 0, 1).dotProduct(axis) < 0)
			roll = -roll;
	}

	if(roll < 0.001f && roll > -0.001f) roll = 0;

	// look-at
	MVector3 cameraAxis = MVector3(0, 0, -1);

	axis = cameraAxis.crossProduct(direction);
	angle = acosf(cameraAxis.dotProduct(direction.getNormalized()));

	parent->setAxisAngleRotation(axis, (float)(angle * RAD_TO_DEG));
	parent->updateMatrix();

	// set roll
	ZAxis = parent->getInverseRotatedVector(MVector3(0, 0, 1)).getNormalized();;
	ZAxis.z = 0;
	ZAxis.normalize();

	if(ZAxis.x == 0 && ZAxis.y == 0)
	{
		parent->addAxisAngleRotation(MVector3(0, 0, 1), (float)(-roll*RAD_TO_DEG));
	}
	else
	{
		axis = MVector3(0, 1, 0).crossProduct(ZAxis);
		angle = acosf(MVector3(0, 1, 0).dotProduct(ZAxis));
		if(angle < 0.001f && angle > -0.001f) angle = 0;

		if(MVector3(0, 0, 1).dotProduct(axis) < 0)
			angle = -angle;

		parent->addAxisAngleRotation(MVector3(0, 0, 1), (float)((angle-roll)*RAD_TO_DEG));
	}

}