Beispiel #1
0
double run_soft_sphere(double reduced_density, double temp) {
  Functional f = SoftFluid(sigma, 1, 0);
  const double mu = find_chemical_potential(OfEffectivePotential(f), temp, reduced_density*pow(2,-5.0/2.0));
  printf("mu is %g for reduced_density = %g at temperature %g\n", mu, reduced_density, temp);

  //printf("Filling fraction is %g with functional %s at temperature %g\n", reduced_density, teff);
  //fflush(stdout);
  temperature = temp;
  //if (kT == 0) kT = ;1

  Lattice lat(Cartesian(xmax,0,0), Cartesian(0,ymax,0), Cartesian(0,0,zmax));
  GridDescription gd(lat, dx);

  Grid softspherepotential(gd);
  softspherepotential.Set(soft_sphere_potential);

  f = SoftFluid(sigma, 1, mu); // compute approximate energy with chemical potential mu
  const double approx_energy = f(temperature, reduced_density*pow(2,-5.0/2.0))*xmax*ymax*zmax;
  const double precision = fabs(approx_energy*1e-9);

  f = OfEffectivePotential(SoftFluid(sigma, 1, mu) + ExternalPotential(softspherepotential));

  static Grid *potential = 0;
  potential = new Grid(gd);
  *potential = softspherepotential - temperature*log(reduced_density*pow(2,-5.0/2.0)/(1.0*radius*radius*radius))*VectorXd::Ones(gd.NxNyNz); // Bad starting guess
  printf("\tMinimizing to %g absolute precision from %g from %g...\n", precision, approx_energy, temperature);
  fflush(stdout);

  Minimizer min = Precision(precision,
                            PreconditionedConjugateGradient(f, gd, temperature,
                                potential,
                                QuadraticLineMinimizer));
  took("Setting up the variables");
  for (int i=0; min.improve_energy(true) && i<100; i++) {
  }

  took("Doing the minimization");
  min.print_info();

  Grid density(gd, EffectivePotentialToDensity()(temperature, gd, *potential));
  //printf("# per area is %g at filling fraction %g\n", density.sum()*gd.dvolume/dw/dw, reduced_density);

  char *plotname = (char *)malloc(1024);

  sprintf(plotname, "papers/fuzzy-fmt/figs/radial-wca-%06.4f-%04.2f.dat", temp, reduced_density);
  z_plot(plotname, Grid(gd, pow(2,5.0/2.0)*density));
  free(plotname);

  {
    //double peak = peak_memory()/1024.0/1024;
    //double current = current_memory()/1024.0/1024;
    //printf("Peak memory use is %g M (current is %g M)\n", peak, current);

  }

  took("Plotting stuff");
  printf("density %g gives ff %g for reduced_density = %g and T = %g\n", density(0,0,gd.Nz/2),
         density(0,0,gd.Nz/2)*4*M_PI/3, reduced_density, temp);
  return density(0, 0, gd.Nz/2)*4*M_PI/3; // return bulk filling fraction
}
int main(int, char **) {
  FILE *o = fopen("paper/figs/constrained-water.dat", "w");

  Functional f = OfEffectivePotential(SaftFluidSlow(water_prop.lengthscale,
                                                    water_prop.epsilonAB, water_prop.kappaAB,
                                                    water_prop.epsilon_dispersion,
                                                    water_prop.lambda_dispersion, water_prop.length_scaling, 0));
  double mu_satp = find_chemical_potential(f, water_prop.kT,
                                           water_prop.liquid_density);
  Lattice lat(Cartesian(width,0,0), Cartesian(0,width,0), Cartesian(0,0,zmax));
  GridDescription gd(lat, 0.1);

  Grid potential(gd);
  Grid constraint(gd);
  constraint.Set(notinwall);

  f = constrain(constraint,
                OfEffectivePotential(SaftFluidSlow(water_prop.lengthscale,
                                                   water_prop.epsilonAB, water_prop.kappaAB,
                                                   water_prop.epsilon_dispersion,
                                                   water_prop.lambda_dispersion, water_prop.length_scaling, mu_satp)));


  Minimizer min = Precision(0, PreconditionedConjugateGradient(f, gd, water_prop.kT, &potential,
                                                               QuadraticLineMinimizer));

  potential = water_prop.liquid_density*constraint
    + water_prop.vapor_density*VectorXd::Ones(gd.NxNyNz);
  //potential = water_prop.liquid_density*VectorXd::Ones(gd.NxNyNz);
  potential = -water_prop.kT*potential.cwise().log();

  const int numiters = 50;
  for (int i=0;i<numiters && min.improve_energy(true);i++) {
    fflush(stdout);
    Grid density(gd, EffectivePotentialToDensity()(water_prop.kT, gd, potential));
    density.epsNative1d("paper/figs/1d-constrained-plot.eps",
			Cartesian(0,0,0), Cartesian(0,0,zmax),
			water_prop.liquid_density, 1, "Y axis: , x axis: ");
  }
  min.print_info();

  double energy = min.energy()/width/width;
  printf("Energy is %.15g\n", energy);

  double N = 0;
  {
    Grid density(gd, EffectivePotentialToDensity()(water_prop.kT, gd, potential));
    for (int i=0;i<gd.NxNyNz;i++) N += density[i]*gd.dvolume;
  }
  N = N/width/width;
  printf("N is %.15g\n", N);

    Grid density(gd, EffectivePotentialToDensity()(water_prop.kT, gd, potential));
    density.epsNative1d("paper/figs/1d-constrained-plot.eps", Cartesian(0,0,0), Cartesian(0,0,zmax), water_prop.liquid_density, 1, "Y axis: , x axis: ");
    //potential.epsNative1d("hard-wall-potential.eps", Cartesian(0,0,0), Cartesian(0,0,zmax), 1, 1);

    fclose(o);
}
Beispiel #3
0
double run_walls(double reduced_density, const char *name, Functional fhs, double teff) {
  double kT = teff;
  if (kT == 0) kT = 1;

  Functional f = OfEffectivePotential(fhs);

  const double zmax = width + 2*spacing;
  Lattice lat(Cartesian(dw,0,0), Cartesian(0,dw,0), Cartesian(0,0,zmax));
  GridDescription gd(lat, dx);

  Grid constraint(gd);
  constraint.Set(notinwall);
  f = constrain(constraint, f);

  Grid potential(gd);
  potential = pow(2,-5.0/2.0)*(reduced_density*constraint + 1e-4*reduced_density*VectorXd::Ones(gd.NxNyNz));
  potential = -kT*potential.cwise().log();

  const double approx_energy = fhs(kT, reduced_density*pow(2,-5.0/2.0))*dw*dw*width;
  const double precision = fabs(approx_energy*1e-11);
  printf("\tMinimizing to %g absolute precision from %g from %g...\n", precision, approx_energy, kT);
  fflush(stdout);

  Minimizer min = Precision(precision,
                            PreconditionedConjugateGradient(f, gd, kT,
                                                            &potential,
                                                            QuadraticLineMinimizer));
  took("Setting up the variables");
  if (strcmp(name, "hard") != 0 && false) {
    printf("For now, SoftFluid doesn't work properly, so we're skipping the\n");
    printf("minimization at temperature %g.\n", teff);
  } else {
    for (int i=0;min.improve_energy(false) && i<100;i++) {
    }
  }
  took("Doing the minimization");
  min.print_info();

  Grid density(gd, EffectivePotentialToDensity()(kT, gd, potential));
  //printf("# per area is %g at filling fraction %g\n", density.sum()*gd.dvolume/dw/dw, eta);

  char *plotname = (char *)malloc(1024);

  sprintf(plotname, "papers/fuzzy-fmt/figs/walls%s-%06.4f-%04.2f.dat", name, teff, reduced_density);
  z_plot(plotname, Grid(gd, density*pow(2,5.0/2.0)));
  free(plotname);

  took("Plotting stuff");
  printf("density %g gives ff %g for reduced density = %g and T = %g\n", density(0,0,gd.Nz/2),
         density(0,0,gd.Nz/2)*4*M_PI/3, reduced_density, teff);
  return density(0, 0, gd.Nz/2)*4*M_PI/3; // return bulk filling fraction
}
Beispiel #4
0
bool ConjugateGradientType::improve_energy(bool verbose) {
  iter++;
  //printf("I am running ConjugateGradient::improve_energy\n");
  const double E0 = energy();
  if (E0 != E0) {
    // There is no point continuing, since we're starting with a NaN!
    // So we may as well quit here.
    if (verbose) {
      printf("The initial energy is a NaN, so I'm quitting early from ConjugateGradientType::improve_energy.\n");
      f.print_summary("has nan:", E0);
      fflush(stdout);
    }
    return false;
  }
  double gdotd;
  {
    const VectorXd g = -grad();
    // Let's immediately free the cached gradient stored internally!
    invalidate_cache();

    // Note: my notation vaguely follows that of
    // [wikipedia](http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method).
    // I use the Polak-Ribiere method, with automatic direction reset.
    // Note that we could save some memory by using Fletcher-Reeves, and
    // it seems worth implementing that as an option for
    // memory-constrained problems (then we wouldn't need to store oldgrad).
    double beta = g.dot(g - oldgrad)/oldgradsqr;
    oldgrad = g;
    if (beta < 0 || beta != beta || oldgradsqr == 0) beta = 0;
    oldgradsqr = oldgrad.dot(oldgrad);
    direction = g + beta*direction;
    gdotd = oldgrad.dot(direction);
    if (gdotd < 0) {
      direction = oldgrad; // If our direction is uphill, reset to gradient.
      if (verbose) printf("reset to gradient...\n");
      gdotd = oldgrad.dot(direction);
    }
  }

  Minimizer lm = linmin(f, gd, kT, x, direction, -gdotd, &step);
  for (int i=0; i<100 && lm.improve_energy(verbose); i++) {
    if (verbose) lm.print_info("\t");
  }
  if (verbose) {
    //lm->print_info();
    print_info();
    printf("grad*dir/oldgrad*dir = %g\n", grad().dot(direction)/gdotd);
  }
  return (energy() < E0);
}
bool PreconditionedConjugateGradientType::improve_energy(bool verbose) {
  iter++;
  //printf("I am running ConjugateGradient::improve_energy\n");
  const double E0 = energy();
  if (isnan(E0)) {
    // There is no point continuing, since we're starting with a NaN!
    // So we may as well quit here.
    if (verbose) {
      printf("The initial energy is a NaN, so I'm quitting early.\n");
      fflush(stdout);
    }
    return false;
  }
  double beta;
  {
    // Note: my notation vaguely follows that of
    // [wikipedia](http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method).
    // I use the Polak-Ribiere method, with automatic direction reset.
    // Note that we could save some memory by using Fletcher-Reeves, and
    // it seems worth implementing that as an option for
    // memory-constrained problems (then we wouldn't need to store oldgrad).
    pgrad(); // compute pgrad first, since that computes both.
    beta = -pgrad().dot(-grad() - oldgrad)/oldgradsqr;
    oldgrad = -grad();
    if (beta < 0 || beta != beta || oldgradsqr == 0) beta = 0;
    if (verbose) printf("beta = %g\n", beta);
    oldgradsqr = -pgrad().dot(oldgrad);
    direction = -pgrad() + beta*direction;
    // Let's immediately free the cached gradient stored internally!
    invalidate_cache();
  } // free g and pg!

  const double gdotd = oldgrad.dot(direction);

  Minimizer lm = linmin(f, gd, kT, x, direction, -gdotd, &step);
  for (int i=0; i<100 && lm.improve_energy(verbose); i++) {
    if (verbose) lm.print_info("\t");
  }
  if (verbose) {
    //lm->print_info();
    print_info();
    printf("grad*oldgrad = %g\n", grad().dot(direction)/gdotd);
  }
  return (energy() < E0 || beta != 0);
}
Beispiel #6
0
double run_walls(double eta, const char *name, Functional fhs, double teff) {
  //printf("Filling fraction is %g with functional %s at temperature %g\n", eta, name, teff);
  //fflush(stdout);
  double kT = teff;
  if (kT == 0) kT = 1;

  Functional f = OfEffectivePotential(fhs);

  const double zmax = width + 2*spacing;
  Lattice lat(Cartesian(dw,0,0), Cartesian(0,dw,0), Cartesian(0,0,zmax));
  GridDescription gd(lat, dx);

  Grid constraint(gd);
  constraint.Set(notinwall);
  f = constrain(constraint, f);

  // We reuse the potential, which should give us a better starting
  // guess on each calculation.
  static Grid *potential = 0;
  if (strcmp(name, "hard") == 0) {
    // start over for each potential
    delete potential;
    potential = 0;
  }
  if (!potential) {
    potential = new Grid(gd);
    *potential = (eta*constraint + 1e-4*eta*VectorXd::Ones(gd.NxNyNz))/(4*M_PI/3);
    *potential = -kT*potential->cwise().log();
  }

  // FIXME below I use the HS energy because of issues with the actual
  // functional.
  const double approx_energy = fhs(kT, eta/(4*M_PI/3))*dw*dw*width;
  const double precision = fabs(approx_energy*1e-5);
  printf("\tMinimizing to %g absolute precision from %g from %g...\n", precision, approx_energy, kT);
  fflush(stdout);

  Minimizer min = Precision(precision,
                            PreconditionedConjugateGradient(f, gd, kT,
                                                            potential,
                                                            QuadraticLineMinimizer));
  took("Setting up the variables");
  for (int i=0;min.improve_energy(false) && i<100;i++) {
  }
  took("Doing the minimization");
  min.print_info();

  Grid density(gd, EffectivePotentialToDensity()(kT, gd, *potential));
  //printf("# per area is %g at filling fraction %g\n", density.sum()*gd.dvolume/dw/dw, eta);
  
  char *plotname = (char *)malloc(1024);

  sprintf(plotname, "papers/fuzzy-fmt/figs/walls%s-%06.4f-%04.2f.dat", name, teff, eta);
  z_plot(plotname, Grid(gd, 4*M_PI*density/3));
  free(plotname);

  {
    GridDescription gdj = density.description(); 
    double sep =  gdj.dz*gdj.Lat.a3().norm();
    int div = gdj.Nz;
    int mid = int (div/2.0);
    double Ntot_per_A = 0;
    double mydist = 0;
   
    for (int j=0; j<mid; j++){
      Ntot_per_A += density(0,0,j)*sep;
      mydist += sep;
    }
    
    double Extra_per_A = Ntot_per_A - eta/(4.0/3.0*M_PI)*width/2;
    
    FILE *fout = fopen("papers/fuzzy-fmt/figs/wallsfillingfracInfo.txt", "a");
    fprintf(fout, "walls%s-%04.2f.dat  -  If you want to match the bulk filling fraction of figs/walls%s-%04.2f.dat, than the number of extra spheres per area to add is %04.10f.  So you'll want to multiply %04.2f by your cavity volume and divide by (4/3)pi.  Then add %04.10f times the Area of your cavity to this number\n",
	    name, eta, name, eta, Extra_per_A, eta, Extra_per_A);
    
    int wallslen = 20;
    double Extra_spheres =  (eta*wallslen*wallslen*wallslen/(4*M_PI/3) + Extra_per_A*wallslen*wallslen);  
    fprintf (fout, "For filling fraction %04.02f and walls of length %d you'll want to use %.0f spheres.\n\n", eta, wallslen, Extra_spheres);
    
    fclose(fout); 
  }
  
  {
    //double peak = peak_memory()/1024.0/1024;
    //double current = current_memory()/1024.0/1024;
    //printf("Peak memory use is %g M (current is %g M)\n", peak, current);
  }
  
  took("Plotting stuff");
  printf("density %g gives ff %g for eta = %g and T = %g\n", density(0,0,gd.Nz/2),
         density(0,0,gd.Nz/2)*4*M_PI/3, eta, teff);
  return density(0, 0, gd.Nz/2)*4*M_PI/3; // return bulk filling fraction
}