Beispiel #1
0
/* approximates a bezier curve with a set of circular arcs by dividing where
 * the bezier's deviation from its approximating biarc is at a maximum, then
 * recursively calling on the subsections until it is approximated to
 * tolerance by the biarc
 */
HIDDEN void
approx_bezier(const ON_BezierCurve& bezier, const ON_Arc& biarc, const struct bn_tol *tol, std::vector<ON_Arc>& approx)
{
    fastf_t t = 0.0, step = 0.0;
    fastf_t crv = 0.0, err = 0.0, max_t = 0.0, max_err = 0.0;
    ON_3dPoint test;
    ON_3dVector d1, d2;

    // walk the bezier curve at interval given by step
    for (t = 0; t <= 1.0; t += step) {
	bezier.Ev2Der(t, test, d1, d2);
	err = fabs((test - biarc.Center()).Length() - biarc.Radius());
	// find the maximum point of deviation
	if (err > max_err) {
	    max_t = t;
	    max_err = err;
	}
	crv = CURVATURE(d1, d2);
	// step size decreases as |crv| -> 1
	step = GETSTEPSIZE(1.0 - fabs(crv));
    }

    if (max_err + VDIVIDE_TOL < tol->dist) {
	// max deviation is less than the given tolerance, add the biarc approximation
	approx.push_back(biarc);
    } else {
	ON_BezierCurve head, tail;
	// split bezier at point of maximum deviation and recurse on the new subsections
	bezier.Split(max_t, head, tail);
	approx_bezier(head, make_biarc(head), tol, approx);
	approx_bezier(tail, make_biarc(tail), tol, approx);
    }
}
Beispiel #2
0
/**
 * \return List of bezier spline segments which together represent this curve.
 */
QList<RSpline> RSpline::getBezierSegments() const {
    // spline is a single bezier segment:
    if (countControlPoints()==getDegree()+1) {
        return QList<RSpline>() << *this;
    }

    updateInternal();

    QList<RSpline> ret;
#ifndef R_NO_OPENNURBS
    ON_NurbsCurve* dup = dynamic_cast<ON_NurbsCurve*>(curve.DuplicateCurve());
    if (dup==NULL) {
        return ret;
    }

    dup->MakePiecewiseBezier();
    for (int i=0; i<=dup->CVCount() - dup->Order(); ++i) {
        ON_BezierCurve bc;
        if (!dup->ConvertSpanToBezier(i, bc)) {
            continue;
        }

        QList<RVector> ctrlPts;
        for (int cpi=0; cpi<bc.CVCount(); cpi++) {
            ON_3dPoint onp;
            bc.GetCV(cpi, onp);
            ctrlPts.append(RVector(onp.x, onp.y, onp.z));
        }
        ret.append(RSpline(ctrlPts, degree));
    }
    delete dup;
 #endif

    return ret;
}
Beispiel #3
0
/* find a point of inflection on a bezier curve, if it exists, by finding the
 * value of parameter 't' where the signed curvature of the bezier changes
 * signs. Returns true if an inflection point is found.
 */
HIDDEN bool
bezier_inflection(const ON_BezierCurve& bezier, fastf_t& inflection_pt)
{
    int sign;
    fastf_t t, step, crv;
    ON_3dVector d1, d2; // first derivative, second derivative
    ON_3dPoint tmp;     // not used, but needed by Ev2Der

    // calculate curvature at t=0
    bezier.Ev2Der(0, tmp, d1, d2);
    crv = CURVATURE(d1, d2);
    // step size decreases as |crv| -> 0
    step = GETSTEPSIZE(fabs(crv));

    sign = SIGN(crv);

    for (t = step; t <= 1.0; t += step) {
	bezier.Ev2Der(t, tmp, d1, d2);
	crv = CURVATURE(d1, d2);
	// if sign changes, t is an inflection point
	if (sign != SIGN(crv)) {
	    inflection_pt = t;
	    return true;
	}
	step = GETSTEPSIZE(fabs(crv));
    }
    return false;
}
Beispiel #4
0
/* create a biarc for a bezier curve.
 *
 * extends the tangent lines to the bezier curve at its first and last control
 * points, and intersects them to find a third point.
 * the biarc passes through the first and last control points, and the incenter
 * of the circle defined by the first, last and intersection points.
 */
HIDDEN ON_Arc
make_biarc(const ON_BezierCurve& bezier)
{
    ON_2dPoint isect, arc_pt;
    ON_2dPoint p_start(bezier.PointAt(0)), p_end(bezier.PointAt(1.0));
    ON_2dVector t_start(bezier.TangentAt(0)), t_end(bezier.TangentAt(1.0));
    ON_Ray r_start(p_start, t_start), r_end(p_end, t_end);

    r_start.IntersectRay(r_end, isect);
    arc_pt = incenter(p_start, p_end, isect);

    return ON_Arc(p_start, arc_pt, p_end);
}
Beispiel #5
0
RH_C_FUNCTION ON_BezierCurve* ON_BezierCurve_Loft2(int count, /*ARRAY*/const ON_2dPoint* points)
{
  ON_BezierCurve* rc = NULL;
  if( count && points )
  {
    rc = new ON_BezierCurve();
    if( rc->Loft(2, count, 2, &(points->x), 0, 0) )
    {
      delete rc;
      rc = NULL;
    }
  }
  return rc;
}
Beispiel #6
0
RH_C_FUNCTION ON_BezierCurve* ON_BezierCurve_Loft(int count, /*ARRAY*/const ON_3dPoint* points)
{
  ON_BezierCurve* rc = NULL;
  if( count && points )
  {
    rc = new ON_BezierCurve();
    ON_3dPointArray _pts(count);
    _pts.Append(count, points);
    if( !rc->Loft(_pts) )
    {
      delete rc;
      rc = NULL;
    }
  }
  return rc;
}
Beispiel #7
0
/* approximates a bezier curve with a set of circular arcs.
 * returns approximation in carcs
 */
HIDDEN void
bezier_to_carcs(const ON_BezierCurve& bezier, const struct bn_tol *tol, std::vector<ON_Arc>& carcs)
{
    bool skip_while = true, curvature_changed = false;
    fastf_t inflection_pt, biarc_angle;
    ON_Arc biarc;
    ON_BezierCurve current, next;
    std::vector<ON_BezierCurve> rest;

    // find inflection point, if it exists
    if (bezier_inflection(bezier, inflection_pt)) {
	curvature_changed = true;
	bezier.Split(inflection_pt, current, next);
	rest.push_back(next);
    } else {
	current = bezier;
    }

    while (skip_while || !rest.empty()) {
    if (skip_while) skip_while = false;
    biarc = make_biarc(current);
    if ((biarc_angle = biarc.AngleRadians()) <= M_PI_2) {
	// approximate the current bezier segment and add its biarc
	// approximation to carcs
	approx_bezier(current, biarc, tol, carcs);
    } else if (biarc_angle <= M_PI) {
	// divide the current bezier segment in half
	current.Split(0.5, current, next);
	// approximate first bezier segment
	approx_bezier(current, biarc, tol, carcs);
	// approximate second bezier segment
	approx_bezier(next, biarc, tol, carcs);
    } else {
	fastf_t t = 1.0;
	ON_Arc test_biarc;
	ON_BezierCurve test_bezier;
	// divide the current bezier such that the first curve segment would
	// have an approximating biarc segment <=90 degrees
	do {
	    t *= 0.5;
	    current.Split(t, test_bezier, next);
	    test_biarc = make_biarc(test_bezier);
	} while(test_biarc.AngleRadians() > M_PI_2);

	approx_bezier(test_bezier, test_biarc, tol, carcs);
	current = next;
	skip_while = true;
	continue;
    }

    if (curvature_changed) {
	curvature_changed = false;
	current = rest.back();
	rest.pop_back();
	// continue even if we just popped the last element
	skip_while = true;
    }
    }
}
Beispiel #8
0
/*
 * Need to be updated to return bezier objects instead of returning coordinate vectors.
 * No external need to cast to bezier and then find intersections.
 */
void Spline::generateBeziers() {
    std::vector<std::vector<lc::geo::Coordinate>> bezlist;
    auto curve = _splineCurve.Duplicate();
    curve->MakePiecewiseBezier();
    ON_3dPoint p;

    int deg = curve->Degree();
    int cpcount = curve->CVCount();

    for (int i=0; i<deg+cpcount+2; ++i) {
        ON_BezierCurve bc;
        if (curve->ConvertSpanToBezier(i, bc)) {
            std::vector<geo::Coordinate> bez;
            for (int j=0; j<bc.CVCount(); j++) {
                bc.GetCV(j, p);
                bez.push_back(geo::Coordinate(p.x, p.y, p.z));
            }
            _beziers.push_back(bez);
        }
    }
}
Beispiel #9
0
extern "C" void
rt_hyp_brep(ON_Brep **b, const struct rt_db_internal *ip, const struct bn_tol *)
{
    struct rt_hyp_internal *eip;

    RT_CK_DB_INTERNAL(ip);
    eip = (struct rt_hyp_internal *)ip->idb_ptr;
    RT_HYP_CK_MAGIC(eip);

    point_t p1_origin, p2_origin;
    ON_3dPoint plane1_origin, plane2_origin;
    ON_3dVector plane_x_dir, plane_y_dir;

    //  First, find planes corresponding to the top and bottom faces - initially

    vect_t x_dir, y_dir;
    VMOVE(x_dir, eip->hyp_A);
    VCROSS(y_dir, eip->hyp_A, eip->hyp_Hi);
    VREVERSE(y_dir, y_dir);

    VMOVE(p1_origin, eip->hyp_Vi);
    plane1_origin = ON_3dPoint(p1_origin);
    plane_x_dir = ON_3dVector(x_dir);
    plane_y_dir = ON_3dVector(y_dir);
    const ON_Plane hyp_bottom_plane(plane1_origin, plane_x_dir, plane_y_dir);

    VADD2(p2_origin, eip->hyp_Vi, eip->hyp_Hi);
    plane2_origin = ON_3dPoint(p2_origin);
    const ON_Plane hyp_top_plane(plane2_origin, plane_x_dir, plane_y_dir);

    // Next, create ellipses in the planes corresponding to the edges of the hyp

    ON_Ellipse b_ell(hyp_bottom_plane, MAGNITUDE(eip->hyp_A), eip->hyp_b);
    ON_NurbsCurve* bcurve = ON_NurbsCurve::New();
    b_ell.GetNurbForm((*bcurve));
    bcurve->SetDomain(0.0, 1.0);

    ON_Ellipse t_ell(hyp_top_plane, MAGNITUDE(eip->hyp_A), eip->hyp_b);
    ON_NurbsCurve* tcurve = ON_NurbsCurve::New();
    t_ell.GetNurbForm((*tcurve));
    tcurve->SetDomain(0.0, 1.0);

    // Generate the bottom cap
    ON_SimpleArray<ON_Curve*> boundary;
    boundary.Append(ON_Curve::Cast(bcurve));
    ON_PlaneSurface* bp = new ON_PlaneSurface();
    bp->m_plane = hyp_bottom_plane;
    bp->SetDomain(0, -100.0, 100.0);
    bp->SetDomain(1, -100.0, 100.0);
    bp->SetExtents(0, bp->Domain(0));
    bp->SetExtents(1, bp->Domain(1));
    (*b)->m_S.Append(bp);
    const int bsi = (*b)->m_S.Count() - 1;
    ON_BrepFace& bface = (*b)->NewFace(bsi);
    (*b)->NewPlanarFaceLoop(bface.m_face_index, ON_BrepLoop::outer, boundary, true);
    const ON_BrepLoop* bloop = (*b)->m_L.Last();
    bp->SetDomain(0, bloop->m_pbox.m_min.x, bloop->m_pbox.m_max.x);
    bp->SetDomain(1, bloop->m_pbox.m_min.y, bloop->m_pbox.m_max.y);
    bp->SetExtents(0, bp->Domain(0));
    bp->SetExtents(1, bp->Domain(1));
    (*b)->FlipFace(bface);
    (*b)->SetTrimIsoFlags(bface);
    boundary.Empty();
    delete bcurve;

    // Generate the top cap
    boundary.Append(ON_Curve::Cast(tcurve));
    ON_PlaneSurface* tp = new ON_PlaneSurface();
    tp->m_plane = hyp_top_plane;
    tp->SetDomain(0, -100.0, 100.0);
    tp->SetDomain(1, -100.0, 100.0);
    tp->SetExtents(0, bp->Domain(0));
    tp->SetExtents(1, bp->Domain(1));
    (*b)->m_S.Append(tp);
    int tsi = (*b)->m_S.Count() - 1;
    ON_BrepFace& tface = (*b)->NewFace(tsi);
    (*b)->NewPlanarFaceLoop(tface.m_face_index, ON_BrepLoop::outer, boundary, true);
    ON_BrepLoop* tloop = (*b)->m_L.Last();
    tp->SetDomain(0, tloop->m_pbox.m_min.x, tloop->m_pbox.m_max.x);
    tp->SetDomain(1, tloop->m_pbox.m_min.y, tloop->m_pbox.m_max.y);
    tp->SetExtents(0, bp->Domain(0));
    tp->SetExtents(1, bp->Domain(1));
    (*b)->SetTrimIsoFlags(tface);
    delete tcurve;

    //  Now, the hard part.  Need an elliptical hyperbolic NURBS surface.
    //  First step is to create a nurbs curve.

    double MX = eip->hyp_b * eip->hyp_bnr;
    point_t ep1, ep2, ep3;
    VSET(ep1, -eip->hyp_b, 0, 0.5*MAGNITUDE(eip->hyp_Hi));
    VSET(ep2, -MX*eip->hyp_bnr, 0, 0);
    VSET(ep3, -eip->hyp_b, 0, -0.5*MAGNITUDE(eip->hyp_Hi));

    ON_3dPoint onp1 = ON_3dPoint(ep1);
    ON_3dPoint onp2 = ON_3dPoint(ep2);
    ON_3dPoint onp3 = ON_3dPoint(ep3);

    ON_3dPointArray cpts(3);
    cpts.Append(onp1);
    cpts.Append(onp2);
    cpts.Append(onp3);
    ON_BezierCurve *bezcurve = new ON_BezierCurve(cpts);
    bezcurve->MakeRational();
    bezcurve->SetWeight(1, bezcurve->Weight(0)/eip->hyp_bnr);

    ON_NurbsCurve* tnurbscurve = ON_NurbsCurve::New();
    bezcurve->GetNurbForm(*tnurbscurve);
    delete bezcurve;

    ON_3dPoint revpnt1 = ON_3dPoint(0, 0, -0.5*MAGNITUDE(eip->hyp_Hi));
    ON_3dPoint revpnt2 = ON_3dPoint(0, 0, 0.5*MAGNITUDE(eip->hyp_Hi));

    ON_Line revaxis = ON_Line(revpnt1, revpnt2);
    ON_RevSurface* hyp_surf = ON_RevSurface::New();
    hyp_surf->m_curve = tnurbscurve;
    hyp_surf->m_axis = revaxis;
    hyp_surf->m_angle = ON_Interval(0, 2*ON_PI);

    // Get the NURBS form of the surface
    ON_NurbsSurface *hypcurvedsurf = ON_NurbsSurface::New();
    hyp_surf->GetNurbForm(*hypcurvedsurf, 0.0);
    delete hyp_surf;

    for (int i = 0; i < hypcurvedsurf->CVCount(0); i++) {
	for (int j = 0; j < hypcurvedsurf->CVCount(1); j++) {
	    point_t cvpt;
	    ON_4dPoint ctrlpt;
	    hypcurvedsurf->GetCV(i, j, ctrlpt);

	    // Scale and shear
	    vect_t proj_ah;
	    vect_t proj_ax;
	    fastf_t factor;

	    VPROJECT(eip->hyp_A, eip->hyp_Hi, proj_ah, proj_ax);
	    VSET(cvpt, ctrlpt.x * MAGNITUDE(proj_ax)/eip->hyp_b, ctrlpt.y, ctrlpt.z);
	    factor = VDOT(eip->hyp_A, eip->hyp_Hi)>0 ? 1.0 : -1.0;
	    cvpt[2] += factor*cvpt[0]/MAGNITUDE(proj_ax)*MAGNITUDE(proj_ah) + 0.5*MAGNITUDE(eip->hyp_Hi)*ctrlpt.w;

	    // Rotate
	    vect_t Au, Bu, Hu;
	    mat_t R;
	    point_t new_cvpt;

	    VSCALE(Bu, y_dir, 1/MAGNITUDE(y_dir));
	    VSCALE(Hu, eip->hyp_Hi, 1/MAGNITUDE(eip->hyp_Hi));
	    VCROSS(Au, Bu, Hu);
	    VUNITIZE(Au);
	    MAT_IDN(R);
	    VMOVE(&R[0], Au);
	    VMOVE(&R[4], Bu);
	    VMOVE(&R[8], Hu);
	    VEC3X3MAT(new_cvpt, cvpt, R);
	    VMOVE(cvpt, new_cvpt);

	    // Translate
	    vect_t scale_v;
	    VSCALE(scale_v, eip->hyp_Vi, ctrlpt.w);
	    VADD2(cvpt, cvpt, scale_v);
	    ON_4dPoint newpt = ON_4dPoint(cvpt[0], cvpt[1], cvpt[2], ctrlpt.w);
	    hypcurvedsurf->SetCV(i, j, newpt);
	}
    }

    (*b)->m_S.Append(hypcurvedsurf);
    int surfindex = (*b)->m_S.Count();
    ON_BrepFace& face = (*b)->NewFace(surfindex - 1);
    (*b)->FlipFace(face);
    int faceindex = (*b)->m_F.Count();
    (*b)->NewOuterLoop(faceindex-1);

}
Beispiel #10
0
extern "C" void
rt_ehy_brep(ON_Brep **b, const struct rt_db_internal *ip, const struct bn_tol *)
{
    struct rt_ehy_internal *eip;

    RT_CK_DB_INTERNAL(ip);
    eip = (struct rt_ehy_internal *)ip->idb_ptr;
    RT_EHY_CK_MAGIC(eip);

    // Check the parameters
    if (!NEAR_ZERO(VDOT(eip->ehy_Au, eip->ehy_H), RT_DOT_TOL)) {
	bu_log("rt_ehy_brep: Au and H are not perpendicular!\n");
	return;
    }

    if (!NEAR_EQUAL(MAGNITUDE(eip->ehy_Au), 1.0, RT_LEN_TOL)) {
	bu_log("rt_ehy_brep: Au not a unit vector!\n");
	return;
    }

    if (MAGNITUDE(eip->ehy_H) < RT_LEN_TOL
	|| eip->ehy_c < RT_LEN_TOL
	|| eip->ehy_r1 < RT_LEN_TOL
	|| eip->ehy_r2 < RT_LEN_TOL) {
	bu_log("rt_ehy_brep: not all dimensions positive!\n");
	return;
    }

    if (eip->ehy_r2 > eip->ehy_r1) {
	bu_log("rt_ehy_brep: semi-minor axis cannot be longer than semi-major axis!\n");
	return;
    }

    point_t p1_origin;
    ON_3dPoint plane1_origin, plane2_origin;
    ON_3dVector plane_x_dir, plane_y_dir;

    //  First, find plane in 3 space corresponding to the bottom face of the EPA.

    vect_t x_dir, y_dir;

    VMOVE(x_dir, eip->ehy_Au);
    VCROSS(y_dir, eip->ehy_Au, eip->ehy_H);
    VUNITIZE(y_dir);

    VMOVE(p1_origin, eip->ehy_V);
    plane1_origin = ON_3dPoint(p1_origin);
    plane_x_dir = ON_3dVector(x_dir);
    plane_y_dir = ON_3dVector(y_dir);
    const ON_Plane ehy_bottom_plane(plane1_origin, plane_x_dir, plane_y_dir);

    //  Next, create an ellipse in the plane corresponding to the edge of the ehy.

    ON_Ellipse ellipse1(ehy_bottom_plane, eip->ehy_r1, eip->ehy_r2);
    ON_NurbsCurve* ellcurve1 = ON_NurbsCurve::New();
    ellipse1.GetNurbForm((*ellcurve1));
    ellcurve1->SetDomain(0.0, 1.0);

    // Generate the bottom cap
    ON_SimpleArray<ON_Curve*> boundary;
    boundary.Append(ON_Curve::Cast(ellcurve1));
    ON_PlaneSurface* bp = new ON_PlaneSurface();
    bp->m_plane = ehy_bottom_plane;
    bp->SetDomain(0, -100.0, 100.0);
    bp->SetDomain(1, -100.0, 100.0);
    bp->SetExtents(0, bp->Domain(0));
    bp->SetExtents(1, bp->Domain(1));
    (*b)->m_S.Append(bp);
    const int bsi = (*b)->m_S.Count() - 1;
    ON_BrepFace& bface = (*b)->NewFace(bsi);
    (*b)->NewPlanarFaceLoop(bface.m_face_index, ON_BrepLoop::outer, boundary, true);
    const ON_BrepLoop* bloop = (*b)->m_L.Last();
    bp->SetDomain(0, bloop->m_pbox.m_min.x, bloop->m_pbox.m_max.x);
    bp->SetDomain(1, bloop->m_pbox.m_min.y, bloop->m_pbox.m_max.y);
    bp->SetExtents(0, bp->Domain(0));
    bp->SetExtents(1, bp->Domain(1));
    (*b)->SetTrimIsoFlags(bface);
    delete ellcurve1;

    //  Now, the hard part.  Need an elliptical hyperbolic NURBS surface
    //  First step is to create a nurbs curve.

    double intercept_calc = (eip->ehy_c)*(eip->ehy_c)/(MAGNITUDE(eip->ehy_H) + eip->ehy_c);
    double intercept_dist = MAGNITUDE(eip->ehy_H) + eip->ehy_c - intercept_calc;
    double intercept_length = intercept_dist - MAGNITUDE(eip->ehy_H);
    double MX = MAGNITUDE(eip->ehy_H);
    double MP = MX + intercept_length;
    double w = (MX/MP)/(1-MX/MP);

    point_t ep1, ep2, ep3;
    VSET(ep1, -eip->ehy_r1, 0, 0);
    VSET(ep2, 0, 0, w*intercept_dist);
    VSET(ep3, eip->ehy_r1, 0, 0);
    ON_3dPoint onp1 = ON_3dPoint(ep1);
    ON_3dPoint onp2 = ON_3dPoint(ep2);
    ON_3dPoint onp3 = ON_3dPoint(ep3);

    ON_3dPointArray cpts(3);
    cpts.Append(onp1);
    cpts.Append(onp2);
    cpts.Append(onp3);
    ON_BezierCurve *bcurve = new ON_BezierCurve(cpts);
    bcurve->MakeRational();
    bcurve->SetWeight(1, w);

    ON_NurbsCurve* tnurbscurve = ON_NurbsCurve::New();
    bcurve->GetNurbForm(*tnurbscurve);
    ON_NurbsCurve* hypbnurbscurve = ON_NurbsCurve::New();
    const ON_Interval subinterval = ON_Interval(0, 0.5);
    tnurbscurve->GetNurbForm(*hypbnurbscurve, 0.0, &subinterval);

    // Next, rotate that curve around the height vector.

    point_t revpoint1, revpoint2;
    VSET(revpoint1, 0, 0, 0);
    VSET(revpoint2, 0, 0, MX);
    ON_3dPoint rpnt1 = ON_3dPoint(revpoint1);
    ON_3dPoint rpnt2 = ON_3dPoint(revpoint2);

    ON_Line revaxis = ON_Line(rpnt1, rpnt2);
    ON_RevSurface* hyp_surf = ON_RevSurface::New();
    hyp_surf->m_curve = hypbnurbscurve;
    hyp_surf->m_axis = revaxis;
    hyp_surf->m_angle = ON_Interval(0, 2*ON_PI);

    // Get the NURBS form of the surface
    ON_NurbsSurface *ehycurvedsurf = ON_NurbsSurface::New();
    hyp_surf->GetNurbForm(*ehycurvedsurf, 0.0);

    delete hyp_surf;
    delete tnurbscurve;
    delete bcurve;

    // Transformations

    for (int i = 0; i < ehycurvedsurf->CVCount(0); i++) {
	for (int j = 0; j < ehycurvedsurf->CVCount(1); j++) {
	    point_t cvpt;
	    ON_4dPoint ctrlpt;
	    ehycurvedsurf->GetCV(i, j, ctrlpt);

	    // Scale the control points of the
	    // resulting surface to map to the shorter axis.
	    VSET(cvpt, ctrlpt.x, ctrlpt.y * eip->ehy_r2/eip->ehy_r1, ctrlpt.z);

	    // Rotate according to the directions of Au and H
	    vect_t Hu;
	    mat_t R;
	    point_t new_cvpt;

	    VSCALE(Hu, eip->ehy_H, 1/MAGNITUDE(eip->ehy_H));
	    MAT_IDN(R);
	    VMOVE(&R[0], eip->ehy_Au);
	    VMOVE(&R[4], y_dir);
	    VMOVE(&R[8], Hu);
	    VEC3X3MAT(new_cvpt, cvpt, R);
	    VMOVE(cvpt, new_cvpt);

	    // Translate according to V
	    vect_t scale_v;
	    VSCALE(scale_v, eip->ehy_V, ctrlpt.w);
	    VADD2(cvpt, cvpt, scale_v);

	    ON_4dPoint newpt = ON_4dPoint(cvpt[0], cvpt[1], cvpt[2], ctrlpt.w);
	    ehycurvedsurf->SetCV(i, j, newpt);
	}
    }

    (*b)->m_S.Append(ehycurvedsurf);
    int surfindex = (*b)->m_S.Count();
    ON_BrepFace& face = (*b)->NewFace(surfindex - 1);
    (*b)->FlipFace(face);
    int faceindex = (*b)->m_F.Count();
    (*b)->NewOuterLoop(faceindex-1);
}
Beispiel #11
0
bool ON_Arc::GetNurbFormParameterFromRadian(double RadianParameter, double* NurbParameter ) const
{
	if(!IsValid() || NurbParameter==NULL) 
		return false;

  ON_Interval ADomain = DomainRadians();

  double endtol = 10.0*ON_EPSILON*(fabs(ADomain[0]) + fabs(ADomain[1]));

  double del = RadianParameter - ADomain[0];
	if(del <= endtol && del >= -ON_SQRT_EPSILON)
  {
		*NurbParameter=ADomain[0];
		return true;
	} 
  else {
    del = ADomain[1] - RadianParameter;
    if(del <= endtol && del >= -ON_SQRT_EPSILON){
		  *NurbParameter=ADomain[1];
		  return true;
    }
	}

	if( !ADomain.Includes(RadianParameter ) )
		return false;


	ON_NurbsCurve crv;

	if( !GetNurbForm(crv))
		return false;

	//Isolate a bezier that contains the solution
	int cnt = crv.SpanCount();	
	int si =0;	//get span index
	int ki=0;		//knot index
	double ang = ADomain[0];
	ON_3dPoint cp;
	cp = crv.PointAt( crv.Knot(0) ) - Center();
	double x = ON_DotProduct(Plane().Xaxis(),cp);
	double y = ON_DotProduct(Plane().Yaxis(),cp);
	double at = atan2( y, x);	//todo make sure we dont go to far

	for( si=0, ki=0; si<cnt; si++, ki+=crv.KnotMultiplicity(ki) ){
		cp = crv.PointAt( crv.Knot(ki+2)) - Center();
		x = ON_DotProduct(Plane().Xaxis(),cp);
		y = ON_DotProduct(Plane().Yaxis(),cp);
		double at2 = atan2(y,x);
		if(at2>at)
			ang+=(at2-at);
		else
			ang += (2*ON_PI + at2 - at);
		at = at2;
		if( ang>RadianParameter)
			break;
	} 

	// Crash Protection trr#55679
	if( ki+2>= crv.KnotCount())
	{
		 *NurbParameter=ADomain[1];
		 return true;		
	}
	ON_Interval BezDomain(crv.Knot(ki), crv.Knot(ki+2));

	ON_BezierCurve bez;
	if(!crv.ConvertSpanToBezier(ki,bez))
		return false;

 	ON_Xform COC;
	COC.ChangeBasis( ON_Plane(),Plane());   

	
	bez.Transform(COC);	// change coordinates to circles local frame
	double a[3];							// Bez coefficients of a quadratic to solve
	for(int i=0; i<3; i++)
		a[i] = tan(RadianParameter)* bez.CV(i)[0] - bez.CV(i)[1];

	//Solve the Quadratic
	double descrim = (a[1]*a[1]) - a[0]*a[2];
	double squared = a[0]-2*a[1]+a[2];
	double tbez;
	if(fabs(squared)> ON_ZERO_TOLERANCE){
		ON_ASSERT(descrim>=0);
		descrim = sqrt(descrim);
		tbez = (a[0]-a[1] + descrim)/(a[0]-2*a[1]+a[2]);
		if( tbez<0 || tbez>1){
			double tbez2 = (a[0]-a[1]-descrim)/(a[0] - 2*a[1] + a[2]);
			if( fabs(tbez2 - .5)<fabs(tbez-.5) )
				tbez = tbez2;
		}

		ON_ASSERT(tbez>=-ON_ZERO_TOLERANCE && tbez<=1+ON_ZERO_TOLERANCE);
	}
	else{
		// Quadratic degenerates to linear
		tbez = 1.0;
		if(a[0]-a[2])
			tbez = a[0]/(a[0]-a[2]);
	}	
	if(tbez<0)
		tbez=0.0;
	else if(tbez>1.0)
		tbez=1.0;


		//Debug ONLY Code  - check the result
//		double aa = a[0]*(1-tbez)*(1-tbez)  + 2*a[1]*tbez*(1-tbez) + a[2]*tbez*tbez;
//		double tantheta= tan(RadianParameter);
//		ON_3dPoint bezp;
//		bez.Evaluate(tbez, 0, 3, bezp);
//		double yx = bezp.y/bezp.x;


	*NurbParameter = BezDomain.ParameterAt(tbez);
	return true;

}