int main(int argc, char ** argv)
{
	prirntf("Usage: [plot3d file prefix] [labeled TXT file]\n");

	OSUFlow *osuflow = new OSUFlow();
	printf("read file %s\n", argv[1]);

	VECTOR3 minLen, maxLen, minB, maxB;
	minB[0] = 0; minB[1] = 0; minB[2] = 0;
    maxB[0] = 200; maxB[1] = 200; maxB[2] = 200;

	osuflow->LoadDataCurvilinear((const char*)argv[1], true, minB, maxB); //true: a steady flow field
	osuflow->Boundary(minLen, maxLen);
	printf(" volume boundary X: [%f %f] Y: [%f %f] Z: [%f %f]\n",
								minLen[0], maxLen[0], minLen[1], maxLen[1],
								minLen[2], maxLen[2]);


	int dim[3]	;
	CurvilinearGrid *grid = (CurvilinearGrid*)osuflow->GetFlowField()->GetGrid();
	grid->GetDimension(dim[0], dim[1], dim[2]);
	printf("dim: %d %d %d\n", dim[0], dim[1], dim[2]);
	int i,j,k;
#if 0
	for (k=0; k<dim[2]; k++)
		for (j=0; j<dim[1]; j++)
			for (i=0; i<dim[0]; i++) {
				VECTOR3 v;
				grid->coordinates_at_vertex(VECTOR3(i,j,k),&v);	//return 1 velocity value
				printf("%f %f %f\n", v[0], v[1], v[2]);
			}
#endif

	int i1, i2, j1, j2, k1, k2;
	if (argc<8) {
		printf("Please input range: (i2 i1 j2 j1 k2 k1)\n");
		scanf("%d %d %d %d %d %d", &i2, &i1, &j2, &j1, &k2, &k1);
	} else {
		i2 = atoi(argv[2]);
		i1 = atoi(argv[3]);
		j2 = atoi(argv[4]);
		j1 = atoi(argv[5]);
		k2 = atoi(argv[6]);
		k1 = atoi(argv[7]);
	}
	// Does not include upbound


	char out_fname[4][256];
	char prefix[4][10]={"lambda2", "q", "delta", "gamma"};
	for (i=0; i<4; i++)
	{
		sprintf(out_fname[i], "%s_%s.raw", argv[8], prefix[i]);
		printf("Output file: %s\n", out_fname[i]);
	}

	float x,y,z;
	VECTOR3 from, to;
	grid->coordinates_at_vertex(VECTOR3(i1, j1, k1), &from);
	grid->coordinates_at_vertex(VECTOR3(i2, j2, k2), &to);
	printf("from: %f %f %f, to: %f %f %f\n", from[0], from[1], from[2], to[0], to[1], to[2]);

	// get min offset unit
	float min_off[3] =  {1e+9,1e+9,1e+9};
	{
		for (i=i1+1; i<i2; i++) {
			VECTOR3 v1, v2;
			grid->coordinates_at_vertex(VECTOR3(i-1, j1, k1), &v1);
			grid->coordinates_at_vertex(VECTOR3(i, j1, k1), &v2);
			min_off[0] = min(v2[0]-v1[0], min_off[0]);
		}
		for (j=j1+1; j<j2; j++) {
			VECTOR3 v1, v2;
			grid->coordinates_at_vertex(VECTOR3(i1, j-1, k1), &v1);
			grid->coordinates_at_vertex(VECTOR3(i1, j, k1), &v2);
			min_off[1] = min(v2[1]-v1[1], min_off[1]);
		}
		for (k=k1+1; k<k2; k++) {
			VECTOR3 v1, v2;
			grid->coordinates_at_vertex(VECTOR3(i1, j1, k-1), &v1);
			grid->coordinates_at_vertex(VECTOR3(i1, j1, k), &v2);
			min_off[2] = min(v2[2]-v1[2], min_off[2]);
		}
		printf("Min grid unit: %f %f %f\n", min_off[0], min_off[1], min_off[2]);
	}

	if (!(from[0]<=to[0] && from[1]<=to[1] && from[2]<=to[2]))
		printf("Input invalid.  Program halts\n");
	int count=0;
	FILE *fp[4];
	for (i=0; i<4; i++)
		fp[i] = fopen(out_fname[i], "wb");

	for (z=from[2]; z< to[2]; z+=unit) {
		for (y=from[1]; y< to[1]; y+=unit)
			for (x=from[0]; x< to[0]; x+=unit)
			{
#if 0
				//VECTOR3 v;
				//osuflow->GetFlowField()->at_phys(VECTOR3(x,y,z), 0, v);
				//printf("%f %f %f\n", v[0], v[1], v[2]);
#endif
				float f[4]; //lambda2, q, delta, gamma;
				osuflow->GetFlowField()->GenerateVortexMetrics(VECTOR3(x,y,z), f[0], f[1], f[2], f[3]);
				for (i=0; i<4; i++)
					fwrite((char *)&f[i], 1, 4, fp[i]);
				count++;
			}
		printf("z=%f\n", z);
	}
	for (i=0; i<4; i++)
		fclose(fp[i]);


	// get dim for given range
	int bdim[3];
	bdim[0] = bdim[1] = bdim[2] = 0;
	{
		int d;
		for (d=0; d<3; d++)
			for (x=from[d]; x<=to[d]; x+=unit)
				bdim[d] ++;
	}

	for (i=0; i<4; i++)
	{
		// get out_fname filename only (no path)
		char *out_fname_no_path = strrchr(out_fname[i], '/');
		if (out_fname_no_path==NULL) out_fname_no_path = out_fname[i]; else out_fname_no_path++;

		char out_desc_fname[256];
		sprintf(out_desc_fname, "%s_%s.nhdr", argv[8], prefix[i]);
		FILE *fp = fopen(out_desc_fname, "wt");
		fprintf(fp,
				"NRRD0001\n"
				"type: float\n"
				"dimension: 3\n"
				"sizes: %d %d %d\n"
				"encoding: raw\n"
				"data file: %s\n"
				"# sampling distance: %f\n"
				"# grid range: %d %d %d - %d %d %d\n"
				"# physical range: %f %f %f - %f %f %f\n"
				"# min grid unit: %f %f %f\n",
				bdim[0], bdim[1], bdim[2], out_fname_no_path,
				unit, i1, j1, k1, i2, j2, k2, from[0], from[1], from[2], to[0], to[1], to[2], min_off[0], min_off[1], min_off[2]);
		fclose(fp);
	}

	printf("Done (%d elems)\n", count);

	return 0;
}
int main(int argc, char ** argv)
{
#if 1
    // read PLOT3D data
    char file1[256], file2[256];
    int files;
    if (argc<=1) { // load default data
        sprintf(file1, "%s/curvilinear/combxyz.bin", SAMPLE_DATA_DIR); //t->GetDataRoot());
        printf("%s\n", file1);
        sprintf(file2, "%s/curvilinear/combq.bin", SAMPLE_DATA_DIR); //t->GetDataRoot());
        files = 2;
    } else {
        strcpy(file1, argv[1]);
        strcpy(file2, argv[2]);
    }

    // Start by loading some data.
    vtkMultiBlockPLOT3DReader *pl3dReader = vtkMultiBlockPLOT3DReader::New();
    // set data
    pl3dReader->SetXYZFileName(file1);
    pl3dReader->SetQFileName(file2);
    pl3dReader->SetAutoDetectFormat(1);  // should be on for loading binary file
    //pl3dReader->SetScalarFunctionNumber(100);
    pl3dReader->SetVectorFunctionNumber(200); // load velocity
    pl3dReader->Update();
    vtkDataSet *data = vtkDataSet::SafeDownCast( pl3dReader->GetOutput()->GetBlock(0) );

    OSUFlow *osuflow = new OSUFlow;
    CVectorField *field = new VectorFieldVTK( data );
    osuflow->SetFlowField( field );

#else
    // debug with regular grids
    OSUFlow *osuflow = new OSUFlow;
    osuflow->LoadData(SAMPLE_DATA_DIR "/regular/tornado/1.vec", true); //true: static dataset
    CVectorField *field = osuflow->GetFlowField();
#endif


    //field->NormalizeField(true);


    VECTOR3 minLen, maxLen;
    osuflow->Boundary(minLen, maxLen);
    printf(" volume boundary X: [%f %f] Y: [%f %f] Z: [%f %f]\n",
                                minLen[0], maxLen[0], minLen[1], maxLen[1],
                                minLen[2], maxLen[2]);


    int dim[3]	;
    field->getDimension(dim[0], dim[1], dim[2]);
    printf("dim: %d %d %d\n", dim[0], dim[1], dim[2]);

    // define range
    int i1, i2, j1, j2, k1, k2;
    int i,j,k;
    i1 = 0; i2 = dim[0];
    j1 = 0; j2 = dim[1];
    k1 = 0; k2 = dim[2];

    // init file
    char out_fname[4][256];
    char prefix[4][10]={"lambda2", "q", "delta", "gamma"};
    for (i=0; i<4; i++)
    {
        sprintf(out_fname[i], "vortex_%s.raw", prefix[i]);
        printf("Output file: %s\n", out_fname[i]);
    }

    // determine unit
    float x,y,z;
    float unit = std::min(std::min(maxLen[0]-minLen[0], maxLen[1]-minLen[1]), maxLen[2]-minLen[2]) / 50;
    float delta = unit * .1f; // for Jacobian computation
    printf("Sampling unit: %f\n", unit);

    // open file
    int count=0;
    FILE *fp[4];
    for (i=0; i<4; i++)
        fp[i] = fopen(out_fname[i], "wb");

    // detect vortices
    for (z=minLen[2]; z< maxLen[2]; z+=unit) {
        for (y=minLen[1]; y< maxLen[1]; y+=unit)
            for (x=minLen[0]; x< maxLen[0]; x+=unit)
            {
#if 0
                //VECTOR3 v;
                //osuflow->GetFlowField()->at_phys(VECTOR3(x,y,z), 0, v);
                //printf("%f %f %f\n", v[0], v[1], v[2]);
#endif
                float f[4]; //lambda2, q, delta, gamma;
                field->GenerateVortexMetrics(VECTOR3(x,y,z), f[0], f[1], f[2], f[3], delta);
                for (i=0; i<4; i++)
                    fwrite((char *)&f[i], 1, 4, fp[i]);
                count++;
            }
        printf("z=%f\n", z);
    }
    for (i=0; i<4; i++)
        fclose(fp[i]);


    // get sampling dim
    int bdim[3];
    bdim[0] = bdim[1] = bdim[2] = 0;
    {
        int d;
        for (d=0; d<3; d++)
            for (x=minLen[d]; x<=maxLen[d]; x+=unit)
                bdim[d] ++;
    }

    // output
    for (i=0; i<4; i++)
    {
        // get out_fname filename only (no path)
        char *out_fname_no_path = strrchr(out_fname[i], '/');
        if (out_fname_no_path==NULL) out_fname_no_path = out_fname[i]; else out_fname_no_path++;

        char out_desc_fname[256];
        sprintf(out_desc_fname, "%s_%s.nhdr", "vortex", prefix[i]);
        FILE *fp = fopen(out_desc_fname, "wt");
        fprintf(fp,
                "NRRD0001\n"
                "type: float\n"
                "dimension: 3\n"
                "sizes: %d %d %d\n"
                "encoding: raw\n"
                "data file: %s\n"
                "space origin: (%f,%f,%f)\n"
                "space directions: (%f,0,0) (0,%f,0) (0,0,%f)\n"
                "# sampling distance: %f\n"
                "# grid range: %d %d %d - %d %d %d\n"
                "# physical range: %f %f %f - %f %f %f\n",
                bdim[0], bdim[1], bdim[2], out_fname_no_path,
                minLen[0], minLen[1], minLen[2], unit, unit, unit,
                unit, i1, j1, k1, i2, j2, k2, minLen[0], minLen[1], minLen[2], maxLen[0], maxLen[1], maxLen[2]);
        fclose(fp);
    }

    printf("Done (%d elems)\n", count);
    return 0;
}
Beispiel #3
0
int main(int argc, char **argv)
{
	printf("Usage: computeFTLE flowmap.raw w h d RES\n");
	int w = atoi(argv[2]),
		h = atoi(argv[3]),
		d = atoi(argv[4]);
	float RES = atof(argv[5]);
	printf("Opening file %s, w h d: %d %d %d\n", argv[1], w, h, d);

	vector<VECTOR3> offset(w*h*d);

	FILE *fp = fopen(argv[1], "rb");
	fread(&offset[0], w*h*d, 12, fp);
	fclose(fp);

	if (0) // now we generate flowmap
	{
		int x,y,z, count=0;
		for (z=0; z<d; z++)
			for (y=0; y<h; y++)
				for (x=0; x<w; x++) {
					offset[count] = offset[count] + VECTOR3(x*RES, y*RES, z*RES);
					//printf("offset: %f %f %f\n", offset[count][0], offset[count][1], offset[count][2]);
					count ++;
				}
	}

	// use osuflow
	OSUFlow *osuflow = new OSUFlow();
	float minB[3] = {0,0,0}, maxB[3];
	maxB[0] = w-1;  maxB[1] = h-1; maxB[2] = d-1;
	osuflow->CreateStaticFlowField((float *)&offset[0], w, h, d, minB, maxB);
	CVectorField *field = osuflow->GetFlowField();




	// FTLE
    vector<float> ftle(w*h*d);
	int x,y,z, count=0;
	for (z=0; z<d; z++)
	{
		for (y=0; y<h; y++)
			for (x=0; x<w; x++)
			{
                MATRIX3 jac = field->Jacobian(VECTOR3(x,y,z)),
                        jsquare; // TODO: delta in Jac. computation
				jac = jac * (1/RES);
				jsquare = jac.transpose() * jac;

				float m[3][3], eigenvalues[3];
				for (int i = 0; i < 3; i++) {
					for (int j = 0; j < 3; j++) {
						m[i][j] = jsquare(i, j);
					}
				}
				compute_eigenvalues(m, eigenvalues);
				float max_eig = max(eigenvalues[0], max(eigenvalues[1], eigenvalues[2]));
				//printf("%f\n", max_eig);
				ftle[count++] = log(max_eig)*.5;
			}
		printf("z=%d\n", z);
	}

	fp = fopen("ftle.raw", "wb");
	fwrite(&ftle[0], w*h*d, sizeof(float), fp);
	fclose(fp);

	printf("output: ftle.raw\n");
	return 0;
}