Beispiel #1
0
s32 _sys_lwcond_queue_wait(PPUThread& ppu, u32 lwcond_id, u32 lwmutex_id, u64 timeout)
{
	sys_lwcond.Log("_sys_lwcond_queue_wait(lwcond_id=0x%x, lwmutex_id=0x%x, timeout=0x%llx)", lwcond_id, lwmutex_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto cond = idm::get<lv2_lwcond_t>(lwcond_id);
	const auto mutex = idm::get<lv2_lwmutex_t>(lwmutex_id);

	if (!cond || !mutex)
	{
		return CELL_ESRCH;
	}

	// finalize unlocking the mutex
	mutex->unlock(lv2_lock);

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, cond->sq);

	// potential mutex waiter (not added immediately)
	sleep_queue_entry_t mutex_waiter(ppu, cond->sq, defer_sleep);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout && waiter)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				// try to reown the mutex if timed out
				if (mutex->signaled)
				{
					mutex->signaled--;

					return CELL_EDEADLK;
				}
				else
				{
					return CELL_ETIMEDOUT;
				}
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	// return cause
	return ppu.GPR[3] ? CELL_EBUSY : CELL_OK;
}
Beispiel #2
0
s32 sys_rwlock_rlock(PPUThread& ppu, u32 rw_lock_id, u64 timeout)
{
	sys_rwlock.Log("sys_rwlock_rlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto rwlock = idm::get<lv2_rwlock_t>(rw_lock_id);

	if (!rwlock)
	{
		return CELL_ESRCH;
	}

	if (!rwlock->writer && rwlock->wsq.empty())
	{
		if (!++rwlock->readers)
		{
			throw EXCEPTION("Too many readers");
		}

		return CELL_OK;
	}

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, rwlock->rsq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	if (rwlock->writer || !rwlock->readers)
	{
		throw EXCEPTION("Unexpected");
	}

	return CELL_OK;
}
Beispiel #3
0
s32 _sys_lwmutex_lock(PPUThread& ppu, u32 lwmutex_id, u64 timeout)
{
	sys_lwmutex.Log("_sys_lwmutex_lock(lwmutex_id=0x%x, timeout=0x%llx)", lwmutex_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto mutex = idm::get<lv2_lwmutex_t>(lwmutex_id);

	if (!mutex)
	{
		return CELL_ESRCH;
	}

	if (mutex->signaled)
	{
		mutex->signaled--;

		return CELL_OK;
	}

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, mutex->sq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	return CELL_OK;
}
Beispiel #4
0
s32 sys_semaphore_wait(PPUThread& ppu, u32 sem_id, u64 timeout)
{
	sys_semaphore.Log("sys_semaphore_wait(sem_id=0x%x, timeout=0x%llx)", sem_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto sem = idm::get<lv2_sema_t>(sem_id);

	if (!sem)
	{
		return CELL_ESRCH;
	}

	if (sem->value > 0)
	{
		sem->value--;
		
		return CELL_OK;
	}

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, sem->sq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	return CELL_OK;
}
Beispiel #5
0
s32 sys_rwlock_wlock(PPUThread& ppu, u32 rw_lock_id, u64 timeout)
{
	sys_rwlock.Log("sys_rwlock_wlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto rwlock = idm::get<lv2_rwlock_t>(rw_lock_id);

	if (!rwlock)
	{
		return CELL_ESRCH;
	}

	if (rwlock->writer.get() == &ppu)
	{
		return CELL_EDEADLK;
	}

	if (!rwlock->readers && !rwlock->writer)
	{
		rwlock->writer = std::static_pointer_cast<CPUThread>(ppu.shared_from_this());

		return CELL_OK;
	}

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, rwlock->wsq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				// if the last waiter quit the writer sleep queue, readers must acquire the lock
				if (!rwlock->writer && rwlock->wsq.size() == 1)
				{
					if (rwlock->wsq.front().get() != &ppu)
					{
						throw EXCEPTION("Unexpected");
					}

					rwlock->wsq.clear();
					rwlock->notify_all(lv2_lock);
				}

				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	if (rwlock->readers || rwlock->writer.get() != &ppu)
	{
		throw EXCEPTION("Unexpected");
	}

	return CELL_OK;
}
Beispiel #6
0
s32 sys_event_queue_receive(PPUThread& ppu, u32 equeue_id, vm::ptr<sys_event_t> dummy_event, u64 timeout)
{
	sys_event.Log("sys_event_queue_receive(equeue_id=0x%x, *0x%x, timeout=0x%llx)", equeue_id, dummy_event, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto queue = idm::get<lv2_event_queue_t>(equeue_id);

	if (!queue)
	{
		return CELL_ESRCH;
	}

	if (queue->type != SYS_PPU_QUEUE)
	{
		return CELL_EINVAL;
	}

	if (queue->events.size())
	{
		// event data is returned in registers (dummy_event is not used)
		std::tie(ppu.GPR[4], ppu.GPR[5], ppu.GPR[6], ppu.GPR[7]) = queue->events.front();

		queue->events.pop_front();

		return CELL_OK;
	}

	// cause (if cancelled) will be returned in r3
	ppu.GPR[3] = 0;

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, queue->sq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	if (ppu.GPR[3])
	{
		if (idm::check<lv2_event_queue_t>(equeue_id))
		{
			throw EXCEPTION("Unexpected");
		}

		return CELL_ECANCELED;
	}

	// r4-r7 registers must be set by push()
	return CELL_OK;
}
Beispiel #7
0
s32 sys_mutex_lock(PPUThread& ppu, u32 mutex_id, u64 timeout)
{
	sys_mutex.Log("sys_mutex_lock(mutex_id=0x%x, timeout=0x%llx)", mutex_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto mutex = idm::get<lv2_mutex_t>(mutex_id);

	if (!mutex)
	{
		return CELL_ESRCH;
	}

	// check current ownership
	if (mutex->owner.get() == &ppu)
	{
		if (mutex->recursive)
		{
			if (mutex->recursive_count == 0xffffffffu)
			{
				return CELL_EKRESOURCE;
			}

			mutex->recursive_count++;

			return CELL_OK;
		}

		return CELL_EDEADLK;
	}

	// lock immediately if not locked
	if (!mutex->owner)
	{
		mutex->owner = std::static_pointer_cast<CPUThread>(ppu.shared_from_this());

		return CELL_OK;
	}

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, mutex->sq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	// new owner must be set when unlocked
	if (mutex->owner.get() != &ppu)
	{
		throw EXCEPTION("Unexpected mutex owner");
	}

	return CELL_OK;
}
Beispiel #8
0
s32 sys_event_flag_wait(PPUThread& ppu, u32 id, u64 bitptn, u32 mode, vm::ptr<u64> result, u64 timeout)
{
	sys_event_flag.Log("sys_event_flag_wait(id=0x%x, bitptn=0x%llx, mode=0x%x, result=*0x%x, timeout=0x%llx)", id, bitptn, mode, result, timeout);

	const u64 start_time = get_system_time();

	// If this syscall is called through the SC instruction, these registers must already contain corresponding values.
	// But let's fixup them (in the case of explicit function call or something) because these values are used externally.
	ppu.GPR[4] = bitptn;
	ppu.GPR[5] = mode;

	LV2_LOCK;

	if (result) *result = 0; // This is very annoying.

	if (!lv2_event_flag_t::check_mode(mode))
	{
		sys_event_flag.Error("sys_event_flag_wait(): unknown mode (0x%x)", mode);
		return CELL_EINVAL;
	}

	const auto eflag = idm::get<lv2_event_flag_t>(id);

	if (!eflag)
	{
		return CELL_ESRCH;
	}

	if (eflag->type == SYS_SYNC_WAITER_SINGLE && eflag->sq.size() > 0)
	{
		return CELL_EPERM;
	}

	if (eflag->check_pattern(bitptn, mode))
	{
		const u64 pattern = eflag->clear_pattern(bitptn, mode);

		if (result) *result = pattern;

		return CELL_OK;
	}

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, eflag->sq);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		if (timeout)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				if (result) *result = eflag->pattern;

				return CELL_ETIMEDOUT;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}
	
	// load pattern saved upon signaling
	if (result)
	{
		*result = ppu.GPR[4];
	}

	// check cause
	if (ppu.GPR[5] == 0)
	{
		return CELL_ECANCELED;
	}

	return CELL_OK;
}
Beispiel #9
0
s32 sys_cond_wait(PPUThread& ppu, u32 cond_id, u64 timeout)
{
	sys_cond.Log("sys_cond_wait(cond_id=0x%x, timeout=%lld)", cond_id, timeout);

	const u64 start_time = get_system_time();

	LV2_LOCK;

	const auto cond = Emu.GetIdManager().get<lv2_cond_t>(cond_id);

	if (!cond)
	{
		return CELL_ESRCH;
	}

	// check current ownership
	if (cond->mutex->owner.get() != &ppu)
	{
		return CELL_EPERM;
	}

	// save the recursive value
	const u32 recursive_value = cond->mutex->recursive_count.exchange(0);

	// unlock the mutex
	cond->mutex->unlock(lv2_lock);

	// add waiter; protocol is ignored in current implementation
	sleep_queue_entry_t waiter(ppu, cond->sq);

	// potential mutex waiter (not added immediately)
	sleep_queue_entry_t mutex_waiter(ppu, cond->mutex->sq, defer_sleep);

	while (!ppu.unsignal())
	{
		CHECK_EMU_STATUS;

		// timeout is ignored if waiting on the cond var is already dropped
		if (timeout && waiter)
		{
			const u64 passed = get_system_time() - start_time;

			if (passed >= timeout)
			{
				// try to reown mutex and exit if timed out
				if (!cond->mutex->owner)
				{
					cond->mutex->owner = ppu.shared_from_this();
					break;
				}

				// drop condition variable and start waiting on the mutex queue
				mutex_waiter.enter();
				waiter.leave();
				continue;
			}

			ppu.cv.wait_for(lv2_lock, std::chrono::microseconds(timeout - passed));
		}
		else
		{
			ppu.cv.wait(lv2_lock);
		}
	}

	// mutex owner is restored after notification or unlocking
	if (cond->mutex->owner.get() != &ppu)
	{
		throw EXCEPTION("Unexpected mutex owner");
	}

	// restore the recursive value
	cond->mutex->recursive_count = recursive_value;

	// check timeout (unclear)
	if (timeout && get_system_time() - start_time > timeout)
	{
		return CELL_ETIMEDOUT;
	}

	return CELL_OK;
}