Beispiel #1
0
bool StateConstraints::isInMaxTrap(const PetriNet& net,
								   size_t place,
								   const BitField& places,
								   const MarkVal* resultMarking) const{
	if(!places.test(place))
		return false;
	/*
		0 if M(p_i) = 1
		0 if there is (p_i , t) ∈ F such that x_j = 0
			for every p_j ∈ t•
		1 otherwise
	*/
	if(resultMarking[place] > 0)
		return false;

	for(unsigned int t = 0; t < net.numberOfTransitions(); t++){
		if(net.inArc(place, t) > 0){
			bool exclude = true;
			for(unsigned int j = 0; j < net.numberOfPlaces(); j++){
				if(net.outArc(t, j) > 0){
					exclude &= !places.test(j);
				}
			}
			if(exclude)
				return false;
		}
	}
	return true;
}
Beispiel #2
0
int StateConstraints::fireVectorSize(const PetriNet& net,
									 const MarkVal* m0,
									 const VarVal*) const{
	assert(nPlaces == net.numberOfPlaces());
	assert(nVars == net.numberOfVariables());

	// Create linary problem
	lprec* lp;
	lp = make_lp(0, net.numberOfTransitions());	// One variable for each entry in the firing vector
	assert(lp);
	if(!lp) return false;

	// Set verbosity
	set_verbose(lp, IMPORTANT);

	// Set transition names (not strictly needed)
	for(size_t i = 0; i < net.numberOfTransitions(); i++)
		set_col_name(lp, i+1, const_cast<char*>(net.transitionNames()[i].c_str()));

	// Start adding rows
	set_add_rowmode(lp, TRUE);

	REAL row[net.numberOfTransitions() + 1];
	for(size_t p = 0; p < nPlaces; p++){
		// Set row zero
		memset(row, 0, sizeof(REAL) * net.numberOfTransitions() + 1);
		for(size_t t = 0; t < net.numberOfTransitions(); t++){
			int d = net.outArc(t, p) - net.inArc(p, t);
			row[1+t] = d;
		}

		if(pcs[p].min == pcs[p].max &&
		   pcs[p].max != CONSTRAINT_INFTY){
			double target = pcs[p].min - m0[p];
			add_constraint(lp, row, EQ,  target);
		}else{
			// There's always a min, even zero is interesting
			double target = pcs[p].min - m0[p];
			add_constraint(lp, row, GE,  target);
			if(pcs[p].max != CONSTRAINT_INFTY){
				double target = pcs[p].max - m0[p];
				add_constraint(lp, row, LE,  target);
			}
		}
	}

	// Finished adding rows
	set_add_rowmode(lp, FALSE);

	// Create objective
	memset(row, 0, sizeof(REAL) * net.numberOfTransitions() + 1);
	for(size_t t = 0; t < net.numberOfTransitions(); t++)
		row[1+t] = 1;	// The sum the components in the firing vector

	// Set objective
	set_obj_fn(lp, row);

	// Minimize the objective
	set_minim(lp);

	// Set variables as integer variables
	for(size_t i = 0; i < net.numberOfTransitions(); i++)
		set_int(lp, 1+i, TRUE);

	// Attempt to solve the problem
	int result = solve(lp);

	// Limit on traps to test
	size_t traplimit = nPlaces * OVER_APPROX_TRAP_FACTOR;
	// Try to add a minimal trap constraint
	while((result == OPTIMAL) && traplimit-- < 0){
		memset(row, 0, sizeof(REAL) * net.numberOfTransitions() + 1);
		// Get the firing vector
		get_variables(lp, row);
		// Compute the resulting marking
		MarkVal rMark[net.numberOfPlaces()];
		for(size_t p = 0; p < nPlaces; p++){
			rMark[p] = m0[p];
			for(size_t t = 0; t < net.numberOfTransitions(); t++)
				rMark[p] += (net.outArc(t, p) - net.inArc(p, t)) * (int)row[t];
		}

		// Find an M-trap
		BitField trap(minimalTrap(net, m0, rMark));

		//Break if there's no trap
		if(trap.none()) break;

		// Compute the new equation
		for(size_t t = 0; t < net.numberOfTransitions(); t++){
			row[1+t] = 0;
			for(size_t p = 0; p < nPlaces; p++)
				if(trap.test(p))
					row[1+t] += net.outArc(t, p) - net.inArc(p, t);
		}

		// Add a new row with target as greater than equal to 1
		set_add_rowmode(lp, TRUE);
		add_constraint(lp, row, GE,  1);
		set_add_rowmode(lp, FALSE);

		// Attempt to solve the again
		result = solve(lp);
	}

	int retval = 0;

	if(result != INFEASIBLE){
		get_variables(lp, row);
		for(size_t t = 0; t < net.numberOfTransitions(); t++)
			retval += (int)row[t];
	}

	// Delete the linear problem
	delete_lp(lp);
	lp = NULL;

	// Return true, if it was infeasible
	return retval;
}