Beispiel #1
0
bool Flux::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	if ((out->tokenno()==0) && (in->tokenno()!=-1))
		in->prependZeros(1);
	if (!in->hasTokens(2))
		return false;

	const int N = in->info().size;
    double lastNorm = 0.0;
    double nextNorm = Map<VectorXd>(in->token(0),N).norm();
    while (in->hasTokens(2))
    {
    	Map<VectorXd> last(in->token(0),N);
        lastNorm = nextNorm;
        Map<VectorXd> next(in->token(1),N);
        nextNorm = next.norm();
        double* output = out->writeToken();
        if (lastNorm*nextNorm==0)
        	*output = 0.0;
        else if (m_onlyIncrease)
        	*output = (next-last).unaryExpr(filterNegativeOp<double>()).squaredNorm() / (lastNorm*nextNorm);
		else
			*output = (next - last).squaredNorm() / (lastNorm * nextNorm);

        in->consumeToken();
    }
    return true;
}
bool Variation::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	if (!in->hasTokens(2)) return false;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	if ((out->tokenno()==0) && (in->tokenno()!=-1))
		in->prependZeros(1);

	const int N = in->info().size;
    double lastNorm = 0.0;
    double nextNorm = Map<VectorXd>(in->token(0),N).norm();
    while (in->hasTokens(2))
    {
    	Map<VectorXd> last(in->token(0),N);
        lastNorm = nextNorm;
        Map<VectorXd> next(in->token(1),N);
        nextNorm = next.norm();
        if (lastNorm*nextNorm !=0)
        	lastNorm = 1 - last.dot(next) / (lastNorm * nextNorm);
        else
        	lastNorm = 0.0;
        out->write(&lastNorm,1);
        in->consumeToken();
    }
    return true;
}
Beispiel #3
0
  bool ComplexDomainFlux::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    if ((out->tokenno()==0) && (in->tokenno()!=-2))
      in->prependZeros(2);
    if (!in->hasTokens(3)) return false;

    const int N = in->info().size/2;
    ArrayXcd inPredPredRotator(N);
    ArrayXcd inPredRotator(N);
    rotatorOp<double> op;
    {
      Map<ArrayXcd> inPredPredData((complex<double>*) in->token(0),N);
      inPredPredRotator = inPredPredData.unaryExpr(op);
    }
    while (in->hasTokens(3))
    {
      Map<ArrayXcd> inPredData((complex<double>*) in->token(1),N);
      Map<ArrayXcd> inData((complex<double>*) in->token(2), N);
      inPredRotator = inPredData.unaryExpr(op);
      double* output = out->writeToken();
      *output++ = (inData - (inPredData * (inPredRotator * inPredPredRotator.conjugate()))).abs().sum();
      in->consumeToken();
      inPredPredRotator.swap(inPredRotator);
    }

    return true;
  }
Beispiel #4
0
bool DataPool::removeComponent(TaskContext* comp) {
  Logger::In in(getName());

  Ports ports = comp->ports()->getPorts();
  for (Ports::iterator it = ports.begin(); it != ports.end() ; ++it) {
    this->removePort(*it);
  }
  return true;
}
bool SpectralCrestFactorPerBand::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	if (in->empty()) return false;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	int nbBands = m_band.size();
    double* tmp = new double[in->info().size];
    while (!in->empty())
    {
    	double* inData = in->readToken();
    	double* output = out->writeToken();
    	for (int k=0;k<nbBands;++k)
    	{
    		bandinfo& bi = m_band[k];
    		double* data = &inData[bi.start];
    		int datalen = bi.length();
    		if (bi.group>1) // grpsize > 1
    		{
    			data = tmp;
    			datalen /= bi.group;
    			double* ptr = &inData[bi.start];
    			for (int d=0;d<datalen;d++) {
    				double s = 0;
    				for (int g=0;g<bi.group;g++)
    					s += *ptr++;
    				data[d] = s;
    			}
    		}
    		double am = 0;
    		double maxdata = data[0];
    		for (int i=0;i<datalen;i++)
    		{
    			am += data[i];
    			if (data[i]>maxdata) {
    				maxdata = data[i];
    			}
    		}
    		if (am!=0) {
    			output[k] = maxdata * datalen / am;
    			continue;
    		}
    		output[k] = maxdata / EPS;
    	}

        in->consumeToken();
    }
    delete [] tmp;

    return true;
}
Beispiel #6
0
bool Logger::unreportComponent( const std::string& component ) {
    TaskContext* comp = this->getPeer(component);
    if (!comp)
    {
        log(Error) << "no such component " << component << endlog();
        return false;
    }

    Ports ports   = comp->ports()->getPorts();
    for (Ports::iterator it = ports.begin(); it != ports.end() ; ++it) {
        this->unreportPort(component, (*it)->getName());
    }
    return true;
}
Beispiel #7
0
  bool AudioFileReader::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==0);
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    int nbRead = readFramesIntoBuffer();
    if (nbRead==0)
      return false;
    if (m_rescale)
      for (int i=0;i<nbRead;i++)
        m_readBuffer[i] = (m_readBuffer[i] - m_mean) * m_factor;
    out->write(m_readBuffer,nbRead);
    return true;
  }
Beispiel #8
0
bool Logger::reportComponent( const std::string& component ) {
    // Users may add own data sources, so avoid duplicates
    //std::vector<std::string> sources                = comp->data()->getNames();
    TaskContext* comp = this->getPeer(component);
    if ( !comp )
    {
        log(Error) << "no such component " << component << endlog();
        return false;
    }

    Ports ports   = comp->ports()->getPorts();
    for (Ports::iterator it = ports.begin(); it != ports.end() ; ++it)
        this->reportPort( component, (*it)->getName() );
    return true;
}
bool FrameTokenizer::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;

    if (in.size > 1)
    {
        cerr << "ERROR: input of FrameTokenizer should be of size 1" << endl;
        return false;
    }
    m_blockSize = getIntParam("blockSize", params);
    if (m_blockSize<=0) {
    	cerr << "ERROR: invalid blockSize parameter !" << endl;
    }
    m_stepSize = getIntParam("stepSize", params);
    if (m_stepSize<=0) {
    	cerr << "ERROR: invalid stepSize parameter !" << endl;
    	return false;
    }

    outStreamInfo().add(StreamInfo());
	StreamInfo& outInfo = outStreamInfo()[0].data;
	outInfo.sampleRate = in.sampleRate;
	outInfo.frameLength = m_blockSize * in.frameLength;
	outInfo.sampleStep = m_stepSize * in.sampleStep;
	outInfo.size = m_blockSize;

    return true;
}
void FrameTokenizer::flush(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	in->appendZeros((m_blockSize-1)/2);
	process(inp,outp);
}
bool Variation::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;
	outStreamInfo().add(StreamInfo(in,1));
    return true;
}
bool AC2LPC::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

    assert(out->info().size==m_nbCoeffs);
    assert(in->info().size>m_nbCoeffs);
    while (!in->empty())
    {
        ac2lpc(in->readToken(),out->writeToken(),m_nbCoeffs);
        in->consumeToken();
    }
    return true;
}
Beispiel #13
0
bool DataPool::addComponent(TaskContext* comp) {
  Logger::In in(getName());

  log(Debug) << "Adding component " << comp->getName() << "." << endlog();

  Ports ports = comp->ports()->getPorts();
  for (Ports::iterator it = ports.begin(); it != ports.end() ; ++it) {
    RTT::base::PortInterface *port = *it;
    if (port->connected()) {
      log(Debug) << "Ignoring port " << comp->getName() << "/" << port->getName() << ": already connected" << endlog();
      continue;
    }
    this->addPort(port);
  }
  return true;
}
bool CSVWriter::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;

	string outputFile = getStringParam("File", params);
	m_precision = getIntParam("Precision",params);
	if (m_precision > (BUFSIZE-10)) {
		cerr << "WARNING: precision is too large ! use precision " << BUFSIZE - 10 << endl;
		m_precision = BUFSIZE - 10;
	}

	int res = preparedirs(outputFile.c_str());
	if (res!=0)
		return false;

	m_fout.open(outputFile.c_str(), ios_base::trunc);
	if (!m_fout.is_open() || m_fout.bad())
		return false;

	if (getStringParam("Metadata",params)=="True") {
		// write metadata at the beginnig of the file
		string paramStr = getStringParam("Attrs",params);
		map<string,string> params = decodeAttributeStr(paramStr);
		ostringstream oss;
		for (map<string,string>::const_iterator it=params.begin();it!=params.end();it++)
			oss << "% " << it->first << "=" << it->second << endl;
		m_fout.write(oss.str().c_str(),oss.str().size());
	}

	return true;
}
Beispiel #15
0
  bool MelFilterBank::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
  {
    assert(inp.size()==1);
    const StreamInfo& in = inp[0].data;

    // build mel filter bank
    m_size = in.size;
    int nbMelFilters = getIntParam("MelNbFilters",params);
    double sampleRate = in.sampleRate;
    double freqMin = getDoubleParam("MelMinFreq",params);
    double freqMax = getDoubleParam("MelMaxFreq",params);
    // set freqMax to Nyquist frequency if greater than nyquist frequency
    freqMax = min(freqMax, sampleRate/2.0);
    double melFreqMin = 1127 * log(1 + freqMin / 700);
    double melFreqMax = 1127 * log(1 + freqMax / 700);

    VectorXd melPeak(nbMelFilters+2);
    VectorXd freqs(nbMelFilters+2);

    melPeak = VectorXd::LinSpaced(nbMelFilters+2,melFreqMin,melFreqMax);
    freqs = ((melPeak / 1127).array().exp() - 1.0) * 700.0;
    VectorXd fftFreqs(m_size);
    fftFreqs = VectorXd::LinSpaced(m_size,0,m_size-1) * sampleRate / ((m_size-1)*2);
    for (int b=1;b<nbMelFilters+1;b++)
    {
      double norm = 2.0 / (freqs(b+1)-freqs(b-1));
      VectorXd fullfilt(m_size);
      //		fullfilt.setZero(m_size);
      //		firstIndex i;
      //		fullfilt += where((fftFreqs(i)>freqs(b-1)) && (fftFreqs(i)<=freqs(b)),norm*(fftFreqs(i)-freqs(b-1))/(freqs(b)-freqs(b-1)),0.0);
      //		fullfilt += where((fftFreqs(i)>freqs(b)) && (fftFreqs(i)<freqs(b+1)),norm*(freqs(b+1)-fftFreqs(i))/(freqs(b+1)-freqs(b)),0.0);
      double ffmin = freqs(b-1);
      double ffmiddle = freqs(b);
      double ffmax = freqs(b+1);
      for (int i=0;i<m_size;i++) {
        if ((fftFreqs(i)<ffmin) || (fftFreqs(i)>ffmax)) {
          fullfilt(i) = 0;
          continue;
        }
        if (fftFreqs(i)<ffmiddle)
          fullfilt(i) = norm*(fftFreqs(i)-ffmin)/(ffmiddle-ffmin);
        else
          fullfilt(i) = norm*(ffmax-fftFreqs(i))/(ffmax-ffmiddle);
      }

      int fStart=0;
      while (fullfilt(fStart)==0.0) fStart++;
      int fEnd=fStart+1;
      while ((fEnd<m_size) && (fullfilt(fEnd)!=0.0)) fEnd++;
      m_filterStart.push_back(fStart);
      m_filters.push_back(RowVectorXd());
      m_filters.back() = fullfilt.segment(fStart,fEnd-fStart);
    }

    outStreamInfo().add(StreamInfo(in, m_filters.size()));
    return true;
  }
bool AC2LPC::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;

	m_nbCoeffs = getIntParam("LPCNbCoeffs",params);
	outStreamInfo().add(StreamInfo(in,m_nbCoeffs));
    return true;
}
Beispiel #17
0
bool Flux::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;

	m_onlyIncrease = (getStringParam("FluxSupport",params)=="Increase");
    outStreamInfo().add(StreamInfo(in,1));
    return true;
}
bool Difference::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	if (in->empty()) return false;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	const int N = in->info().size - 1;
	while (!in->empty())
	{
		double* inData = in->readToken();
		double* outData = out->writeToken();
		for (int i=0;i<N;i++)
			outData[i] = inData[i+1] - inData[i];
		in->consumeToken();
	}
    return true;
}
Beispiel #19
0
  bool Cepstrum::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    if (in->empty())
      return false;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    safeLogOp<double> slop;
    VectorXd outDct;
    while (!in->empty())
    {
      Map<VectorXd> inData(in->readToken(),in->info().size);
      outDct.noalias() = m_dctPlan * inData.unaryExpr(slop);
      memcpy(out->writeToken(),outDct.data() + m_ignoreFirst, out->info().size*sizeof(double));
      in->consumeToken();
    }
    return true;
  }
bool CSVWriter::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==0);
	char buf[BUFSIZE];
	while (!in->empty())
	{
		double* data = in->readToken();
		int strSize = sprintf(buf,"%0.*e",m_precision,data[0]);
		m_fout.write(buf,strSize);
		for (int i=1;i<in->info().size;i++)
		{
			strSize = sprintf(buf,",%0.*e",m_precision,data[i]);
			m_fout.write(buf,strSize);
		}
		m_fout << endl;
		in->consumeToken();
	}
	return true;
}
Beispiel #21
0
  bool MelFilterBank::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    if (in->empty()) return false;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    while (!in->empty()) {
      Map<VectorXd> inData(in->readToken(),in->info().size);
      double* outData = out->writeToken();
      for (int f=0;f<m_filters.size();f++)
      {
        RowVectorXd& filter = m_filters[f];
        outData[f] = filter * inData.segment(m_filterStart[f],filter.size());
      }
      in->consumeToken();
    }

    return true;
  }
bool FrameTokenizer::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;
	assert(in->size()==1);

	if ((out->tokenno()==0) && (in->tokenno()!=-m_blockSize/2))
		in->prependZeros(m_blockSize/2);

	if (!in->hasTokens(m_blockSize))
		return false;

	while (in->hasTokens(m_blockSize)) {
		in->read(out->writeToken(),m_blockSize);
		in->consumeTokens(m_stepSize);
	}

	return true;
}
Beispiel #23
0
  bool SpecificLoudness::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    if (in->empty()) return false;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    const int N = in->info().size;
    const int M = out->info().size;
    while (!in->empty())
    {
      Map<VectorXd> inData(in->readToken(),N);
      double* outData = out->writeToken();
      for (int i=0;i<NB_BARK_BANDS;i++)
        outData[i] = pow(inData.segment(m_bkBdLimits[i],m_bkBdLimits[i+1]-m_bkBdLimits[i]).sum(),0.23);
      in->consumeToken();
    }

    return true;
  }
Beispiel #24
0
    void
    run()
    {
        TestSink sink {*this};
        sink.severity (beast::Journal::Severity::kAll);
        beast::Journal journal {sink};
        TestHandler handler;
        Server s (handler, journal);
        Ports ports;
        std::unique_ptr <RippleSSLContext> c (
            RippleSSLContext::createBare ());
        ports.emplace_back (testPort, beast::IP::Endpoint (
            beast::IP::AddressV4 (127, 0, 0, 1), 0),
                 Port::Security::no_ssl, c.get());
        s.setPorts (ports);

        test_request();
        //test_keepalive();

        s.stop();

        pass();
    }
Beispiel #25
0
int main()
{
    memset(message_buff, 0, sizeof(reply_buf));
    //Initialize structures
    Object o;
    UndoHistory hist;
    Rt rt(&o, &hist);
    hist.setCallback([&rt](const char*msg) {ports.dispatch(msg+1, rt);});

    assert_int_eq(0, o.b, "Verify Zero Based Initialization", __LINE__);

    rt.matches = 0;
    int len = rtosc_message(message_buff, 128, "b", "c", 7);
    assert_hex_eq(ref, message_buff, sizeof(ref)-1, len,
            "Build Param Change Message", __LINE__);

    ports.dispatch(message_buff, rt);
    assert_int_eq(1, rt.matches,
            "Verify A Single Leaf Dispatch Has Occured", __LINE__);
    assert_int_eq(7, o.b, "Verify State Change Has Been Applied", __LINE__);

    rt.enable = false;

    printf("#Current History:\n");
    hist.showHistory();
    hist.seekHistory(-1);
    assert_int_eq(0, o.b,
            "Verify Undo Has Returned To Zero-Init State", __LINE__);
    printf("#Current History:\n");
    hist.showHistory();

    hist.seekHistory(+1);
    assert_int_eq(7, o.b,
            "Verify Redo Has Returned To Altered State", __LINE__);

    return test_summary();
}
Beispiel #26
0
int main()
{
    char buffer[1024];
    memset(buffer, 0, sizeof(buffer));
    walk_ports(&ports, 
            buffer, 1024, NULL,
            [](const Port*, const char *name, void *) {
            puts(name);
            });

    const Port *p = ports.apropos("/subtree/port");

    if(p && (std::string(p->name) == "port"))
        return 0;
    return 1;
}
bool Difference::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;

	m_nbCoeffs = getIntParam("DiffNbCoeffs",params);
	if (m_nbCoeffs==0)
		m_nbCoeffs = in.size - 1;
	if (m_nbCoeffs > in.size-1)
	{
		cerr << "Warning: cannot compute " << m_nbCoeffs << " difference coefficients from input of size " << in.size << endl;
		m_nbCoeffs = in.size - 1;
		cerr << "take only " << m_nbCoeffs << " coefficients" << endl;
	}

	outStreamInfo().add(StreamInfo(in,m_nbCoeffs));
    return true;
}
bool SpectralCrestFactorPerBand::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
{
	assert(inp.size()==1);
	const StreamInfo& in = inp[0].data;
    m_inSize = in.size;

    double fs = in.sampleRate;
    int blockSize = (in.size-1)*2; // assume input is spectrum

    double hiedge = floor(fs/2);
    double loedge = hiedge * pow(2,round(log2(250.0/hiedge)));

    int k = 0;
    while (true)
    {
        k++;
        double f_lo_nom = loedge * pow(2,(double)(k-1)/4.0);
        double f_hi_nom = loedge * pow(2,(double)k/4.0);
        double f_lo = f_lo_nom * (1 - OVERLAP);
        double f_hi = f_hi_nom * (1 + OVERLAP);
        int i_lo = (int) round(f_lo / (fs/blockSize));
        int i_hi = (int) round(f_hi / (fs/blockSize));

        if (f_lo_nom >= hiedge) break;
        if (f_hi > fs/2) break;

        int grpsize = 1;
        if (f_lo_nom >= 1000)
        {
            grpsize = (int) round(pow(2, floor(log2(f_lo_nom/500.0))));
            i_hi = (int) round((double)(i_hi-i_lo+1)/grpsize)*grpsize + i_lo-1;
        }

    	bandinfo bi;
    	bi.start = i_lo;
    	bi.end = i_hi+1;
    	bi.group = grpsize;
        m_band.push_back(bi);
    }

    outStreamInfo().add(StreamInfo(in,m_band.size()));
    return true;
}
Beispiel #29
0
  bool SpecificLoudness::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
  {
    assert(inp.size()==1);
    const StreamInfo& in = inp[0].data;

    // assume in->info().size is fft size
    // assume in->info().frameLength is frame size
    m_blockSize = in.frameLength;
    m_fftSize = in.size;
    m_bkBdLimits = new int[NB_BARK_BANDS+1];

    double tmp[m_fftSize];
    for (int i = 0; i < m_fftSize; i++)
    {
      tmp[i] = i * in.sampleRate / (double) m_blockSize;
      tmp[i] = 13 * atan(tmp[i] / 1315.8) + 3.5 * atan(pow(
            (tmp[i] / 7518), 2));
    }

    m_bkBdLimits[0] = 0;
    double currentBandEnd = tmp[m_fftSize-1] / NB_BARK_BANDS;
    int currentBarkBand = 1;
    for (int i = 0; i < m_fftSize; i++)
    {
      while (tmp[i] > currentBandEnd)
      {
        m_bkBdLimits[currentBarkBand++] = i;
        currentBandEnd = currentBarkBand * tmp[m_fftSize-1] / NB_BARK_BANDS;
      }
    }
    assert(currentBarkBand == NB_BARK_BANDS);
    m_bkBdLimits[NB_BARK_BANDS] = m_fftSize-1; // ignore last coeff

    outStreamInfo().add(StreamInfo(in,NB_BARK_BANDS));
    return true;
  }
Beispiel #30
0
  bool Cepstrum::init(const ParameterMap& params, const Ports<StreamInfo>& inp)
  {
    assert(inp.size()==1);
    const StreamInfo& in = inp[0].data;

    m_ignoreFirst = getIntParam("CepsIgnoreFirstCoeff",params);
    m_nbCoeffs = getIntParam("CepsNbCoeffs",params);
    if (m_nbCoeffs+m_ignoreFirst>in.size)
    {
      cerr << "Warning: cannot compute " << m_nbCoeffs << " for input of size " << in.size << endl;
      m_nbCoeffs = in.size - m_ignoreFirst;
      cerr << "compute only " << m_nbCoeffs << " coefficients" << endl;
    }

    m_dctPlan.resize(in.size,in.size);
    for (int j=0;j<in.size;j++)
      m_dctPlan(0,j) = 1.0 / sqrt((double)in.size);
    for (int i=1;i<in.size;i++)
      for (int j=0;j<in.size;j++)
        m_dctPlan(i,j) = sqrt(2.0 / in.size) * cos(PI * (j + 0.5) * i / in.size);

    outStreamInfo().add(StreamInfo(in, m_nbCoeffs));
    return true;
  }