Beispiel #1
0
int main(int argc, char *argv[]) {
  g_conf.number_of_feature = 3;
  g_conf.max_depth = 4;
  if (argc > 1) {
    g_conf.max_depth = boost::lexical_cast<int>(argv[1]);
  }

  DataVector d;
  bool r = LoadDataFromFile("../../data/train.dat", &d);
  assert(r);

  RegressionTree tree;

  tree.Fit(&d);
  std::ofstream model_output("../../data/model");
  model_output << tree.Save();

  RegressionTree tree2;
  tree2.Load(tree.Save());

  DataVector::iterator iter = d.begin();
  PredictVector predict;
  for ( ; iter != d.end(); ++iter) {
    std::cout << (*iter)->ToString() << std::endl;
    ValueType p = tree2.Predict(**iter);
    predict.push_back(p);
    std::cout << p << "," << tree.Predict(**iter) << std::endl;
  }

  std::cout << "rmse: " << RMSE(d, predict) << std::endl;

  CleanDataVector(&d);
  return 0;
}
Beispiel #2
0
double RMSE(const DataVector &data, const PredictVector &predict, size_t len) {
  assert(data.size() >= len);
  assert(predict.size() >= len);
  double s = 0;
  double c = 0;

  for (size_t i = 0; i < data.size(); ++i) {
    s += Squared(predict[i] - data[i]->label) * data[i]->weight;
    c += data[i]->weight;
  }

  return std::sqrt(s / c);
}
Beispiel #3
0
int main(int argc, char *argv[]) {
  std::srand ( unsigned ( std::time(0) ) );

  g_conf.number_of_feature = 3;
  g_conf.max_depth = 4;
  g_conf.iterations = 100;
  g_conf.shrinkage = 0.1F;

  if (argc < 3) return -1;

  std::string train_file(argv[1]);
  std::string test_file(argv[2]);

  if (argc > 3) {
    g_conf.max_depth = boost::lexical_cast<int>(argv[3]);
  }

  if (argc > 4) {
    g_conf.iterations = boost::lexical_cast<int>(argv[4]);
  }

  if (argc > 5) {
    g_conf.shrinkage = boost::lexical_cast<float>(argv[5]);
  }

  if (argc > 6) {
    g_conf.feature_sample_ratio = boost::lexical_cast<float>(argv[6]);
  }

  if (argc > 7) {
    g_conf.data_sample_ratio = boost::lexical_cast<float>(argv[7]);
  }

  g_conf.debug = true;
  // g_conf.loss = LOG_LIKELIHOOD;
  g_conf.loss = SQUARED_ERROR;

  DataVector d;
  bool r = LoadDataFromFile(train_file, &d);
  assert(r);

  // g_conf.min_leaf_size = d.size() / 10;

  std::cout << g_conf.ToString() << std::endl;

  GBDT gbdt;

  Elapsed elapsed;
  gbdt.Fit(&d);
  std::cout << "fit time: " << elapsed.Tell() << std::endl;
  CleanDataVector(&d);
  FreeVector(&d);

  std::string model_file = train_file + ".model";
  std::ofstream model_output(model_file.c_str());
  model_output << gbdt.Save();
  GBDT gbdt2;
  gbdt2.Load(gbdt.Save());

  DataVector d2;
  r = LoadDataFromFile(test_file, &d2);
  assert(r);

  elapsed.Reset();
  DataVector::iterator iter = d2.begin();
  PredictVector predict;
  for ( ; iter != d2.end(); ++iter) {
    ValueType p;
    if (g_conf.loss == SQUARED_ERROR) {
      p = gbdt2.Predict(**iter);
      predict.push_back(p);
    } else if (g_conf.loss == LOG_LIKELIHOOD) {
      p = gbdt2.Predict(**iter);
      p = Logit(p);
      if (p >= 0.5)
        p = 1;
      else
        p = -1;
      predict.push_back(p);
    }
    // std::cout << (*iter)->ToString() << std::endl
    //           << p << std::endl;
  }

  std::cout << "predict time: " << elapsed.Tell() << std::endl;
  std::cout << "rmse: " << RMSE(d2, predict) << std::endl;

  CleanDataVector(&d2);

  return 0;
}
Beispiel #4
0
int main(int argc, char *argv[]) {
  std::srand ( unsigned ( std::time(0) ) );

#ifdef USE_OPENMP
  const int threads_wanted = 4;
  omp_set_num_threads(threads_wanted);
#endif

  g_conf.number_of_feature = 79;
  g_conf.max_depth = 6;
  g_conf.iterations = 10;
  g_conf.shrinkage = 0.1F;

  if (argc < 3) return -1;

  std::string train_file(argv[1]);
  std::string test_file(argv[2]);

  if (argc > 3) {
    g_conf.max_depth = boost::lexical_cast<int>(argv[3]);
  }

  if (argc > 4) {
    g_conf.iterations = boost::lexical_cast<int>(argv[4]);
  }

  if (argc > 5) {
    g_conf.shrinkage = boost::lexical_cast<float>(argv[5]);
  }

  if (argc > 6) {
    g_conf.feature_sample_ratio = boost::lexical_cast<float>(argv[6]);
  }

  if (argc > 7) {
    g_conf.data_sample_ratio = boost::lexical_cast<float>(argv[7]);
  }

  int debug = 0;
  if (argc > 8) {
    debug = boost::lexical_cast<int>(argv[8]);
  }

  g_conf.loss = LOG_LIKELIHOOD;
  g_conf.debug = debug > 0? true : false;

  DataVector d;
  bool r = LoadDataFromFile(train_file, &d);
  assert(r);

  g_conf.min_leaf_size = d.size() / 40;
  std::cout << "configure: " << std::endl
            << g_conf.ToString() << std::endl;

  if (argc > 9) {
    g_conf.LoadFeatureCost(argv[9]);
  }

  GBDT gbdt;
  Elapsed elapsed;
  gbdt.Fit(&d);
  std::cout << "fit time: " << elapsed.Tell() << std::endl;

  std::string model_file = train_file + ".model";
  std::ofstream model_output(model_file.c_str());
  model_output << gbdt.Save();

  CleanDataVector(&d);
  FreeVector(&d);

  DataVector d2;
  r = LoadDataFromFile(test_file, &d2);
  assert(r);

  elapsed.Reset();
  DataVector::iterator iter = d2.begin();
  PredictVector predict;
  for ( ; iter != d2.end(); ++iter) {
    ValueType p = Logit(gbdt.Predict(**iter));
    predict.push_back(p);

  }
  std::cout << "predict time: " << elapsed.Tell() << std::endl;

  std::string predict_file = test_file + ".predict";
  std::ofstream predict_output(predict_file.c_str());

  Auc auc;
  for (size_t i = 0; i < d2.size(); ++i) {
    predict_output << predict[i] << " " << d2[i]->ToString() << std::endl;
    auc.Add(predict[i], d2[i]->label);
  }
  std::cout << "auc: " << auc.CalculateAuc() << std::endl;
  auc.PrintConfusionTable();

  CleanDataVector(&d2);

  return 0;
}