void CSenderDlg::OnClose() 
{
	if(sen)
	{sess.Destroy();
		sen=false;
	}
	WSACleanup();
	OnOK();
	
}
Beispiel #2
0
int main(void)
{
#ifdef NEED_PA_INIT
	std::string errStr;

	if (!MIPPAInputOutput::initializePortAudio(errStr))
	{
		std::cerr << "Can't initialize PortAudio: " << errStr << std::endl;
		return -1;
	}
#endif // NEED_PA_INIT
#ifdef WIN32
	WSADATA dat;
	WSAStartup(MAKEWORD(2,2),&dat);
#endif // WIN32

	MIPTime interval(0.020); // We'll use 20 millisecond intervals.
	MIPAverageTimer timer(interval);
	MIPWAVInput sndFileInput;
	MIPSamplingRateConverter sampConv, sampConv2;
	MIPSampleEncoder sampEnc, sampEnc2, sampEnc3;
	MIPULawEncoder uLawEnc;
	MIPRTPULawEncoder rtpEnc;
	MIPRTPComponent rtpComp;
	MIPRTPDecoder rtpDec;
	MIPRTPULawDecoder rtpULawDec;
	MIPULawDecoder uLawDec;
	MIPAudioMixer mixer;
	MIPComponentAlias rtpCompAlias(&rtpComp);
	ToggleOutputComponent sndToggleComponent(&sndFileInput);
#ifdef MIPCONFIG_SUPPORT_WINMM
	MIPWinMMOutput sndCardOutput;
#else
#ifdef MIPCONFIG_SUPPORT_OSS
	MIPOSSInputOutput sndCardOutput;
#else
	MIPPAInputOutput sndCardOutput;
#endif
#endif
	MyChain chain("Sound file player");
	RTPSession rtpSession;
	bool returnValue;

	// We'll open the file 'soundfile.wav'.

	returnValue = sndFileInput.open("soundfile.wav", interval);
	checkError(returnValue, sndFileInput);
	
	// We'll convert to a sampling rate of 8000Hz and mono sound.
	
	int samplingRate = 8000;
	int numChannels = 1;

	returnValue = sampConv.init(samplingRate, numChannels);
	checkError(returnValue, sampConv);

	// Initialize the sample encoder: the RTP U-law audio encoder
	// expects native endian signed 16 bit samples.
	
	returnValue = sampEnc.init(MIPRAWAUDIOMESSAGE_TYPE_S16);
	checkError(returnValue, sampEnc);

	// Convert samples to U-law encoding
	returnValue = uLawEnc.init();
	checkError(returnValue, uLawEnc);

	// Initialize the RTP audio encoder: this component will create
	// RTP messages which can be sent to the RTP component.

	returnValue = rtpEnc.init();
	checkError(returnValue, rtpEnc);

	// We'll initialize the RTPSession object which is needed by the
	// RTP component.
	
	RTPUDPv4TransmissionParams transmissionParams;
	RTPSessionParams sessionParams;
	int portBase = 60000;
	int status;

	transmissionParams.SetPortbase(portBase);
	sessionParams.SetOwnTimestampUnit(1.0/((double)samplingRate));
	sessionParams.SetMaximumPacketSize(64000);
	sessionParams.SetAcceptOwnPackets(true);
	
	status = rtpSession.Create(sessionParams,&transmissionParams);
	checkError(status);

	// Instruct the RTP session to send data to ourselves.
	status = rtpSession.AddDestination(RTPIPv4Address(ntohl(inet_addr("127.0.0.1")),portBase));
	checkError(status);

	// Tell the RTP component to use this RTPSession object.
	returnValue = rtpComp.init(&rtpSession, 160); // 20ms at 8000Hz = 160 samples per RTP packet
	checkError(returnValue, rtpComp);
	
	// Initialize the RTP audio decoder.
	returnValue = rtpDec.init(true, 0, &rtpSession);
	checkError(returnValue, rtpDec);

	// Register the U-law decoder for payload type 0
	returnValue = rtpDec.setPacketDecoder(0,&rtpULawDec);
	checkError(returnValue, rtpDec);

	// Convert U-law encoded samples to linear encoded samples
	returnValue = uLawDec.init();
	checkError(returnValue, uLawDec);

	// Transform the received audio data to floating point format.
	returnValue = sampEnc2.init(MIPRAWAUDIOMESSAGE_TYPE_FLOAT);
	checkError(returnValue, sampEnc2);

	// We'll make sure that received audio frames are converted to the right
	// sampling rate.
	returnValue = sampConv2.init(samplingRate, numChannels);
	checkError(returnValue, sampConv2);

	// Initialize the mixer.
	returnValue = mixer.init(samplingRate, numChannels, interval);
	checkError(returnValue, mixer);

	// Initialize the soundcard output.
	returnValue = sndCardOutput.open(samplingRate, numChannels, interval);
	checkError(returnValue, sndCardOutput);

#ifdef MIPCONFIG_SUPPORT_WINMM
	// The WinMM output component uses signed little endian 16 bit samples.
	returnValue = sampEnc3.init(MIPRAWAUDIOMESSAGE_TYPE_S16LE);
#else
#ifdef MIPCONFIG_SUPPORT_OSS
	// The OSS component can use several encoding types. We'll ask
	// the component to which format samples should be converted.
	returnValue = sampEnc3.init(sndCardOutput.getRawAudioSubtype());
#else
	// The PortAudio output component uses signed 16 bit samples
	returnValue = sampEnc3.init(MIPRAWAUDIOMESSAGE_TYPE_S16);
#endif
#endif
	checkError(returnValue, sampEnc3);

	// Next, we'll create the chain
	returnValue = chain.setChainStart(&timer);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&timer, &sndToggleComponent);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&sndToggleComponent, &sampConv);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&sampConv, &sampEnc);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&sampEnc, &uLawEnc);
	checkError(returnValue, chain);
	
	returnValue = chain.addConnection(&uLawEnc, &rtpEnc);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&rtpEnc, &rtpComp);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&timer, &rtpCompAlias);
	checkError(returnValue, chain);
	
	returnValue = chain.addConnection(&rtpCompAlias, &rtpDec);
	checkError(returnValue, chain);

	// This is where the feedback chain is specified: we want
	// feedback from the mixer to reach the RTP audio decoder,
	// so we'll specify that over the links in between, feedback
	// should be transferred.

	returnValue = chain.addConnection(&rtpDec, &uLawDec, true);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&uLawDec, &sampEnc2, true);
	checkError(returnValue, chain);
	
	returnValue = chain.addConnection(&sampEnc2, &sampConv2, true);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&sampConv2, &mixer, true);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&mixer, &sampEnc3);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&sampEnc3, &sndCardOutput);
	checkError(returnValue, chain);
	
	// Start the chain

	returnValue = chain.start();
	checkError(returnValue, chain);

	// We'll wait until enter is pressed

	int num = 10;

	for (int i = 0 ; i < num ; i++)
	{
		std::cout << "iteration " << (i+1) << "/" << num << std::endl;
		std::cout << "Press enter for silence" << std::endl;

		getc(stdin);
		sndToggleComponent.lock();
		sndToggleComponent.setEnabled(false);
		sndToggleComponent.unlock();

		std::cout << "Press enter for sound" << std::endl;

		getc(stdin);
		sndToggleComponent.lock();
		sndToggleComponent.setEnabled(true);
		sndToggleComponent.unlock();
	}

	returnValue = chain.stop();
	checkError(returnValue, chain);

	rtpSession.Destroy();
	
	// We'll let the destructors of the other components take care
	// of their de-initialization.

	sndCardOutput.close(); // In case we're using PortAudio
#ifdef NEED_PA_INIT
	MIPPAInputOutput::terminatePortAudio();
#endif // NEED_PA_INIT

#ifdef WIN32
	WSACleanup();
#endif
	return 0;
}
void Java_cn_nickwar_MainActivity_nativeWorker(JNIEnv* env, jobject obj) {
	uint16_t portbase=8000,destport=9000;
	std::string ipstr="192.168.1.102";
	uint32_t destip=inet_addr(ipstr.c_str());
	int status,i,num;

	RTPSession session;
	RTPSessionParams sessionparams;
	RTPUDPv4TransmissionParams transparams;
	RTPIPv4Address addr;

	if (destip == INADDR_NONE) {
		__android_log_print(ANDROID_LOG_DEBUG, "pspm.native", "Bad IP address specified");
	}

	destip = ntohl(destip);

	num = 40;

	sessionparams.SetOwnTimestampUnit(1.0/10.0);
	sessionparams.SetAcceptOwnPackets(true);

	transparams.SetPortbase(portbase);

	addr.SetIP(destip);
	addr.SetPort(destport);

	status = session.Create(sessionparams,&transparams);

	if (status<0) {
		std::string tmp = "Create:";
		__android_log_print(ANDROID_LOG_DEBUG, "pspm.native", (tmp+RTPGetErrorString(status)).c_str());
	}
	status = session.AddDestination(addr);
	if (status<0) {
		std::string tmp = "AddDestination:";
		__android_log_print(ANDROID_LOG_DEBUG, "pspm.native", (tmp+RTPGetErrorString(status)).c_str());
	}

	while(!m_bExitApp)
	{
		session.BeginDataAccess();

		unsigned char *buff = NULL;
		if (session.GotoFirstSourceWithData())
		{
			do
			{
				RTPPacket *pack;
				while((pack = session.GetNextPacket()) !=NULL)
				{
					__android_log_print(ANDROID_LOG_DEBUG, "pspm.native", "got packet!\n");
					char message[26];
					sprintf(message, "got packet");
					jstring messageString = env->NewStringUTF(message);
					env->CallVoidMethod(obj, rtpresultFromJNI, messageString);

					if (NULL != env->ExceptionOccurred()) {
						//						break;
						continue;
					}
					if (pack->GetPayloadLength()>0) {
						buff = pack->GetPayloadData();
						__android_log_print(ANDROID_LOG_DEBUG, "pspm.native", "packt data:%s",buff);
					}
					session.DeletePacket(pack);
				}
			}
			while(session.GotoNextSourceWithData());
		}

		session.EndDataAccess();
		//
#ifndef RTP_SUPPORT_THREAD
		status = sess.Poll();
		if (status<0) {
			session.Destroy();
			return;
		}
#endif

		RTPTime::Wait(RTPTime(0,5000));
	}

	session.Destroy();
	return;
}
int main(void)
{
	int packetsPerSecond = 100;
	MIPTime interval(1.0/(double)packetsPerSecond); // We'll use 10 millisecond intervals.
	MIPAverageTimer timer(interval);
	MIPOSCInput oscInput;
	MIPOSCEncoder oscEnc;
	MIPRTPOSCEncoder rtpEnc;
	MIPRTPComponent rtpComp;
	MIPRTPDecoder rtpDec;
	MIPRTPOSCDecoder rtpOSCDec;
	MIPOSCDecoder oscDec;
	MIPOSCOutput oscOutput;

	MyChain chain("OSC Sender");
	RTPSession rtpSession;
	bool returnValue;


	// Convert Messages to MIPOSCMessages
	returnValue = oscEnc.init();
	checkError(returnValue, oscEnc);

	// Initialize the RTP OSC encoder: this component will create
	// RTP messages which can be sent to the RTP component.

	returnValue = rtpEnc.init();
	checkError(returnValue, rtpEnc);

	// We'll initialize the RTPSession object which is needed by the
	// RTP component.

	RTPUDPv4TransmissionParams transmissionParams;
	RTPSessionParams sessionParams;
	int portBase = 60000;
	int status;

	transmissionParams.SetPortbase(portBase);
	sessionParams.SetOwnTimestampUnit(1.0/((double)packetsPerSecond));
	sessionParams.SetMaximumPacketSize(64000);
	sessionParams.SetAcceptOwnPackets(true);

	status = rtpSession.Create(sessionParams,&transmissionParams);
	checkError(status);

	// Instruct the RTP session to send data to ourselves.
	status = rtpSession.AddDestination(RTPIPv4Address(ntohl(inet_addr("127.0.0.1")),portBase));
	checkError(status);

	// Tell the RTP component to use this RTPSession object.
	returnValue = rtpComp.init(&rtpSession);
	checkError(returnValue, rtpComp);

	returnValue = rtpDec.init(false, 0, &rtpSession);
	checkError(returnValue, rtpDec);

	returnValue = rtpDec.setPacketDecoder(0, &rtpOSCDec);
	checkError(returnValue, rtpDec);

	returnValue = oscDec.init();
	checkError(returnValue, oscDec);

	// Next, we'll create the chain
	returnValue = chain.setChainStart(&timer);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&timer, &oscInput);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&oscInput, &oscEnc);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&oscEnc, &rtpEnc);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&rtpEnc, &rtpComp);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&rtpComp, &rtpDec);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&rtpDec, &oscDec, true);
	checkError(returnValue, chain);

	returnValue = chain.addConnection(&oscDec, &oscOutput);
	checkError(returnValue, chain);

	// Start the chain

	returnValue = chain.start();
	checkError(returnValue, chain);

	// We'll wait until enter is pressed

	int counter = 0;

	sleep(1);
	for(int i=0; i<4; i++) {
		lo_message m = lo_message_new();
		lo_message_add_int32(m,counter++);
		oscInput.push(m, "/testpfad");
		sleep(1);
	}
	getc(stdin);

	returnValue = chain.stop();
	checkError(returnValue, chain);

	rtpSession.Destroy();

	return 0;
}