void ConsumingBorderCalculator::doCalc(CalcNode& cur_node, CalcNode& new_node, RheologyMatrixPtr matrix,
                            vector<CalcNode>& previousNodes, bool inner[],
                            float outer_normal[], float scale)
{
    assert_eq(previousNodes.size(), 9);

    int outer_count = 3;

    // Tmp value for GSL solver
    int s;

    // Here we will store (omega = Matrix_OMEGA * u)
    float omega[9];

    for(int i = 0; i < 9; i++)
    {
        // If omega is 'inner' one
        if(inner[i])
        {
            // Calculate omega value
            omega[i] = 0;
            for(int j = 0; j < 9; j++)
            {
                omega[i] += matrix->getU(i,j) * previousNodes[i].values[j];
            }
            // Load appropriate values into GSL containers
            gsl_vector_set(om_gsl, i, omega[i]);
            for(int j = 0; j < 9; j++)
                gsl_matrix_set(U_gsl, i, j, matrix->getU(i,j));
        }
        // If omega is 'outer' one
        else
        {
            // Load appropriate values into GSL containers
            gsl_vector_set(om_gsl, i, 0);
            for(int j = 0; j < 9; j++)
                gsl_matrix_set(U_gsl, i, j, matrix->getU(i,j));
        }
    }

	LOG_TRACE("F*****g FBC: outer_count = " << outer_count << "\nMatrix:\n");
	for(int i = 0; i < 9; i++) {
		for(int j = 0; j < 9; j++) {
			LOG_TRACE(gsl_matrix_get(U_gsl, i, j) << "\t");
		}
		LOG_TRACE("\n");
	}
			
			
    // Solve linear equations using GSL tools
    gsl_linalg_LU_decomp (U_gsl, p_gsl, &s);
    gsl_linalg_LU_solve (U_gsl, p_gsl, om_gsl, x_gsl);

    for(int j = 0; j < 9; j++)
        new_node.values[j] = gsl_vector_get(x_gsl, j);

};
void AdhesionContactCalculator::doCalc(CalcNode& cur_node, CalcNode& new_node, CalcNode& virt_node,
                            RheologyMatrixPtr matrix, vector<CalcNode>& previousNodes, bool inner[],
                            RheologyMatrixPtr virt_matrix, vector<CalcNode>& virtPreviousNodes, bool virt_inner[],
                            float outer_normal[], float scale)
{
    assert_eq(previousNodes.size(), 9);
    assert_eq(virtPreviousNodes.size(), 9);

    // Here we will store (omega = Matrix_OMEGA * u)
    float omega[9];
    float virt_omega[9];

    int posInEq18 = 0;
    int curNN = 0;

    // For all omegas of real node
    for(int i = 0; i < 9; i++)
    {
        // If omega is 'inner'
        if(inner[i])
        {
            // omega on new time layer is equal to omega on previous time layer along characteristic
            omega[i] = 0;
            for( int j = 0; j < 9; j++ ) {
                omega[i] += matrix->getU(i,j) * previousNodes[i].values[j];
            }

            // then we must set the corresponding values of the 18x18 matrix
            gsl_vector_set( om_gsl, 6 * curNN + posInEq18, omega[i] );

            for( int j = 0; j < 9; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, matrix->getU( i, j ) );
            }
            for( int j = 9; j < 18; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, 0 );
            }
            posInEq18++;
        }
    }

    posInEq18 = 0;
    curNN = 1;
    // For all omegas of virtual node
    for(int i = 0; i < 9; i++)
    {
        // If omega is 'inner'
        if(virt_inner[i])
        {
            // omega on new time layer is equal to omega on previous time layer along characteristic
            virt_omega[i] = 0;
            for( int j = 0; j < 9; j++ ) {
                virt_omega[i] += virt_matrix->getU(i,j) * virtPreviousNodes[i].values[j];
            }

            // then we must set the corresponding values of the 18x18 matrix
            gsl_vector_set( om_gsl, 6 * curNN + posInEq18, virt_omega[i] );

            for( int j = 0; j < 9; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, 0 );
            }
            for( int j = 9; j < 18; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, virt_matrix->getU( i, j - 9 ) );
            }
            posInEq18++;
        }
    }

    // Clear the rest 6 rows of the matrix
    for( int strN = 12; strN < 18; strN++ ) {
        for( int colN = 0; colN < 18; colN++ ) {
            gsl_matrix_set( U_gsl, strN, colN, 0 );
        }
    }

    for( int strN = 12; strN < 18; strN++ ) {
        gsl_vector_set( om_gsl, strN, 0 );
    }

    // Equality of velocities
    gsl_matrix_set( U_gsl, 12, 0, 1 );
    gsl_matrix_set( U_gsl, 12, 9, -1 );
    gsl_matrix_set( U_gsl, 13, 1, 1 );
    gsl_matrix_set( U_gsl, 13, 10, -1 );
    gsl_matrix_set( U_gsl, 14, 2, 1 );
    gsl_matrix_set( U_gsl, 14, 11, -1 );

    // Equality of normal and tangential stress
    // We use outer normal to find total stress vector (sigma * n) - sum of normal and shear - and tell it is equal
    // TODO - is it ok?
    // TODO - never-ending questions - is everything ok with (x-y-z) and (ksi-eta-dzeta) basises?

    // TODO FIXME - it works now because exactly the first axis is the only one where contact is possible
    // and it coincides with outer normal
    gsl_matrix_set(U_gsl, 15, 3, outer_normal[0]);
    gsl_matrix_set(U_gsl, 15, 4, outer_normal[1]);
    gsl_matrix_set(U_gsl, 15, 5, outer_normal[2]);

    gsl_matrix_set(U_gsl, 15, 12, -outer_normal[0]);
    gsl_matrix_set(U_gsl, 15, 13, -outer_normal[1]);
    gsl_matrix_set(U_gsl, 15, 14, -outer_normal[2]);


    gsl_matrix_set(U_gsl, 16, 4, outer_normal[0]);
    gsl_matrix_set(U_gsl, 16, 6, outer_normal[1]);
    gsl_matrix_set(U_gsl, 16, 7, outer_normal[2]);

    gsl_matrix_set(U_gsl, 16, 13, -outer_normal[0]);
    gsl_matrix_set(U_gsl, 16, 15, -outer_normal[1]);
    gsl_matrix_set(U_gsl, 16, 16, -outer_normal[2]);


    gsl_matrix_set(U_gsl, 17, 5, outer_normal[0]);
    gsl_matrix_set(U_gsl, 17, 7, outer_normal[1]);
    gsl_matrix_set(U_gsl, 17, 8, outer_normal[2]);

    gsl_matrix_set(U_gsl, 17, 14, -outer_normal[0]);
    gsl_matrix_set(U_gsl, 17, 16, -outer_normal[1]);
    gsl_matrix_set(U_gsl, 17, 17, -outer_normal[2]);


    // Tmp value for GSL solver
    int s;
    gsl_linalg_LU_decomp (U_gsl, p_gsl, &s);
    gsl_linalg_LU_solve (U_gsl, p_gsl, om_gsl, x_gsl);

    // Just get first 9 values (real node) and dump the rest 9 (virt node)
    for(int j = 0; j < 9; j++)
        new_node.values[j] = gsl_vector_get(x_gsl, j);

};
void SlidingContactCalculator::doCalc(CalcNode& cur_node, CalcNode& new_node, CalcNode& virt_node,
                            RheologyMatrixPtr matrix, vector<CalcNode>& previousNodes, bool inner[],
                            RheologyMatrixPtr virt_matrix, vector<CalcNode>& virtPreviousNodes, bool virt_inner[],
                            float outer_normal[], float scale)
{
    assert_eq(previousNodes.size(), 9);
    assert_eq(virtPreviousNodes.size(), 9);

    if (isFreeBorder(cur_node, virt_node, outer_normal))
    {
        fbc->doCalc(cur_node, new_node, matrix, previousNodes, inner, outer_normal, scale);
        return;
    }

    // Here we will store (omega = Matrix_OMEGA * u)
    float omega[9];
    float virt_omega[9];

    int posInEq18 = 0;
    int curNN = 0;

    // For all omegas of real node
    for(int i = 0; i < 9; i++)
    {
        LOG_TRACE("PrNode: " << previousNodes[i]);
        // If omega is 'inner'
        if(inner[i])
        {
            LOG_TRACE("INNER");
            // omega on new time layer is equal to omega on previous time layer along characteristic
            omega[i] = 0;
            for( int j = 0; j < 9; j++ ) {
                omega[i] += matrix->getU(i,j) * previousNodes[i].values[j];
            }

            // then we must set the corresponding values of the 18x18 matrix
            gsl_vector_set( om_gsl, 6 * curNN + posInEq18, omega[i] );

            for( int j = 0; j < 9; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, matrix->getU( i, j ) );
            }
            for( int j = 9; j < 18; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, 0 );
            }
            posInEq18++;
        }
    }

    posInEq18 = 0;
    curNN = 1;
    // For all omegas of virtual node
    for(int i = 0; i < 9; i++)
    {
        LOG_TRACE("VirtPrNode: " << virtPreviousNodes[i]);
        // If omega is 'inner'
        if(virt_inner[i])
        {
            LOG_TRACE("INNER");
            // omega on new time layer is equal to omega on previous time layer along characteristic
            virt_omega[i] = 0;
            for( int j = 0; j < 9; j++ ) {
                virt_omega[i] += virt_matrix->getU(i,j) * virtPreviousNodes[i].values[j];
            }

            // then we must set the corresponding values of the 18x18 matrix
            gsl_vector_set( om_gsl, 6 * curNN + posInEq18, virt_omega[i] );

            for( int j = 0; j < 9; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, 0 );
            }
            for( int j = 9; j < 18; j++ ) {
                gsl_matrix_set( U_gsl, 6 * curNN + posInEq18, j, virt_matrix->getU( i, j - 9 ) );
            }
            posInEq18++;
        }
    }

    // Clear the rest 6 rows of the matrix
    for( int strN = 12; strN < 18; strN++ ) {
        for( int colN = 0; colN < 18; colN++ ) {
            gsl_matrix_set( U_gsl, strN, colN, 0 );
        }
    }

    for( int strN = 12; strN < 18; strN++ ) {
        gsl_vector_set( om_gsl, strN, 0 );
	}
	
	float local_n[3][3];
	local_n[0][0] = outer_normal[0];
	local_n[0][1] = outer_normal[1];
	local_n[0][2] = outer_normal[2];
	createLocalBasis(local_n[0], local_n[1], local_n[2]);
	
    // Normal velocities are equal
    gsl_matrix_set( U_gsl, 12, 0, local_n[0][0]);
    gsl_matrix_set( U_gsl, 12, 1, local_n[0][1]);
    gsl_matrix_set( U_gsl, 12, 2, local_n[0][2]);
    gsl_matrix_set( U_gsl, 12, 9,  - local_n[0][0]);
    gsl_matrix_set( U_gsl, 12, 10, - local_n[0][1]);
    gsl_matrix_set( U_gsl, 12, 11, - local_n[0][2]);

    // We use outer normal to find total stress vector (sigma * n) - sum of normal and shear - and tell it is equal
    // TODO - is it ok?
    // TODO - never-ending questions - is everything ok with (x-y-z) and (ksi-eta-dzeta) basises?

    // TODO FIXME - it works now because exactly the first axis is the only one where contact is possible
    // and it coincides with outer normal

    // Normal stresses are equal
    gsl_matrix_set(U_gsl, 13, 3, local_n[0][0] * local_n[0][0]);
    gsl_matrix_set(U_gsl, 13, 4, 2 * local_n[0][1] * local_n[0][0]);
    gsl_matrix_set(U_gsl, 13, 5, 2 * local_n[0][2] * local_n[0][0]);
    gsl_matrix_set(U_gsl, 13, 6, local_n[0][1] * local_n[0][1]);
    gsl_matrix_set(U_gsl, 13, 7, 2 * local_n[0][2] * local_n[0][1]);
    gsl_matrix_set(U_gsl, 13, 8, local_n[0][2] * local_n[0][2]);

    gsl_matrix_set(U_gsl, 13, 12, - local_n[0][0] * local_n[0][0]);
    gsl_matrix_set(U_gsl, 13, 13, - 2 * local_n[0][1] * local_n[0][0]);
    gsl_matrix_set(U_gsl, 13, 14, - 2 * local_n[0][2] * local_n[0][0]);
    gsl_matrix_set(U_gsl, 13, 15, - local_n[0][1] * local_n[0][1]);
    gsl_matrix_set(U_gsl, 13, 16, - 2 * local_n[0][2] * local_n[0][1]);
    gsl_matrix_set(U_gsl, 13, 17, - local_n[0][2] * local_n[0][2]);

    // Tangential stresses are zero

    gsl_matrix_set(U_gsl, 14, 3, - (local_n[0][0] * local_n[1][0]) );
    gsl_matrix_set(U_gsl, 14, 4, - (local_n[0][1] * local_n[1][0] + local_n[0][0] * local_n[1][1]) );
    gsl_matrix_set(U_gsl, 14, 5, - (local_n[0][2] * local_n[1][0] + local_n[0][0] * local_n[1][2]) );
    gsl_matrix_set(U_gsl, 14, 6, - (local_n[0][1] * local_n[1][1]) );
    gsl_matrix_set(U_gsl, 14, 7, - (local_n[0][2] * local_n[1][1] + local_n[0][1] * local_n[1][2]) );
    gsl_matrix_set(U_gsl, 14, 8, - (local_n[0][2] * local_n[1][2]) );

    gsl_matrix_set(U_gsl, 15, 3, - (local_n[0][0] * local_n[2][0]) );
    gsl_matrix_set(U_gsl, 15, 4, - (local_n[0][1] * local_n[2][0] + local_n[0][0] * local_n[2][1]) );
    gsl_matrix_set(U_gsl, 15, 5, - (local_n[0][2] * local_n[2][0] + local_n[0][0] * local_n[2][2]) );
    gsl_matrix_set(U_gsl, 15, 6, - (local_n[0][1] * local_n[2][1]) );
    gsl_matrix_set(U_gsl, 15, 7, - (local_n[0][2] * local_n[2][1] + local_n[0][1] * local_n[2][2]) );
    gsl_matrix_set(U_gsl, 15, 8, - (local_n[0][2] * local_n[2][2]) );


    gsl_matrix_set(U_gsl, 16, 12, - (local_n[0][0] * local_n[1][0]) );
    gsl_matrix_set(U_gsl, 16, 13, - (local_n[0][1] * local_n[1][0] + local_n[0][0] * local_n[1][1]) );
    gsl_matrix_set(U_gsl, 16, 14, - (local_n[0][2] * local_n[1][0] + local_n[0][0] * local_n[1][2]) );
    gsl_matrix_set(U_gsl, 16, 15, - (local_n[0][1] * local_n[1][1]) );
    gsl_matrix_set(U_gsl, 16, 16, - (local_n[0][2] * local_n[1][1] + local_n[0][1] * local_n[1][2]) );
    gsl_matrix_set(U_gsl, 16, 17, - (local_n[0][2] * local_n[1][2]) );

    gsl_matrix_set(U_gsl, 17, 12, - (local_n[0][0] * local_n[2][0]) );
    gsl_matrix_set(U_gsl, 17, 13, - (local_n[0][1] * local_n[2][0] + local_n[0][0] * local_n[2][1]) );
    gsl_matrix_set(U_gsl, 17, 14, - (local_n[0][2] * local_n[2][0] + local_n[0][0] * local_n[2][2]) );
    gsl_matrix_set(U_gsl, 17, 15, - (local_n[0][1] * local_n[2][1]) );
    gsl_matrix_set(U_gsl, 17, 16, - (local_n[0][2] * local_n[2][1] + local_n[0][1] * local_n[2][2]) );
    gsl_matrix_set(U_gsl, 17, 17, - (local_n[0][2] * local_n[2][2]) );


    // Tmp value for GSL solver
    int s;
    gsl_linalg_LU_decomp (U_gsl, p_gsl, &s);
    try
    {
        gsl_linalg_LU_solve (U_gsl, p_gsl, om_gsl, x_gsl);
    }
    catch (Exception& e)
    {
        cur_node.setContactCalculationError();
        for(int i = 0; i < 18; i++) {
            std::stringstream matStr;
            for(int j = 0; j < 18; j++)
                matStr << gsl_matrix_get(U_gsl, i, j) << " ";
            LOG_TRACE(matStr.str());
        }
        LOG_ERROR("Bad node: " << cur_node);
        LOG_ERROR("Normal: " << outer_normal[0] << " " << outer_normal[1] << " " << outer_normal[2]);
        LOG_ERROR("Delta: " << virt_node.coords[0] - cur_node.coords[0] 
                        << " " << virt_node.coords[1] - cur_node.coords[1] 
                        << " " << virt_node.coords[2] - cur_node.coords[2]);
        throw;
    }

    // Just get first 9 values (real node) and dump the rest 9 (virt node)
    for(int j = 0; j < 9; j++)
        new_node.values[j] = gsl_vector_get(x_gsl, j);
	
	CalcNode new_virt_node;
	for(int j = 0; j < 9; j++)
        new_virt_node.values[j] = gsl_vector_get(x_gsl, j + 9);
	
	if (isFreeBorder(new_node, new_virt_node, outer_normal))
    {
        fbc->doCalc(cur_node, new_node, matrix, previousNodes, inner, outer_normal, scale);
        return;
    }

};
Beispiel #4
0
void FreeBorderCalculator::doCalc(CalcNode& cur_node, CalcNode& new_node, RheologyMatrixPtr matrix,
                            vector<CalcNode>& previousNodes, bool inner[],
                            float outer_normal[], float scale)
{
    assert_eq(previousNodes.size(), 9);

    int outer_count = 3;

    // Tmp value for GSL solver
    int s;

    // Here we will store (omega = Matrix_OMEGA * u)
    float omega[9];

    for(int i = 0; i < 9; i++)
    {
        // If omega is 'inner' one
        if(inner[i])
        {
            // Calculate omega value
            omega[i] = 0;
            for(int j = 0; j < 9; j++)
            {
                omega[i] += matrix->getU(i,j) * previousNodes[i].values[j];
            }
            // Load appropriate values into GSL containers
            gsl_vector_set(om_gsl, i, omega[i]);
            for(int j = 0; j < 9; j++)
                gsl_matrix_set(U_gsl, i, j, matrix->getU(i,j));
        }
        // If omega is 'outer' one
        else
        {
            // omega (as right-hand part of OLE) is zero - it is free border, no external stress
            gsl_vector_set(om_gsl, i, 0);
            // corresponding string in matrix is zero ...
            for(int j = 0; j < 9; j++)
                gsl_matrix_set(U_gsl, i, j, 0);

            // ... except normal and tangential stress
            // We use outer normal to find total stress vector (sigma * n) - sum of normal and shear - and tell it is zero
            // TODO - never-ending questions - is everything ok with (x-y-z) and (ksi-eta-dzeta) basises?

            if ( outer_count == 3 ) {
                gsl_matrix_set(U_gsl, i, 3, outer_normal[0]);
                gsl_matrix_set(U_gsl, i, 4, outer_normal[1]);
                gsl_matrix_set(U_gsl, i, 5, outer_normal[2]);
                outer_count--;
            } else if ( outer_count == 2 ) {
                gsl_matrix_set(U_gsl, i, 4, outer_normal[0]);
                gsl_matrix_set(U_gsl, i, 6, outer_normal[1]);
                gsl_matrix_set(U_gsl, i, 7, outer_normal[2]);
                outer_count--;
            } else if ( outer_count == 1 ) {
                gsl_matrix_set(U_gsl, i, 5, outer_normal[0]);
                gsl_matrix_set(U_gsl, i, 7, outer_normal[1]);
                gsl_matrix_set(U_gsl, i, 8, outer_normal[2]);
                outer_count--;
            }
        }
    }

    // Solve linear equations using GSL tools
    gsl_linalg_LU_decomp (U_gsl, p_gsl, &s);
    gsl_linalg_LU_solve (U_gsl, p_gsl, om_gsl, x_gsl);

    for(int j = 0; j < 9; j++)
        new_node.values[j] = gsl_vector_get(x_gsl, j);

};