Beispiel #1
0
RcppExport SEXP reloadPars(SEXP Rlongpars, SEXP Rpars, SEXP Rngroups, SEXP RJ)
{
    BEGIN_RCPP
	const NumericVector longpars(Rlongpars);
    List pars(Rpars);
    const int ngroups = as<int>(Rngroups);
    const int J = as<int>(RJ);
    int ind = 0;

    for(int g = 0; g < ngroups; ++g){
        List glist = pars[g];
        for(int i = 0; i < (J+1); ++i){
            S4 item = glist[i];
            NumericVector p = item.slot("par");
            int len = p.length();
            for(int j = 0; j < len; ++j)
                p(j) = longpars(ind+j);
            ind += len;
            item.slot("par") = p;
            glist[i] = item;
        }
        pars[g] = glist;
    }

    return(pars);
	END_RCPP
}
Beispiel #2
0
// [[Rcpp::export]]
void doubleBM(const S4& BM, XPtr<BigMatrix> xpMat2) {

  XPtr<BigMatrix> xpMat = BM.slot("address");
  int n = xpMat->nrow();
  int m = xpMat->ncol();
  RawSubMatAcc macc(*xpMat, seq_len(n)-1, seq_len(m)-1, BM.slot("code"));

  MatrixAccessor<unsigned char> macc2(*xpMat2);

  int i, j, j2;
  double tmp;

  for (j = j2 = 0; j < m; j++, j2 += 2) {
    for (i = 0; i < n; i++) {
      tmp = macc(i, j);
      if (tmp == 0) {
        macc2[j2][i] = macc2[j2+1][i] = 0;
      } else if (tmp == 1) {
        macc2[j2][i] = 0;
        macc2[j2+1][i] = 1;
      } else if (tmp == 2) {
        macc2[j2][i] = macc2[j2+1][i] = 1;
      } else {
        throw Rcpp::exception("Your big.matrix should have only Os, 1s or 2s");
      }
    }
  }
}
Beispiel #3
0
RcppExport SEXP computeItemTrace(SEXP Rpars, SEXP RTheta, SEXP Ritemloc, SEXP Roffterm)
{
    BEGIN_RCPP

    const List pars(Rpars);
    const NumericMatrix Theta(RTheta);
    const NumericMatrix offterm(Roffterm);
    const vector<int> itemloc = as< vector<int> >(Ritemloc);
    const int J = itemloc.size() - 1;
    const int nfact = Theta.ncol();
    const int N = Theta.nrow();
    vector<double> itemtrace(N * (itemloc[J]-1));
    S4 item = pars[0];
    NumericMatrix FD = item.slot("fixed.design");
    int USEFIXED = 0;
    if(FD.nrow() > 2) USEFIXED = 1;

    for(int which = 0; which < J; ++which)
        _computeItemTrace(itemtrace, Theta, pars, offterm(_, which), itemloc,
            which, nfact, N, USEFIXED);

    NumericMatrix ret = vec2mat(itemtrace, N, itemloc[J]-1);
    return(ret);

    END_RCPP
}
Beispiel #4
0
// [[Rcpp::export]]
S4 CPP_scale_margins_sparse(S4 M, NumericVector rows, NumericVector cols, bool duplicate = true) {
  if (!M.is("dgCMatrix"))
    stop("internal error -- not a canonical sparse matrix");
  IntegerVector dims = M.slot("Dim");
  int nr = dims[0], nc = dims[1];
  if (nr != rows.size() || nc != cols.size())
    stop("internal error -- row/column weights not conformable with matrix");

  if (duplicate)
    M = clone(M);

  IntegerVector p = M.slot("p");
  IntegerVector::iterator _p = p.begin();
  IntegerVector row_of = M.slot("i");
  IntegerVector::iterator _row_of = row_of.begin();
  NumericVector x = M.slot("x");
  NumericVector::iterator _x = x.begin();
  NumericVector::iterator _rows = rows.begin();

  for (int col = 0; col < nc; col++) {
    double col_weight = cols[col];
    for (int i = _p[col]; i < _p[col+1]; i++) {
      _x[i] *= _rows[_row_of[i]] * col_weight;
    }
  }

  return M;
}
// [[Rcpp::export]]
List ctmcFit(List data, bool byrow=true, String name="", double confidencelevel = 0.95)
{
  CharacterVector stateData(as<CharacterVector>(data[0]).size());
  for(int i = 0; i < as<CharacterVector>(data[0]).size(); i++)
    stateData[i] = as<CharacterVector>(data[0])[i];
  NumericVector transData = data[1];
  CharacterVector sortedStates = unique(as<CharacterVector>(data[0])).sort();
  NumericVector stateCount(sortedStates.size());
  NumericVector stateSojournTime(sortedStates.size());
  
  List dtmcData = markovchainFit(stateData, "mle", byrow, 10, 0, name, false, confidencelevel);
  
  for(int i = 0; i < stateData.size() - 1; i++){
    int idx = std::find(sortedStates.begin(), sortedStates.end(), stateData[i]) - sortedStates.begin();
    stateCount[idx]++;
    stateSojournTime[idx] += transData[i+1] - transData[i];
  }
  
  S4 dtmcEst = dtmcData["estimate"];
  NumericMatrix gen = dtmcEst.slot("transitionMatrix");
  
  for(int i = 0; i < gen.nrow(); i++){
    for(int j = 0; j < gen.ncol(); j++){
      if(stateCount[i] > 0)
        gen(i, j) *= stateCount[i] / stateSojournTime[i];
    }
    if(stateCount[i] > 0)
      gen(i, i) = - stateCount[i] / stateSojournTime[i];
    else  
      gen(i, i) = -1;
  }
  
  double zscore = stats::qnorm_0(confidencelevel, 1.0, 0.0);
  NumericVector lowerConfVecLambda(sortedStates.size()), upperConfVecLambda(sortedStates.size());
  
  for(int i = 0; i < sortedStates.size(); i++){
    if(stateCount[i] > 0){
      lowerConfVecLambda(i) = std::max(0., stateCount[i] / stateSojournTime[i] * (1 - zscore / sqrt(stateCount[i])));
      upperConfVecLambda(i) = std::min(1., stateCount[i] / stateSojournTime[i] * (1 + zscore / sqrt(stateCount[i])));
    }
    else{
      lowerConfVecLambda(i) = 1;
      upperConfVecLambda(i) = 1;
    }
  }
  
  S4 outCtmc("ctmc");
  outCtmc.slot("states") = sortedStates;
  outCtmc.slot("generator") = gen;
  outCtmc.slot("name") = name;
  
  return List::create(_["estimate"] = outCtmc,
                      _["errors"] = List::create(_["dtmcConfidenceInterval"] = dtmcData["confidenceInterval"],
                      _["lambdaConfidenceInterval"] = List::create(_["lowerEndpointVector"] = lowerConfVecLambda,
                      _["upperEndpointVector"] = upperConfVecLambda)));
}
Beispiel #6
0
//' @title
//' Augment censored data using a Gibbs step
//' @description
//' Augment censored data by drawing them from a truncated normal
//' 
//' @param DP is an S4 object of type DP, HDP, or NDP.
//' @param DataStore is an S4 object of the same name.
//' @param xi is an integer vector that describes to which cluster belong an observation
//' @param zeta is an integer vector that describes in which cluster belong a group of observations
//' @export
// [[Rcpp::export]]
S4 gibbsStep(S4 DP, S4 DataStorage, IntegerVector xi, IntegerVector zeta){
  NumericVector RealData = DataStorage.slot("computation");
  IntegerVector censoring = DataStorage.slot("censoring");
  const int N = RealData.length();
  NumericMatrix Theta = DP.slot("theta");
  NumericMatrix Phi = DP.slot("phi");
  NumericVector toRetData(N, NumericVector::get_na());
  int temp;
  
  for(int n=0; n < N; n++){
    // if n is not NA
    if(RealData(n) == RealData(n)){
        temp = xi[n];
        const int l = temp - 1;
        
        temp = zeta[n];
        const int k = temp - 1;
        
        toRetData(n) = censoring(n) ? RealData(n) : rtruncnorm(RealData(n), Theta(l,k), std::sqrt(Phi(l,k)));
    }
  }
  DataStorage.slot("simulation") = toRetData;
  return DataStorage;
}
SEXP hashed_model_matrix(RObject tf, DataFrameLike data, unsigned long hash_size, bool transpose, S4 retval, bool keep_hashing_mapping, bool is_xi, bool progress) {
  if (hash_size > 4294967296) throw std::invalid_argument("hash_size is too big!");
  NameClassMapping reference_class(get_class(data));
  Environment e(Environment::base_env().new_child(wrap(true)));
  std::shared_ptr<HashFunction> pHF(NULL), pBHF(NULL);
  if (keep_hashing_mapping) {
    pHF.reset(new MurmurHash3LogHashFunction(wrap(e), MURMURHASH3_H_SEED));
  } else {
    pHF.reset(new MurmurHash3HashFunction(MURMURHASH3_H_SEED));
  }
  if (is_xi) pBHF.reset(new MurmurHash3HashFunction(MURMURHASH3_XI_SEED));
  else pBHF.reset(new NullHashFunction);
  ConvertersVec converters(get_converters(reference_class, tf, data, pHF.get(), pBHF.get(), hash_size));
  #ifdef NOISY_DEBUG
  Rprintf("The size of convertres is %d\n", converters.size());
  #endif
  std::vector<int> ivec, pvec(1, 0);
  std::vector<double> xvec;
  bool is_intercept = as<bool>(tf.attr("intercept"));
  #ifdef NOISY_DEBUG
  Rprintf("nrow(data): %d length(converters): %d\n", data.nrows(), converters.size());
  #endif
  std::shared_ptr<boost::progress_display> pd(NULL);
  if (transpose) {
    if (progress) pd.reset(new boost::progress_display(data.nrows(), Rcpp::Rcout));
    for(auto i = 0;i < data.nrows();i++) {
      if (progress) ++(*pd);
      if (is_intercept) {
        ivec.push_back(0);
        xvec.push_back(1.0);
      }
      for(auto j = converters.begin();j != converters.end();j++) {
        pVectorConverter& p(*j);
        const std::vector<uint32_t>& i_origin(p->get_feature(i));
        const std::vector<double>& x_origin(p->get_value(i));
        #ifdef NOISY_DEBUG
        std::for_each(i_origin.begin(), i_origin.end(), [&hash_size](uint32_t hashed_value) {
          Rprintf("(%zu module %d = %d),", hashed_value, hash_size, hashed_value % hash_size);
        });
        Rprintf("\n");
        #endif
        std::for_each(i_origin.begin(), i_origin.end(), [&ivec, &xvec, &hash_size](uint32_t hashed_value) {
          ivec.push_back(hashed_value);
        });
        xvec.insert(xvec.end(), x_origin.begin(), x_origin.end());
      }
      pvec.push_back(ivec.size());
    }
  }
  else {
    if (progress) pd.reset(new boost::progress_display(data.nrows(), Rcpp::Rcout));
    std::map< uint32_t, std::pair< std::vector<int>, std::vector<double> > > cache;
    if (is_intercept) {
      std::pair< std::vector<int>, std::vector<double> >& k(cache[0]);
      k.first.resize(data.nrows());
      for(int i = 0;i < data.nrows();i++) {
        k.first[i] = i;
      }
      k.second.resize(data.nrows(), 1.0);
    }
    for(auto i = 0;i < data.nrows();i++) {
      if (progress) ++(*pd);
      for(auto j = converters.begin();j != converters.end();j++) {
        pVectorConverter& p(*j);
        const std::vector<uint32_t>& i_origin(p->get_feature(i));
        const std::vector<double>& x_origin(p->get_value(i));
        auto x_value = x_origin.begin();
        std::for_each(i_origin.begin(), i_origin.end(), [&cache, &hash_size, &x_value, &i](uint32_t hashed_value) {
          std::pair< std::vector<int>, std::vector<double> >& k(cache[hashed_value]);
          k.first.push_back(i);
          k.second.push_back(*(x_value++));
        });
      }
    }
    int pvec_value = ivec.size();
    for(auto i = cache.begin();i != cache.end();i++) {
      while(pvec.size() <= i->first) pvec.push_back(pvec_value);
      ivec.insert(ivec.end(), i->second.first.begin(), i->second.first.end());
      {
        std::vector<int> tmp;
        i->second.first.swap(tmp);
      }
      xvec.insert(xvec.end(), i->second.second.begin(), i->second.second.end());
      {
        std::vector<double> tmp;
        i->second.second.swap(tmp);
      }
      pvec_value = ivec.size();
    }
    pvec.resize(hash_size + 1, pvec_value);
  }
  retval.slot("i") = wrap(ivec);
  retval.slot("p") = wrap(pvec);
  retval.slot("x") = wrap(xvec);
  IntegerVector dim(2);
  if (transpose) {
    dim[0] = hash_size;
    dim[1] = pvec.size() - 1;
    retval.slot("Dim") = dim;
  }
  else {
    dim[0] = data.nrows();
    dim[1] = hash_size;
    retval.slot("Dim") = dim;
  }
  {
    List dimnames(2);
    dimnames[0] = CharacterVector(0);
    dimnames[1] = CharacterVector(0);
    retval.slot("Dimnames") = dimnames;
  }
  retval.slot("factors") = List();
  {
    CharacterVector key(e.ls(true));
    std::for_each(key.begin(), key.end(), [&e, &hash_size](const char* s) {
      uint32_t *p = (uint32_t*) INTEGER(e[s]);
      p[0] = p[0] % hash_size;
    });
  }
  retval.attr("mapping") = e;
  return retval;
}
Beispiel #8
0
////> Main function ////
// [[Rcpp::export]]
List calcPotts_cpp (const S4& W_SR, const S4& W_LR, arma::mat sample, NumericVector rho, const arma::mat& coords, 
                    const IntegerVector& site_order, int iter_max, double cv_criterion, 
                    bool test_regional, NumericVector distance_ref, double threshold, double neutre, int nbGroup_min, bool multiV, bool last_vs_others, 
                    bool prior, bool type_reg, int verbose){
  
  //// preparation
  int p = sample.n_cols;
  int n = sample.n_rows;
  
  IntegerVector W_SRi = W_SR.slot("i");
  IntegerVector W_SRp = W_SR.slot("p");
  NumericVector W_SRx = W_SR.slot("x");
  
  arma::mat Wpred(n, p);
   
  vector < vector < double > > pred_global(p);
  for(int iter_p = 0 ; iter_p < p ; iter_p ++){
    pred_global[iter_p].resize(n);
    for(int iter_px = 0 ; iter_px < n ; iter_px++){
      pred_global[iter_p][iter_px] = sample(iter_px, iter_p);
    }
  }
  vector < vector < double > > pred_global_hist = pred_global;
    
  if(prior == false){
    std::fill(sample.begin(), sample.end(), 1);
  }
  
  arma::mat V(n, p);
   
  IntegerVector rang;
  bool no_site_order = (site_order[0] < 0);
  if(no_site_order == false){
    rang = site_order;
  }
  
  int index_px;
  double norm;
  double val_criterion = cv_criterion + 1;
  double diff_criterion = 0, diff; 
  double cv_criterion2 = n * cv_criterion ; 
  int iter_updateV = 0 ;
  
  vector < double > res_multipotentiel(n) ;
  int iter = 0 ;
  
  //// estimation
  
  while(iter < iter_max && ( (val_criterion > cv_criterion) || (test_regional == true && iter_updateV != iter) ) ){

    iter++;
    pred_global_hist = pred_global; 
    
    if(no_site_order){
      rang = rank_hpp(runif(n)) - 1; // tirer aleatoirement l ordre des sites
    }
   
    //// regional potential
    if(test_regional == true){
      if(iter == 1 || val_criterion <= cv_criterion || diff_criterion > cv_criterion2){ 
      iter_updateV = iter ;
      
      for(int iter_p = (p - 1) ; iter_p>= 0 ; iter_p --){

        if(last_vs_others == false || iter_p == (p - 1)){
        
        res_multipotentiel =  calcMultiPotential_hpp(W_SR, W_LR, pred_global[iter_p], 
                                                     threshold, coords, Rcpp::as < std::vector < double > >(distance_ref), 
                                                     nbGroup_min, multiV, 
                                                     neutre)[0]; 
            
          for(int iter_px = 0 ; iter_px < n ; iter_px++){
           
            V(iter_px, iter_p) = res_multipotentiel[iter_px];
            
            if(type_reg){
              V(iter_px, iter_p) = V(iter_px, iter_p)  * (V(iter_px, iter_p) - pred_global[iter_p][iter_px]);
            }
          }
        
        }else{
          V.col(iter_p) = 1 - V.col(p - 1);
        }
      }
      
      }else{
        cv_criterion2 /= 1.1;
      } 
    }

    //// update site probabilities
    val_criterion = 0;
    diff_criterion = 0;
    
    for(int iter_px = 0 ; iter_px < n ; iter_px++){ // pour chaque pixel
      
      norm = 0.0;
      index_px = rang(iter_px);
      
      for(int iter_p = 0 ; iter_p < p ; iter_p++){ // pour chaque groupe
        Wpred(index_px, iter_p) = 0.0;
        
        for(int iter_vois = W_SRp[index_px]; iter_vois < W_SRp[index_px + 1]; iter_vois++){ // pour chaque voisin
          if(type_reg){
            Wpred(index_px, iter_p) += W_SRx[iter_vois]*pred_global[iter_p][W_SRi[iter_vois]]*max(0.0, pred_global[iter_p][W_SRi[iter_vois]]-sample(index_px, iter_p));
            }else{
            Wpred(index_px, iter_p) += W_SRx[iter_vois] *pred_global[iter_p][W_SRi[iter_vois]];
          }
        }
        
        // exponentielle rho
        if(test_regional == false){
          pred_global[iter_p][index_px] = sample(index_px, iter_p) *exp(rho(0) *Wpred(index_px, iter_p)) ;
        }else{
          pred_global[iter_p][index_px] = sample(index_px, iter_p) *exp(rho(0) *Wpred(index_px, iter_p) + rho(1) *V(index_px, iter_p));
        } 
        norm += pred_global[iter_p][index_px];
      } 
      
      // normalisation 
      for(int iter_p = 0 ; iter_p < p ; iter_p++){
        pred_global[iter_p][index_px] /= norm;
        diff = abs(pred_global_hist[iter_p][index_px]-pred_global[iter_p][index_px]);
        diff_criterion += diff;
        val_criterion = max(val_criterion, diff);
      }
      
    }         

    if(verbose > 0){
      if(verbose == 1){Rcout << "*" ;}
      if(verbose == 2){Rcout << "iteration " << iter << " : totaldiff = " << diff_criterion << " | maxdiff = " << val_criterion << endl;}
    }

  }  
  
  if(verbose == 1){Rcout << endl;}
  
  //// export
  arma::mat spatialPrior(n, p);
  for(int iter_px = 0 ; iter_px < n ; iter_px++){
    index_px = rang(iter_px);
    for(int iter_p = 0 ; iter_p < p ; iter_p++){
      if(test_regional == false){
        spatialPrior(index_px, iter_p) = exp(rho(0) *Wpred(index_px, iter_p)) ;
      }else{
          spatialPrior(index_px, iter_p) = exp(rho(0) *Wpred(index_px, iter_p) + rho(1) *V(index_px, iter_p));
      } 
    }
  }
  
  return Rcpp::List::create(Rcpp::Named("predicted") = pred_global, 
                            Rcpp::Named("spatialPrior") = spatialPrior, 
                            Rcpp::Named("cv") = val_criterion <= cv_criterion, 
                            Rcpp::Named("iter_max") = iter
                            );
  
}
Beispiel #9
0
////> Simulation functions ////
// [[Rcpp::export]]
List simulPotts_cpp (const S4& W_SR, const S4& W_LR, arma::mat sample, const arma::mat& coords, 
                     const IntegerVector& site_order, 
                     NumericVector rho, NumericVector distance_ref, 
                     int iter_max, double cv_criterion, bool regional, bool verbose){
  
   // attention W_SR est lu par lignes donc si elle doit etre normalisee c est par lignes !!!
  
  //// initialization
  
  // diagnostic progress
  Progress testUser(verbose *CST_PROGRESS, verbose);
  double value_trace = 0 ;
  
  // variables
  int n = sample.n_rows;
  const int p = sample.n_cols;
  vector < int > W_i = W_SR.slot("i");
  vector < int > W_p = W_SR.slot("p");
  vector < double > W_x = W_SR.slot("x");
  
  IntegerVector rang(n);
  bool no_site_order = (site_order[0] < 0);
  if(no_site_order == false){
    rang = site_order;
  }
  IntegerVector tirage_multinom(p); // int tirage_multinom[p]; //  (generate a warning on linux : warning variable length arrays are a C99 feature)
  NumericVector proba_site(p); //double proba_site[p]; // (generate a warning on linux : warning variable length arrays are a C99 feature)
  
  int index_px;
  arma::mat Wpred(n, p);
  double norm;
  
  // regional
  arma::mat V(n, p);
  std::fill(V.begin(), V.end(), 0);
  vector < double > sampleCol(n);
  List res_multipotentiel ;
  
  // diagnostic convergence
  bool check_cv = (cv_criterion > 0);
  arma::mat proba_hist(check_cv *n, check_cv *p);
  double val_criterion = cv_criterion + 1 ;
  bool test;
  
  //// main loop
  for(int iter = 0; iter < iter_max ; iter++){
    
    // diagnostic
    if(verbose && iter>=value_trace){
      value_trace = min(1.0 *iter_max, value_trace + iter_max / CST_PROGRESS);
      testUser.increment();
    }
    if (Progress::check_abort() ){
      sample.fill(NA_REAL);
      V.fill(NA_REAL);
      return Rcpp::List::create(Rcpp::Named("simulation") = sample, 
                                Rcpp::Named("V") = V, 
                                Rcpp::Named("cv") = false
      );
    }

    // sort site order
    if(no_site_order){
      rang = rank_hpp(runif(n)) - 1; // tirer aleatoirement l ordre des sites
    }
    
    if(regional){   // regional potential
      for(int iter_p = 0 ; iter_p < p ; iter_p++){
        
        for(int iter_obs = 0 ; iter_obs < n ; iter_obs++){
          sampleCol[iter_obs] = sample(iter_obs, iter_p); // colvec to vector < double > 
        }
        
        for(int iter_px = 0 ; iter_px < n ; iter_px++){
          
          res_multipotentiel =  calcMultiPotential_hpp(W_SR, W_LR,  sampleCol, 0.01, 
                                                       coords, Rcpp::as < std::vector < double > >(distance_ref), 
                                                       true, 10, 0.5);  
          
          V.col(iter_p) = as < arma::vec >(res_multipotentiel[0]);
        }
      }
    }

    for(int iter_px = 0 ; iter_px < n ; iter_px++){ // pour chaque pixel
      
      norm = 0.0;
      index_px = rang[iter_px];
      
      for(int iter_p = 0 ; iter_p < p ; iter_p++){ // pour chaque groupe
        
        Wpred(index_px, iter_p) = 0.0;
        
        // contribution de chaque voisin a la densite
        for(int iter_vois = W_p[index_px]; iter_vois < W_p[index_px + 1]; iter_vois++){
          
          Wpred(index_px, iter_p) += W_x[iter_vois] *sample(W_i[iter_vois], iter_p);
          
        }
        
        // exponentielle rho
        Wpred(index_px, iter_p) = exp(rho[0] * Wpred(index_px, iter_p) + rho[1] *V(index_px, iter_p)) ;
        norm = norm + Wpred(index_px, iter_p);
      } 
      
      for(int iter_p = 0; iter_p < p; iter_p++){
        proba_site[iter_p] = Wpred(index_px, iter_p) / norm;
        
        if(check_cv){
          if(iter > 0){
            test = abs(proba_hist(iter_px, iter_p) - proba_site[iter_p]) ;
            if(test > val_criterion){val_criterion = test;}
            proba_hist(iter_px, iter_p) = proba_site[iter_p];  
          }
        }
      } 
      rmultinom(1, proba_site.begin(), p, tirage_multinom.begin()); // rmultinom(1, proba_site, p, tirage_multinom); //  (alternative version with the warning)
      
      for(int iter_p = 0; iter_p < p; iter_p++){
        sample(index_px, iter_p) = tirage_multinom[iter_p];
      }
      
    }
    
    if(check_cv){
      if(val_criterion < cv_criterion){break;}
    }
  }
  
    // cv
    bool test_cv;
    if(check_cv){
      test_cv = val_criterion < cv_criterion;
    }else{
      test_cv  = NA_REAL;
    }
    
    // export
    return Rcpp::List::create(Rcpp::Named("simulation") = sample, 
                              Rcpp::Named("V") = V, 
                              Rcpp::Named("cv_criterion") = cv_criterion, 
                              Rcpp::Named("cv") = test_cv
    );
}
Beispiel #10
0
void _computeItemTrace(vector<double> &itemtrace, const NumericMatrix &Theta,
    const List &pars, const NumericVector &ot, const vector<int> &itemloc, const int &which,
    const int &nfact, const int &N, const int &USEFIXED)
{
    NumericMatrix theta = Theta;
    int nfact2 = nfact;
    S4 item = pars[which];
    int ncat = as<int>(item.slot("ncat"));
    vector<double> par = as< vector<double> >(item.slot("par"));
    vector<double> P(N*ncat);
    int itemclass = as<int>(item.slot("itemclass"));
    int correct = 0;
    if(itemclass == 8)
        correct = as<int>(item.slot("correctcat"));

    /*
        1 = dich
        2 = graded
        3 = gpcm
        4 = nominal
        5 = grsm
        6 = rsm
        7 = partcomp
        8 = nestlogit
        9 = custom....have to do in R for now
    */

    if(USEFIXED){
        NumericMatrix itemFD = item.slot("fixed.design");
        nfact2 = nfact + itemFD.ncol();
        NumericMatrix NewTheta(Theta.nrow(), nfact2);
        for(int i = 0; i < itemFD.ncol(); ++i)
            NewTheta(_,i) = itemFD(_,i);
        for(int i = 0; i < nfact; ++i)
            NewTheta(_,i+itemFD.ncol()) = Theta(_,i);
        theta = NewTheta;
    }
    switch(itemclass){
        case 1 :
            P_dich(P, par, theta, ot, N, nfact2);
            break;
        case 2 :
            P_graded(P, par, theta, ot, N, nfact2, ncat-1, 1, 0);
            break;
        case 3 :
            P_nominal(P, par, theta, ot, N, nfact2, ncat, 0, 0);
            break;
        case 4 :
            P_nominal(P, par, theta, ot, N, nfact2, ncat, 0, 0);
            break;
        case 5 :
            P_graded(P, par, theta, ot, N, nfact2, ncat-1, 1, 1);
            break;
        case 6 :
            P_nominal(P, par, theta, ot, N, nfact2, ncat, 0, 1);
            break;
        case 7 :
            P_comp(P, par, theta, N, nfact2);
            break;
        case 8 :
            P_nested(P, par, theta, N, nfact2, ncat, correct);
            break;
        case 9 :
            break;
        default :
            Rprintf("How in the heck did you get here from a switch statement?\n");
            break;
    }
    int where = (itemloc[which]-1) * N;
    for(int i = 0; i < N*ncat; ++i)
        itemtrace[where + i] = P[i];
}