void SContour::ClipEarInto(SMesh *m, int bp, double scaledEps) {
    int ap = WRAP(bp-1, l.n),
        cp = WRAP(bp+1, l.n);
    
    STriangle tr;
    ZERO(&tr);
    tr.a = l.elem[ap].p;
    tr.b = l.elem[bp].p;
    tr.c = l.elem[cp].p;
    if(tr.Normal().MagSquared() < scaledEps*scaledEps) {
        // A vertex with more than two edges will cause us to generate
        // zero-area triangles, which must be culled.
    } else {
        m->AddTriangle(&tr);
    }

    // By deleting the point at bp, we may change the ear-ness of the points
    // on either side.
    l.elem[ap].ear = SPoint::UNKNOWN;
    l.elem[cp].ear = SPoint::UNKNOWN;

    l.ClearTags();
    l.elem[bp].tag = 1;
    l.RemoveTagged();
}
//-----------------------------------------------------------------------------
// Export the mesh as an STL file; it should always be vertex-to-vertex and
// not self-intersecting, so not much to do.
//-----------------------------------------------------------------------------
void SolveSpace::ExportMeshAsStlTo(FILE *f, SMesh *sm) {
    char str[80];
    memset(str, 0, sizeof(str));
    strcpy(str, "STL exported mesh");
    fwrite(str, 1, 80, f);

    DWORD n = sm->l.n;
    fwrite(&n, 4, 1, f);

    double s = SS.exportScale;
    int i;
    for(i = 0; i < sm->l.n; i++) {
        STriangle *tr = &(sm->l.elem[i]);
        Vector n = tr->Normal().WithMagnitude(1);
        float w;
        w = (float)n.x;           fwrite(&w, 4, 1, f);
        w = (float)n.y;           fwrite(&w, 4, 1, f);
        w = (float)n.z;           fwrite(&w, 4, 1, f);
        w = (float)((tr->a.x)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->a.y)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->a.z)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->b.x)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->b.y)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->b.z)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->c.x)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->c.y)/s); fwrite(&w, 4, 1, f);
        w = (float)((tr->c.z)/s); fwrite(&w, 4, 1, f);
        fputc(0, f);
        fputc(0, f);
    }
}
bool SContour::IsEar(int bp, double scaledEps) {
    int ap = WRAP(bp-1, l.n),
        cp = WRAP(bp+1, l.n);

    STriangle tr;
    ZERO(&tr);
    tr.a = l.elem[ap].p;
    tr.b = l.elem[bp].p;
    tr.c = l.elem[cp].p;

    if((tr.a).Equals(tr.c)) {
        // This is two coincident and anti-parallel edges. Zero-area, so
        // won't generate a real triangle, but we certainly can clip it.
        return true;
    }

    Vector n = Vector::From(0, 0, -1);
    if((tr.Normal()).Dot(n) < scaledEps) {
        // This vertex is reflex, or between two collinear edges; either way,
        // it's not an ear.
        return false;
    }

    // Accelerate with an axis-aligned bounding box test
    Vector maxv = tr.a, minv = tr.a;
    (tr.b).MakeMaxMin(&maxv, &minv);
    (tr.c).MakeMaxMin(&maxv, &minv);

    int i;
    for(i = 0; i < l.n; i++) {
        if(i == ap || i == bp || i == cp) continue;
        
        Vector p = l.elem[i].p;
        if(p.OutsideAndNotOn(maxv, minv)) continue;

        // A point on the edge of the triangle is considered to be inside,
        // and therefore makes it a non-ear; but a point on the vertex is
        // "outside", since that's necessary to make bridges work.
        if(p.EqualsExactly(tr.a)) continue;
        if(p.EqualsExactly(tr.b)) continue;
        if(p.EqualsExactly(tr.c)) continue;
            
        if(tr.ContainsPointProjd(n, p)) {
            return false;
        }
    }
    return true;
}
Beispiel #4
0
void SolveSpaceUI::MenuAnalyze(int id) {
    SS.GW.GroupSelection();
#define gs (SS.GW.gs)

    switch(id) {
        case GraphicsWindow::MNU_STEP_DIM:
            if(gs.constraints == 1 && gs.n == 0) {
                Constraint *c = SK.GetConstraint(gs.constraint[0]);
                if(c->HasLabel() && !c->reference) {
                    SS.TW.shown.dimFinish = c->valA;
                    SS.TW.shown.dimSteps = 10;
                    SS.TW.shown.dimIsDistance =
                        (c->type != Constraint::ANGLE) &&
                        (c->type != Constraint::LENGTH_RATIO) &&
                        (c->type != Constraint::LENGTH_DIFFERENCE);
                    SS.TW.shown.constraint = c->h;
                    SS.TW.shown.screen = TextWindow::SCREEN_STEP_DIMENSION;

                    // The step params are specified in the text window,
                    // so force that to be shown.
                    SS.GW.ForceTextWindowShown();

                    SS.ScheduleShowTW();
                    SS.GW.ClearSelection();
                } else {
                    Error("Constraint must have a label, and must not be "
                          "a reference dimension.");
                }
            } else {
                Error("Bad selection for step dimension; select a constraint.");
            }
            break;

        case GraphicsWindow::MNU_NAKED_EDGES: {
            SS.nakedEdges.Clear();

            Group *g = SK.GetGroup(SS.GW.activeGroup);
            SMesh *m = &(g->displayMesh);
            SKdNode *root = SKdNode::From(m);
            bool inters, leaks;
            root->MakeCertainEdgesInto(&(SS.nakedEdges),
                SKdNode::NAKED_OR_SELF_INTER_EDGES, true, &inters, &leaks);

            InvalidateGraphics();

            const char *intersMsg = inters ?
                "The mesh is self-intersecting (NOT okay, invalid)." :
                "The mesh is not self-intersecting (okay, valid).";
            const char *leaksMsg = leaks ?
                "The mesh has naked edges (NOT okay, invalid)." :
                "The mesh is watertight (okay, valid).";

            std::string cntMsg = ssprintf("\n\nThe model contains %d triangles, from "
                            "%d surfaces.", g->displayMesh.l.n, g->runningShell.surface.n);

            if(SS.nakedEdges.l.n == 0) {
                Message("%s\n\n%s\n\nZero problematic edges, good.%s",
                    intersMsg, leaksMsg, cntMsg.c_str());
            } else {
                Error("%s\n\n%s\n\n%d problematic edges, bad.%s",
                    intersMsg, leaksMsg, SS.nakedEdges.l.n, cntMsg.c_str());
            }
            break;
        }

        case GraphicsWindow::MNU_INTERFERENCE: {
            SS.nakedEdges.Clear();

            SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
            SKdNode *root = SKdNode::From(m);
            bool inters, leaks;
            root->MakeCertainEdgesInto(&(SS.nakedEdges),
                SKdNode::SELF_INTER_EDGES, false, &inters, &leaks);

            InvalidateGraphics();

            if(inters) {
                Error("%d edges interfere with other triangles, bad.",
                    SS.nakedEdges.l.n);
            } else {
                Message("The assembly does not interfere, good.");
            }
            break;
        }

        case GraphicsWindow::MNU_VOLUME: {
            SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);

            double vol = 0;
            int i;
            for(i = 0; i < m->l.n; i++) {
                STriangle tr = m->l.elem[i];

                // Translate to place vertex A at (x, y, 0)
                Vector trans = Vector::From(tr.a.x, tr.a.y, 0);
                tr.a = (tr.a).Minus(trans);
                tr.b = (tr.b).Minus(trans);
                tr.c = (tr.c).Minus(trans);

                // Rotate to place vertex B on the y-axis. Depending on
                // whether the triangle is CW or CCW, C is either to the
                // right or to the left of the y-axis. This handles the
                // sign of our normal.
                Vector u = Vector::From(-tr.b.y, tr.b.x, 0);
                u = u.WithMagnitude(1);
                Vector v = Vector::From(tr.b.x, tr.b.y, 0);
                v = v.WithMagnitude(1);
                Vector n = Vector::From(0, 0, 1);

                tr.a = (tr.a).DotInToCsys(u, v, n);
                tr.b = (tr.b).DotInToCsys(u, v, n);
                tr.c = (tr.c).DotInToCsys(u, v, n);

                n = tr.Normal().WithMagnitude(1);

                // Triangles on edge don't contribute
                if(fabs(n.z) < LENGTH_EPS) continue;

                // The plane has equation p dot n = a dot n
                double d = (tr.a).Dot(n);
                // nx*x + ny*y + nz*z = d
                // nz*z = d - nx*x - ny*y
                double A = -n.x/n.z, B = -n.y/n.z, C = d/n.z;

                double mac = tr.c.y/tr.c.x, mbc = (tr.c.y - tr.b.y)/tr.c.x;
                double xc = tr.c.x, yb = tr.b.y;

                // I asked Maple for
                //    int(int(A*x + B*y +C, y=mac*x..(mbc*x + yb)), x=0..xc);
                double integral =
                    (1.0/3)*(
                        A*(mbc-mac)+
                        (1.0/2)*B*(mbc*mbc-mac*mac)
                    )*(xc*xc*xc)+
                    (1.0/2)*(A*yb+B*yb*mbc+C*(mbc-mac))*xc*xc+
                    C*yb*xc+
                    (1.0/2)*B*yb*yb*xc;

                vol += integral;
            }

            std::string msg = ssprintf("The volume of the solid model is:\n\n""    %.3f %s^3",
                vol / pow(SS.MmPerUnit(), 3),
                SS.UnitName());

            if(SS.viewUnits == SolveSpaceUI::UNIT_MM) {
                msg += ssprintf("\n    %.2f mL", vol/(10*10*10));
            }
            msg += "\n\nCurved surfaces have been approximated as triangles.\n"
                   "This introduces error, typically of around 1%.";
            Message("%s", msg.c_str());
            break;
        }

        case GraphicsWindow::MNU_AREA: {
            Group *g = SK.GetGroup(SS.GW.activeGroup);
            if(g->polyError.how != Group::POLY_GOOD) {
                Error("This group does not contain a correctly-formed "
                      "2d closed area. It is open, not coplanar, or self-"
                      "intersecting.");
                break;
            }
            SEdgeList sel = {};
            g->polyLoops.MakeEdgesInto(&sel);
            SPolygon sp = {};
            sel.AssemblePolygon(&sp, NULL, true);
            sp.normal = sp.ComputeNormal();
            sp.FixContourDirections();
            double area = sp.SignedArea();
            double scale = SS.MmPerUnit();
            Message("The area of the region sketched in this group is:\n\n"
                    "    %.3f %s^2\n\n"
                    "Curves have been approximated as piecewise linear.\n"
                    "This introduces error, typically of around 1%%.",
                area / (scale*scale),
                SS.UnitName());
            sel.Clear();
            sp.Clear();
            break;
        }

        case GraphicsWindow::MNU_SHOW_DOF:
            // This works like a normal solve, except that it calculates
            // which variables are free/bound at the same time.
            SS.GenerateAll(SolveSpaceUI::GENERATE_ALL, true);
            break;

        case GraphicsWindow::MNU_TRACE_PT:
            if(gs.points == 1 && gs.n == 1) {
                SS.traced.point = gs.point[0];
                SS.GW.ClearSelection();
            } else {
                Error("Bad selection for trace; select a single point.");
            }
            break;

        case GraphicsWindow::MNU_STOP_TRACING: {
            std::string exportFile;
            if(GetSaveFile(&exportFile, "", CsvFileFilter)) {
                FILE *f = ssfopen(exportFile, "wb");
                if(f) {
                    int i;
                    SContour *sc = &(SS.traced.path);
                    for(i = 0; i < sc->l.n; i++) {
                        Vector p = sc->l.elem[i].p;
                        double s = SS.exportScale;
                        fprintf(f, "%.10f, %.10f, %.10f\r\n",
                            p.x/s, p.y/s, p.z/s);
                    }
                    fclose(f);
                } else {
                    Error("Couldn't write to '%s'", exportFile.c_str());
                }
            }
            // Clear the trace, and stop tracing
            SS.traced.point = Entity::NO_ENTITY;
            SS.traced.path.l.Clear();
            InvalidateGraphics();
            break;
        }

        default: oops();
    }
}
Beispiel #5
0
SBsp3 *SBsp3::Insert(STriangle *tr, SMesh *instead) {
    if(!this) {
        if(instead) {
            if(instead->flipNormal) {
                instead->atLeastOneDiscarded = true;
            } else {
                instead->AddTriangle(tr->meta, tr->a, tr->b, tr->c);
            }
            return NULL;
        }

        // Brand new node; so allocate for it, and fill us in.
        SBsp3 *r = Alloc();
        r->n = (tr->Normal()).WithMagnitude(1);
        r->d = (tr->a).Dot(r->n);
        r->tri = *tr;
        return r;
    }

    double dt[3] = { (tr->a).Dot(n), (tr->b).Dot(n), (tr->c).Dot(n) };

    int inc = 0, posc = 0, negc = 0;
    bool isPos[3], isNeg[3], isOn[3];
    ZERO(&isPos); ZERO(&isNeg); ZERO(&isOn);
    // Count vertices in the plane
    for(int i = 0; i < 3; i++) {
        if(fabs(dt[i] - d) < LENGTH_EPS) {
            inc++;
            isOn[i] = true;
        } else if(dt[i] > d) {
            posc++;
            isPos[i] = true;
        } else {
            negc++;
            isNeg[i] = true;
        }
    }

    // All vertices in-plane
    if(inc == 3) {
        InsertHow(COPLANAR, tr, instead);
        return this;
    }

    // No split required
    if(posc == 0 || negc == 0) {
        if(inc == 2) {
            Vector a, b;
            if     (!isOn[0]) { a = tr->b; b = tr->c; }
            else if(!isOn[1]) { a = tr->c; b = tr->a; }
            else if(!isOn[2]) { a = tr->a; b = tr->b; }
            else oops();
            if(!instead) {
                SEdge se = SEdge::From(a, b);
                edges = edges->InsertEdge(&se, n, tr->Normal());
            }
        }

        if(posc > 0) {
            InsertHow(POS, tr, instead);
        } else {
            InsertHow(NEG, tr, instead);
        }
        return this;
    }

    // The polygon must be split into two pieces, one above, one below.
    Vector a, b, c;

    if(posc == 1 && negc == 1 && inc == 1) {
        bool bpos;
        // Standardize so that a is on the plane
        if       (isOn[0]) { a = tr->a; b = tr->b; c = tr->c; bpos = isPos[1];
        } else if(isOn[1]) { a = tr->b; b = tr->c; c = tr->a; bpos = isPos[2];
        } else if(isOn[2]) { a = tr->c; b = tr->a; c = tr->b; bpos = isPos[0];
        } else oops();

        Vector bPc = IntersectionWith(b, c);
        STriangle btri = STriangle::From(tr->meta, a, b, bPc);
        STriangle ctri = STriangle::From(tr->meta, c, a, bPc);

        if(bpos) {
            InsertHow(POS, &btri, instead);
            InsertHow(NEG, &ctri, instead);
        } else {
            InsertHow(POS, &ctri, instead);
            InsertHow(NEG, &btri, instead);
        }

        if(!instead) {
            SEdge se = SEdge::From(a, bPc);
            edges = edges->InsertEdge(&se, n, tr->Normal());
        }

        return this;
    }

    if(posc == 2 && negc == 1) {
        // Standardize so that a is on one side, and b and c are on the other.
        if       (isNeg[0]) {   a = tr->a; b = tr->b; c = tr->c;
        } else if(isNeg[1]) {   a = tr->b; b = tr->c; c = tr->a;
        } else if(isNeg[2]) {   a = tr->c; b = tr->a; c = tr->b;
        } else oops();

    } else if(posc == 1 && negc == 2) {
        if       (isPos[0]) {   a = tr->a; b = tr->b; c = tr->c;
        } else if(isPos[1]) {   a = tr->b; b = tr->c; c = tr->a;
        } else if(isPos[2]) {   a = tr->c; b = tr->a; c = tr->b;
        } else oops();
    } else oops();

    Vector aPb = IntersectionWith(a, b);
    Vector cPa = IntersectionWith(c, a);

    STriangle alone = STriangle::From(tr->meta, a, aPb, cPa);
    Vector quad[4] = { aPb, b, c, cPa };

    if(posc == 2 && negc == 1) {
        InsertConvexHow(POS, tr->meta, quad, 4, instead);
        InsertHow(NEG, &alone, instead);
    } else {
        InsertConvexHow(NEG, tr->meta, quad, 4, instead);
        InsertHow(POS, &alone, instead);
    }
    if(!instead) {
        SEdge se = SEdge::From(aPb, cPa);
        edges = edges->InsertEdge(&se, n, alone.Normal());
    }

    return this;
}
Beispiel #6
0
void Group::GenerateDisplayItems(void) {
    // This is potentially slow (since we've got to triangulate a shell, or
    // to find the emphasized edges for a mesh), so we will run it only
    // if its inputs have changed.
    if(displayDirty) {
        Group *pg = RunningMeshGroup();
        if(pg && thisMesh.IsEmpty() && thisShell.IsEmpty()) {
            // We don't contribute any new solid model in this group, so our
            // display items are identical to the previous group's; which means
            // that we can just display those, and stop ourselves from
            // recalculating for those every time we get a change in this group.
            //
            // Note that this can end up recursing multiple times (if multiple
            // groups that contribute no solid model exist in sequence), but
            // that's okay.
            pg->GenerateDisplayItems();

            displayMesh.Clear();
            displayMesh.MakeFromCopyOf(&(pg->displayMesh));

            displayEdges.Clear();
            displayOutlines.Clear();
            if(SS.GW.showEdges) {
                SEdge *se;
                SEdgeList *src = &(pg->displayEdges);
                for(se = src->l.First(); se; se = src->l.NextAfter(se)) {
                    displayEdges.l.Add(se);
                }
                displayOutlines.MakeFromCopyOf(&pg->displayOutlines);
            }
        } else {
            // We do contribute new solid model, so we have to triangulate the
            // shell, and edge-find the mesh.
            displayMesh.Clear();
            runningShell.TriangulateInto(&displayMesh);
            STriangle *t;
            for(t = runningMesh.l.First(); t; t = runningMesh.l.NextAfter(t)) {
                STriangle trn = *t;
                Vector n = trn.Normal();
                trn.an = n;
                trn.bn = n;
                trn.cn = n;
                displayMesh.AddTriangle(&trn);
            }

            displayEdges.Clear();
            displayOutlines.Clear();

            if(SS.GW.showEdges) {
                if(runningMesh.l.n > 0) {
                    // Triangle mesh only; no shell or emphasized edges.
                    runningMesh.MakeCertainEdgesAndOutlinesInto(
                        &displayEdges, &displayOutlines, SKdNode::EMPHASIZED_EDGES);
                } else {
                    displayMesh.MakeCertainEdgesAndOutlinesInto(
                        &displayEdges, &displayOutlines, SKdNode::SHARP_EDGES);
                }
            }
        }

        displayDirty = false;
    }
}
void SolveSpace::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
                                    Vector u, Vector v, Vector n,
                                        Vector origin, double cameraTan,
                                    VectorFileWriter *out)
{
    double s = 1.0 / SS.exportScale;

    // Project into the export plane; so when we're done, z doesn't matter,
    // and x and y are what goes in the DXF.
    SEdge *e;
    for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
        // project into the specified csys, and apply export scale
        (e->a) = e->a.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
        (e->b) = e->b.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
    }

    SBezier *b;
    if(sbl) {
        for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
            *b = b->InPerspective(u, v, n, origin, cameraTan);
            int i;
            for(i = 0; i <= b->deg; i++) {
                b->ctrl[i] = (b->ctrl[i]).ScaledBy(s);
            }
        }
    }

    // If cutter radius compensation is requested, then perform it now
    if(fabs(SS.exportOffset) > LENGTH_EPS) {
        // assemble those edges into a polygon, and clear the edge list
        SPolygon sp;
        ZERO(&sp);
        sel->AssemblePolygon(&sp, NULL);
        sel->Clear();

        SPolygon compd;
        ZERO(&compd);
        sp.normal = Vector::From(0, 0, -1);
        sp.FixContourDirections();
        sp.OffsetInto(&compd, SS.exportOffset*s);
        sp.Clear();

        compd.MakeEdgesInto(sel);
        compd.Clear();
    }

    // Now the triangle mesh; project, then build a BSP to perform
    // occlusion testing and generated the shaded surfaces.
    SMesh smp;
    ZERO(&smp);
    if(sm) {
        Vector l0 = (SS.lightDir[0]).WithMagnitude(1),
               l1 = (SS.lightDir[1]).WithMagnitude(1);
        STriangle *tr;
        for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
            STriangle tt = *tr;
            tt.a = (tt.a).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
            tt.b = (tt.b).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
            tt.c = (tt.c).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);

            // And calculate lighting for the triangle
            Vector n = tt.Normal().WithMagnitude(1);
            double lighting = SS.ambientIntensity +
                                  max(0, (SS.lightIntensity[0])*(n.Dot(l0))) +
                                  max(0, (SS.lightIntensity[1])*(n.Dot(l1)));
            double r = min(1, REDf  (tt.meta.color)*lighting),
                   g = min(1, GREENf(tt.meta.color)*lighting),
                   b = min(1, BLUEf (tt.meta.color)*lighting);
            tt.meta.color = RGBf(r, g, b);
            smp.AddTriangle(&tt);
        }
    }

    // Use the BSP routines to generate the split triangles in paint order.
    SBsp3 *bsp = SBsp3::FromMesh(&smp);
    SMesh sms;
    ZERO(&sms);
    bsp->GenerateInPaintOrder(&sms);
    // And cull the back-facing triangles
    STriangle *tr;
    sms.l.ClearTags();
    for(tr = sms.l.First(); tr; tr = sms.l.NextAfter(tr)) {
        Vector n = tr->Normal();
        if(n.z < 0) {
            tr->tag = 1;
        }
    }
    sms.l.RemoveTagged();

    // And now we perform hidden line removal if requested
    SEdgeList hlrd;
    ZERO(&hlrd);
    if(sm && !SS.GW.showHdnLines) {
        SKdNode *root = SKdNode::From(&smp);

        // Generate the edges where a curved surface turns from front-facing
        // to back-facing.
        if(SS.GW.showEdges) {
            root->MakeCertainEdgesInto(sel, SKdNode::TURNING_EDGES,
                        false, NULL, NULL);
        }

        root->ClearTags();
        int cnt = 1234;

        SEdge *se;
        for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
            if(se->auxA == Style::CONSTRAINT) {
                // Constraints should not get hidden line removed; they're
                // always on top.
                hlrd.AddEdge(se->a, se->b, se->auxA);
                continue;
            }

            SEdgeList out;
            ZERO(&out);
            // Split the original edge against the mesh
            out.AddEdge(se->a, se->b, se->auxA);
            root->OcclusionTestLine(*se, &out, cnt);
            // the occlusion test splits unnecessarily; so fix those
            out.MergeCollinearSegments(se->a, se->b);
            cnt++;
            // And add the results to our output
            SEdge *sen;
            for(sen = out.l.First(); sen; sen = out.l.NextAfter(sen)) {
                hlrd.AddEdge(sen->a, sen->b, sen->auxA);
            }
            out.Clear();
        }

        sel = &hlrd;
    }

    // We kept the line segments and Beziers separate until now; but put them
    // all together, and also project everything into the xy plane, since not
    // all export targets ignore the z component of the points.
    for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
        SBezier sb = SBezier::From(e->a, e->b);
        sb.auxA = e->auxA;
        sbl->l.Add(&sb);
    }
    for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
        for(int i = 0; i <= b->deg; i++) {
            b->ctrl[i].z = 0;
        }
    }

    // If possible, then we will assemble these output curves into loops. They
    // will then get exported as closed paths.
    SBezierLoopSetSet sblss;
    ZERO(&sblss);
    SBezierList leftovers;
    ZERO(&leftovers);
    SSurface srf = SSurface::FromPlane(Vector::From(0, 0, 0),
                                       Vector::From(1, 0, 0),
                                       Vector::From(0, 1, 0));
    SPolygon spxyz;
    ZERO(&spxyz);
    bool allClosed;
    SEdge notClosedAt;
    sbl->l.ClearTags();
    sblss.FindOuterFacesFrom(sbl, &spxyz, &srf,
                             SS.ChordTolMm()*s,
                             &allClosed, &notClosedAt,
                             NULL, NULL,
                             &leftovers);
    for(b = leftovers.l.First(); b; b = leftovers.l.NextAfter(b)) {
        sblss.AddOpenPath(b);
    }

    // Now write the lines and triangles to the output file
    out->Output(&sblss, &sms);

    leftovers.Clear();
    spxyz.Clear();
    sblss.Clear();
    smp.Clear();
    sms.Clear();
    hlrd.Clear();
}