Beispiel #1
0
/**************************************************************************
 * Main function. This function is run on each node that is being traversed
 * in the graph. For each node, we determine the successors and check
 * if those have been previously seen. If yes, a cycle may exist.
 **************************************************************************/
bool 
CompassAnalyses::CycleDetection::Traversal::run(string& name, SgGraphNode* node,
                                                SgGraphNode* previous){
  // check known function calls and resolve variables
  ROSE_ASSERT(node);

  //cerr << " cycledetection->run " << node->get_name() << endl;
  SgAsmFunction* func = isSgAsmFunction(node->get_SgNode());
  if (func) {
    // if the node is a function, we clear the visited nodes
    // this should speed up our search
    visited.clear();
    return false;
  }
  successors.clear();
  ROSE_ASSERT(vizzGraph);
  vizzGraph->getSuccessors(node, successors);    
  vector<SgGraphNode*>::iterator succ = successors.begin();
  for (;succ!=successors.end();++succ) {
    // for each successor do...
    SgGraphNode* next = *succ;
    // if the node is an instruction, we check if it was visited
    // if not, we add it to the visited set, otherwise a cycle is present
    std::set<SgGraphNode*>::iterator it =visited.find(next);
    if (it!=visited.end()) {
      // found this node in visited list
      SgAsmx86Instruction* nodeSg = isSgAsmx86Instruction(node->get_SgNode());
      SgAsmx86Instruction* nextSg = isSgAsmx86Instruction(next->get_SgNode());
      if (debug) {
        std::string outputText = "Found possible cycle between  ";
        outputText+=stringifyX86InstructionKind(nodeSg->get_kind()) + " (";
        outputText+=RoseBin_support::HexToString(nodeSg->get_address()) + ") and ";
        outputText+=stringifyX86InstructionKind(nextSg->get_kind()) + " (";
        outputText+=RoseBin_support::HexToString(nextSg->get_address()) + ")";
        std::cerr << outputText << std::endl;
        output->addOutput(new CheckerOutput(nodeSg, outputText));
      }
      bool validCycle = checkIfValidCycle(node,next);
      if (validCycle) {
        std::string outputText = "Found cycle between  ";
        outputText+=stringifyX86InstructionKind(nodeSg->get_kind()) + " (";
        outputText+=RoseBin_support::HexToString(nodeSg->get_address()) + ") and ";
        outputText+=stringifyX86InstructionKind(nextSg->get_kind()) + " (";
        outputText+=RoseBin_support::HexToString(nextSg->get_address()) + ")";
        std::cerr << outputText << std::endl;
        output->addOutput(new CheckerOutput(nodeSg, outputText));
	cycleFound[node]=next;
      } else {
	if (debug)
	  std::cerr << "This is not a cyclic node "  << std::endl;
      }
    }
  }
  visited.insert(node);
  return false;
}
void
CompassAnalyses::BinaryInterruptAnalysis::Traversal::getValueForDefinition(std::vector<uint64_t>& vec,
                                                                std::vector<uint64_t>& positions,
                                                                uint64_t& fpos,
                                                                SgGraphNode* node,
                                                                std::pair<X86RegisterClass, int> reg ) {
  set <SgGraphNode*> defNodeSet = getDefFor(node, reg);
  if (RoseBin_support::DEBUG_MODE()) 
    cout << "    size of found NodeSet = " << defNodeSet.size() <<endl;
  set <SgGraphNode*>::const_iterator it = defNodeSet.begin();
  for (;it!=defNodeSet.end();++it) {
    SgGraphNode* defNode = *it;
    if (RoseBin_support::DEBUG_MODE() && defNode) 
      cout << "    investigating ... " << defNode->get_name() <<endl;
    ROSE_ASSERT(defNode);
    SgAsmx86Instruction* inst = isSgAsmx86Instruction(defNode->get_SgNode());
    ROSE_ASSERT(inst);
    positions.push_back(inst->get_address());
    // the right hand side of the instruction is either a use or a value
    bool memRef = false, regRef = false;
    std::pair<X86RegisterClass, int> regRight =
      check_isRegister(defNode, inst, true, memRef, regRef);

    if (RoseBin_support::DEBUG_MODE()) {
      string regName = unparseX86Register(RegisterDescriptor(reg.first, reg.second, 0, 64), NULL);
      string regNameRight = unparseX86Register(RegisterDescriptor(regRight.first, regRight.second, 0, 64), NULL);
      cout << " VarAnalysis: getValueForDef . " << regName << "  right hand : " << regNameRight <<endl;
    }
    if (!regRef) {
      // it is either a memref or a value
      if (!memRef) {
	// get value of right hand side instruction
	uint64_t val = getValueOfInstr(inst, true);
	vec.push_back(val);
	fpos = inst->get_address();
	if (RoseBin_support::DEBUG_MODE()) 
      	  cout << "    found  valueOfInst = " << RoseBin_support::ToString(val) <<endl;
      }
    } else {
      // it is a register reference. I.e we need to follow the usage edge to find the 
      // definition of that node
      SgGraphNode* usageNode = g_algo->getDefinitionForUsage(vizzGraph,defNode);
      if (usageNode && usageNode!=node) {
	if (RoseBin_support::DEBUG_MODE() && usageNode) 
      	  cout << "    following up usage for " << usageNode->get_name() <<endl;
	getValueForDefinition(vec, positions, fpos, usageNode, regRight);
      } else {
	// we look at the same node.
	cout << " ERROR :: Either following usage to itself or usageNode = NULL. " << usageNode << endl;
      }
    }
  }
}
Beispiel #3
0
BtorTranslationPolicy::BtorTranslationPolicy(BtorTranslationHooks* hooks, uint32_t minNumStepsToFindError, uint32_t maxNumStepsToFindError, SgProject* proj): problem(), hooks(hooks), regdict(NULL) {
  assert (minNumStepsToFindError >= 1); // Can't find an error on the first step
  assert (maxNumStepsToFindError < 0xFFFFFFFFU); // Prevent overflows
  assert (minNumStepsToFindError <= maxNumStepsToFindError || maxNumStepsToFindError == 0);
  makeRegMap(origRegisterMap, "");
  makeRegMapZero(newRegisterMap);
  isValidIp = false_();
  validIPs.clear();
  Comp stepCount = problem.build_var(32, "stepCount_saturating_at_" + boost::lexical_cast<std::string>(maxNumStepsToFindError + 1));
  addNext(stepCount, ite(problem.build_op_eq(stepCount, number<32>(maxNumStepsToFindError + 1)), number<32>(maxNumStepsToFindError + 1), problem.build_op_inc(stepCount)));
  resetState = problem.build_op_eq(stepCount, zero(32));
  errorsEnabled =
    problem.build_op_and(
      problem.build_op_ugte(stepCount, number<32>(minNumStepsToFindError)),
      (maxNumStepsToFindError == 0 ?
       true_() :
       problem.build_op_ulte(stepCount, number<32>(maxNumStepsToFindError))));
  {
    vector<SgNode*> functions = NodeQuery::querySubTree(proj, V_SgAsmFunction);
    for (size_t i = 0; i < functions.size(); ++i) {
      functionStarts.push_back(isSgAsmFunction(functions[i])->get_address());
      // fprintf(stderr, "functionStarts 0x%"PRIx64"\n", isSgAsmFunction(functions[i])->get_address());
    }
  }
  {
    vector<SgNode*> blocks = NodeQuery::querySubTree(proj, V_SgAsmBlock);
    for (size_t i = 0; i < blocks.size(); ++i) {
      SgAsmBlock* b = isSgAsmBlock(blocks[i]);
      if (!b->get_statementList().empty() && isSgAsmx86Instruction(b->get_statementList().front())) {
        blockStarts.push_back(b->get_address());
        // fprintf(stderr, "blockStarts 0x%"PRIx64"\n", b->get_address());
      }
    }
  }
  {
    vector<SgNode*> calls = NodeQuery::querySubTree(proj, V_SgAsmx86Instruction);
    for (size_t i = 0; i < calls.size(); ++i) {
      SgAsmx86Instruction* b = isSgAsmx86Instruction(calls[i]);
      if (b->get_kind() != x86_call) continue;
      returnPoints.push_back(b->get_address() + b->get_raw_bytes().size());
      // fprintf(stderr, "returnPoints 0x%"PRIx64"\n", b->get_address() + b->get_raw_bytes().size());
    }
  }
  {
    vector<SgNode*> instructions = NodeQuery::querySubTree(proj, V_SgAsmx86Instruction);
    for (size_t i = 0; i < instructions.size(); ++i) {
      SgAsmx86Instruction* b = isSgAsmx86Instruction(instructions[i]);
      validIPs.push_back(b->get_address());
    }
  }
}
Beispiel #4
0
    virtual bool operator()(bool enabled, const Args &args) /*overrides*/ {
        if (enabled) {
            if (!triggered && args.insn->get_address()==when) {
                triggered = true;
                initialize_state(args.thread);
            }
            SgAsmx86Instruction *insn = isSgAsmx86Instruction(args.insn);
            if (triggered && insn) {
                RTS_Message *m = args.thread->tracing(TRACE_MISC);
                m->mesg("%s: %s", name, unparseInstructionWithAddress(insn).c_str());
                policy.get_state().registers.ip = SymbolicSemantics::ValueType<32>(insn->get_address());
                semantics.processInstruction(insn);

                SMTSolver::Stats smt_stats = yices.get_stats();
                m->mesg("%s: mem-cell list size: %zu elements\n", name, policy.get_state().memory.cell_list.size());
                m->mesg("%s: SMT stats: ncalls=%zu, input=%zu bytes, output=%zu bytes\n",
                        name, smt_stats.ncalls, smt_stats.input_size, smt_stats.output_size);
                yices.reset_stats();

#if 0
                std::ostringstream ss; ss <<policy;
                m->mesg("%s", ss.str().c_str());
#endif
            }
        }
        return enabled;
    }
void
CompassAnalyses::BinPrintAsmInstruction::Traversal::
visit(SgNode* n)
   { 

     if (isSgBinaryComposite(n) && file==NULL)
       file = isSgBinaryComposite(n);

  SgAsmx86Instruction* binInst = isSgAsmx86Instruction(n);
  if (binInst==NULL) return;
  ROSE_ASSERT(binInst);

  string className = rose::stringifyX86InstructionKind(binInst->get_kind(), "x86_");
  int nr = 1;

//rose_hash::unordered_map<std::string, int>::const_iterator it = instMap.find(className);
  rose_hash::unordered_map<std::string, int>::const_iterator it = instMap.find(className);

  if (it!=instMap.end()) {
    nr = it->second;
    nr++;
  }
  instMap[className]=nr;

  unsigned int address = binInst->get_address();
  ostringstream addrhex;
  addrhex << hex << setw(8) << address ;
  string address_str = addrhex.str();

   } //End of the visit function.
Beispiel #6
0
 // Replace the comparator defined below?
 bool operator<(const Definition& other) const {
   if (definer == NULL && other.definer != NULL) return true;
   if (definer != NULL && other.definer == NULL) return false;
   if (definer == NULL && other.definer == NULL) return (access < other.access);
   if (definer->get_address() < other.definer->get_address()) return true;
   if (definer->get_address() > other.definer->get_address()) return false;
   return (access < other.access);
 }
SgAsmInstruction*
RoseBin_FlowAnalysis::resolveFunction(SgAsmInstruction* instx, bool hasStopCondition) {
  SgAsmx86Instruction* inst = isSgAsmx86Instruction(instx);
  if (inst==NULL) return NULL;
  ROSE_ASSERT(g_algo->info);
  SgAsmInstruction* nextFlow = inst->cfgBinFlowOutEdge(g_algo->info);
  // if current node is not a controltransfer node (e.g. jmp, ret, ...),
  // then there should be a flow to a next node
  //  SgAsmx86ControlTransferInstruction* contrlInst = isSgAsmx86ControlTransferInstruction(inst);
  if (nextFlow==NULL &&
      hasStopCondition==false) { // && !isSgAsmx86Jmp(inst)) {
    // in this case, we have a ordinary node that should be connected to the next block
    // now lets find the next block and create a function for these two blocks
    uint64_t addrInst = inst->get_address();
    uint64_t size = (inst->get_raw_bytes()).size();
    uint64_t nextAddr = addrInst+size;
    rose_hash::unordered_map <uint64_t, SgAsmInstruction* >::const_iterator it2 =
      rememberInstructions.find(nextAddr);
    if (it2!=rememberInstructions.end()) {
      // found the next instruction
      nextFlow = isSgAsmInstruction(it2->second);
      //if (RoseBin_support::DEBUG_MODE())
      //        cout << " function resolution: resolving next : " << nextFlow->class_name() << "    this : "
      //             << unparser->unparseInstruction(inst) << endl;
    }
  }

  else if (nextFlow==NULL &&
           hasStopCondition==false && inst->get_kind() == x86_jmp) {
    // in this case we want to connect to the destination
    ROSE_ASSERT(g_algo->info);
    nextFlow = inst->cfgBinFlowOutEdge(g_algo->info);
    //if (RoseBin_support::DEBUG_MODE())
    // cerr << " function resolution: resolving jump " << nextFlow << "  this : " << inst->class_name() << endl;
  } else {
    if (RoseBin_support::DEBUG_MODE())
      if (!(inst->get_kind() == x86_nop || inst->get_kind() == x86_ret))
        cerr << " WARNING: function resolution::  cant resolve :  " << inst->class_name() << "(" << unparseInstruction(inst) << ")" << endl;
  }

  return nextFlow;
}
void
InitPointerToNull::visit(SgNode* node) {
  if (isSgAsmFunction(node)) {
    memoryWrites.clear();
    memoryRead.clear();
  } else

  if (isSgAsmx86Instruction(node) && isSgAsmx86Instruction(node)->get_kind() == x86_mov) {
    // this is the address of the mov instruction prior to the call
    //rose_addr_t resolveAddr=0;
    SgAsmx86Instruction* inst = isSgAsmx86Instruction(node);
    SgNode* instBlock = NULL;
    if (project) 
      instBlock= isSgAsmBlock(inst->get_parent());
    else //we run IDA, this is different
      instBlock=inst;

    if (instBlock==NULL)
      return;
    SgAsmFunction* instFunc = isSgAsmFunction(instBlock->get_parent());
    if (instFunc==NULL)
      return;

    // we have found a mov instruction
    // we need to check if it is a   mov mem, (value or reg) // assignment of variable // forgot mov mem, mem
    // or we find a                  mov reg, mem // usage of variable
    // make sure a variable is assigned before used
    SgAsmOperandList * ops = inst->get_operandList();
    SgAsmExpressionPtrList& opsList = ops->get_operands();
    SgAsmExpressionPtrList::iterator itOP = opsList.begin();
    SgAsmMemoryReferenceExpression* memL=NULL;
    SgAsmMemoryReferenceExpression* memR=NULL;
    SgAsmRegisterReferenceExpression* regL=NULL;
    SgAsmRegisterReferenceExpression* regR=NULL;
    SgAsmValueExpression* Val = NULL;
    int iteration=0;
    for (;itOP!=opsList.end();++itOP) {
      SgAsmExpression* exp = *itOP;
      ROSE_ASSERT(exp);
      if (iteration==1) {
	// right hand side
	memR = isSgAsmMemoryReferenceExpression(exp);
	regR = isSgAsmRegisterReferenceExpression(exp);
	Val = isSgAsmValueExpression(exp);
      }
      if (iteration==0) {
	// left hand side
	memL = isSgAsmMemoryReferenceExpression(exp);
	regL = isSgAsmRegisterReferenceExpression(exp);
	iteration++;
      }
    } //for
    if ((memL && regR) || (memL && Val) || (memL && memR)) {
      // could be assignment to address
      rose_addr_t addr=BinQSupport::evaluateMemoryExpression(inst,memL);      
      // apparently the reference to memory does not always have to be BP but
      // can also be IP if it is a static variable. How will we handle global variables?
      //bool containsBP = BinQSupport::memoryExpressionContainsRegister(x86_regclass_gpr,x86_gpr_bp, memL);
      //if (containsBP) {
	// this is memory write with offset to BP
	// remember this memory location as a write
	if (debug)
	cerr << "found a memory write (REG) : " << RoseBin_support::HexToString(inst->get_address())<<" "<<unparseInstruction(inst)<<endl;
	memoryWrites.insert(addr);
	//}
    } else if (regL && memR) {
      // could be usage of address
      rose_addr_t addr=BinQSupport::evaluateMemoryExpression(inst,memR);      
      bool containsBP = BinQSupport::memoryExpressionContainsRegister(x86_regclass_gpr,x86_gpr_bp, memR);
      if (containsBP) {
	// this is memory read with offset to BP
	// did we see a write for this? If not, it is not initialized!
	std::set<rose_addr_t>::const_iterator it = memoryWrites.find(addr);
	if (it!=memoryWrites.end()) {
	  // found write, everything is good
	if (debug)
	  cerr << "found a read with matching write : " << RoseBin_support::HexToString(inst->get_address())<<" "<<unparseInstruction(inst)<<endl;
	} else {
	  std::set<rose_addr_t>::const_iterator it2 = memoryRead.find(addr);
	  if (it2!=memoryRead.end()) {
	    // found this case before
	  } else {
	if (debug)
	    cerr << " This variable might not be initialized : " << RoseBin_support::HexToString(inst->get_address())<<" "<< unparseInstruction(inst) << endl;
	    string res = "Possibly uninitialized variable: ";
	    string funcname="";
	    SgAsmBlock* b = isSgAsmBlock(inst->get_parent());
	    SgAsmFunction* func = NULL;
	    if (b)
	      func=isSgAsmFunction(b->get_parent()); 
	    if (func)
	      funcname = func->get_name();
	    res+=" ("+RoseBin_support::HexToString(inst->get_address())+") : "+unparseInstruction(inst)+
	      " <"+inst->get_comment()+">  in function: "+funcname;
	    result[inst]= res;
	    memoryRead.insert(addr);
	  }
	}
      }
    }
  }
}
Beispiel #9
0
 void visit(SgNode *node) {
     SgAsmx86Instruction *insn = isSgAsmx86Instruction(node);
     SgAsmFunction *func = SageInterface::getEnclosingNode<SgAsmFunction>(insn);
     if (func && 0==(func->get_reason() & SgAsmFunction::FUNC_LEFTOVERS))
         insert(std::make_pair(insn->get_address(), insn));
 }
int64_t
RoseBin_DataFlowAbstract::trackValueForRegister(
                                                SgGraphNode* node,
                                                std::pair<X86RegisterClass, int>  codeSearch,
                                                bool& cantTrack,
                                                SgAsmx86RegisterReferenceExpression* refExpr_rightHand) {
  int64_t value = 0xffffffff;
  if (RoseBin_support::DEBUG_MODE())
    cout << "    ........ trying to resolve value for register :: " << codeSearch.first << "." << codeSearch.second << endl;

  SgAsmx86Instruction* inst = isSgAsmx86Instruction(node->get_SgNode());
  ROSE_ASSERT(inst);
  std::pair<X86RegisterClass, int>  code = std::make_pair((X86RegisterClass)refExpr_rightHand->get_descriptor().get_major(),
                                                          refExpr_rightHand->get_descriptor().get_minor());
  // iterate up and find an assignment to this register codeSearch i.e. instr codeSearch, esi

  bool condInst = RoseBin_support::isConditionalInstruction(inst);
  bool condInstFlag = RoseBin_support::isConditionalFlagInstruction(inst);
  if (condInstFlag==false) {
    // the instruction is not dependent on a flag
    if (condInst==false) {
      // the instruction is not dependent on a value in one of its operands
      // easiest track
      SgGraphNode* previous = getPredecessor(node);
        /*
      vector <SgGraphNode*> vec;
      vizzGraph->getPredecessors(node, vec);
      if (vec.size()==1) {
        // found one predecessor
        SgGraphNode* previous = vec.back();
        ROSE_ASSERT(previous);
        string name = vizzGraph->getProperty(SgGraph::name, previous);
        if (RoseBin_support::DEBUG_MODE())
          cout << "    tracking recursive var " << name << endl;

        value = trackValueForRegister(previous, code, cantTrack, refExpr_rightHand);

      } else if (vec.size()>1) {
        cerr << " Tracking:: Problem, we have more than one predecessor for a node... cant track this " << endl;
        exit(0);
      }
        */
        value = trackValueForRegister(previous, code, cantTrack, refExpr_rightHand);
    } else {
      // the instruction is dependent on a value in one of its operands
      // e.g. cmovz eax, esi (moved only if esi=0);
      // need to track the value of esi to track the value of eax .. more complicated!
      int addr = inst->get_address();
      if (RoseBin_support::DEBUG_MODE()) {
        cout << " ERROR ------------------------------------------ " << endl;
              cout << RoseBin_support::HexToString(addr) << "  " << inst->class_name() <<
                " -- CANT resolve the value of the register because it depends on CONDITION -- code " <<
                code.first << "." << code.second << endl;
      }
      cantTrack =true;
          }

  } else {
    // the instruction is dependent on a flag

    int addr = inst->get_address();
    if (RoseBin_support::DEBUG_MODE()) {
      cout << " ERROR ------------------------------------------ " << endl;
      cout << RoseBin_support::HexToString(addr) << "  " << inst->class_name() <<
        " -- CANT resolve the value of the register because it depends on FLAGS -- code " <<
        code.first << "." << code.second << endl;
    }
    cantTrack =true;
  }


  return value;
}
void
RoseBin_FlowAnalysis::process_jumps() {
    if (RoseBin_support::DEBUG_MODE())
      cerr << "\n >>>>>>>>> processing jumps ... " << endl;
  rose_hash::unordered_map <uint64_t, SgAsmInstruction* >::iterator it;
  for (it=rememberInstructions.begin();it!=rememberInstructions.end();++it) {
    SgAsmx86Instruction* inst = isSgAsmx86Instruction(it->second);
    if (inst->get_kind() == x86_call) {
      //cerr << "Found call at " << std::hex << inst->get_address() << endl;
      SgAsmx86Instruction* target = isSgAsmx86Instruction(process_jumps_get_target(inst));
      if (target) {
        //cerr << "Target is " << std::hex << target->get_address() << endl;
        // inst->get_targets().push_back(target);
        // we set the sources (for each node)
        ROSE_ASSERT(g_algo->info);
        g_algo->info->incomingEdges[target].insert(inst->get_address());
        // tps: changed this algorithm so that it runs in
        // linear time!
        ROSE_ASSERT (target->get_parent());
        if (target->get_parent()) {
          // ROSE_ASSERT(target->get_parent());
          SgAsmNode* b_b = target;
          if (!db)
            b_b = isSgAsmNode(target->get_parent());
          ROSE_ASSERT(b_b);
          SgAsmFunction* b_func = isSgAsmFunction(b_b->get_parent());

          if (b_func) {
            // (16/Oct/07) tps: this is tricky, it appears that sometimes the target can
            // be just a jmp to a new location, so we should forward this information to the correct
            // function.
            // Therefore we need to check if the current function has a return statement.
            // If not, we want to forward this information.
            if (target->get_kind() == x86_jmp) {
              //cerr << " >>>>>>>> found a jmp target - number of children: " << b_func->get_traversalSuccessorContainer().size() << endl;
              if (b_func->get_numberOfTraversalSuccessors()==1) {
                SgAsmx86Instruction* target2 = isSgAsmx86Instruction(process_jumps_get_target(inst));
                if (target2) {
                  b_b = target2;
                  if (!db)
                    b_b = isSgAsmNode(target2->get_parent());
                  b_func = isSgAsmFunction(b_b->get_parent());
                }
              }
            }


            if (inst->get_parent()) {
              //cerr << "Inst has a parent" << endl;
              if (inst->get_comment()=="")
                inst->set_comment(""+b_func->get_name());
              ROSE_ASSERT(g_algo->info);
              SgAsmInstruction* inst_after = g_algo->info->getInstructionAtAddress(inst->get_address() + inst->get_raw_bytes().size()); // inst->cfgBinFlowOutEdge(info);
              if (inst_after) {
                //cerr << "Added dest " << std::hex << isSgAsmStatement(inst_after)->get_address() << " for function" << endl;
                b_func->append_dest(isSgAsmStatement(inst_after));
              }
            }
          } else {
            if (RoseBin_support::DEBUG_MODE())
            cerr << " NO FUNCTION DETECTED ABOVE BLOCK . " << endl;
          }

        } else {
          if (RoseBin_support::DEBUG_MODE())
            cerr << "   WARNING :: process_jumps: target has no parent ... i.e. no FunctionDeclaration to it " <<
            target->class_name() << endl;
        }
      } else {
        if (inst)
          if (RoseBin_support::DEBUG_MODE())
            cerr << "    WARNING :: process_jumps: No target found for node " << RoseBin_support::HexToString(inst->get_address())
                 << "   " << inst->get_mnemonic() << endl;
      }
    } else {

      // might be a jmp
      SgAsmx86Instruction* target = isSgAsmx86Instruction(process_jumps_get_target(inst));
      if (target) {
        // inst->get_targets().push_back(target);
        // we set the sources (for each node)
        ROSE_ASSERT(g_algo->info);
        g_algo->info->incomingEdges[target].insert(inst->get_address());
      }
    }
  }
  //cerr << "\n >>>>>>>>> processing jumps ... done. " << endl;

  //  cerr << "\n >>>>>>>>> resolving RET jumps ... " << endl;
  rose_hash::unordered_map <uint64_t, SgAsmInstruction* >::iterator it2;
  for (it2=rememberInstructions.begin();it2!=rememberInstructions.end();++it2) {
    //int id = it2->first;
    SgAsmx86Instruction* target = isSgAsmx86Instruction(it2->second);
    ROSE_ASSERT (target);
#if 1
    if (target->get_kind() == x86_ret) {
      SgAsmNode* b_b = target;
      if (!db)
        b_b = isSgAsmNode(target->get_parent());
      SgAsmFunction* parent = isSgAsmFunction(b_b->get_parent());
      if (parent) {
        //ROSE_ASSERT(parent);
        std::vector <SgAsmStatement*> dest_list = parent->get_dest();
        for (size_t i = 0; i < dest_list.size(); ++i) {
          ROSE_ASSERT (isSgAsmInstruction(dest_list[i]));
          //cerr << "Adding ret target " << std::hex << dest_list[i]->get_address() << " to " << std::hex << target->get_address() << endl;
          //info->indirectJumpAndReturnTargets[target].insert(dest_list[i]->get_address());
          ROSE_ASSERT(g_algo->info);
          g_algo->info->incomingEdges[isSgAsmInstruction(dest_list[i])].insert(target->get_address());
        }

        std::vector <SgAsmStatement*>::iterator it3 = dest_list.begin();
        for (; it3!=dest_list.end();++it3) {
          SgAsmInstruction* dest = isSgAsmInstruction(*it3);
          if (dest) {
            dest->append_sources(target);
            //cerr << " appending source to " << dest->get_address() << "   target: " << target->get_address() << endl;
          }
        } // for
      } else { // if parent
        if (RoseBin_support::DEBUG_MODE())
          cerr << "   ERROR :: RET jumps :: no parent found for ret : " << target->class_name() << endl;
        //exit (0);
      }
    } // if ret
#endif
  }
  if (RoseBin_support::DEBUG_MODE())
    cerr << " >>>>>>>>> resolving RET jumps ... done." << endl;
}
Beispiel #12
0
    // The actual analysis, triggered when we reach the specified execution address...
    virtual bool operator()(bool enabled, const Args &args) try {
        using namespace BinaryAnalysis::InstructionSemantics;

        static const char *name = "Analysis";
        using namespace InsnSemanticsExpr;
        if (enabled && args.insn->get_address()==trigger_addr) {
            RTS_Message *trace = args.thread->tracing(TRACE_MISC);
            trace->mesg("%s triggered: analyzing function at 0x%08"PRIx64, name, analysis_addr);

            // An SMT solver is necessary for this example to work correctly. ROSE should have been configured with
            // "--with-yices=/full/path/to/yices/installation".  If not, you'll get a failed assertion when ROSE tries to use
            // the solver.
            YicesSolver smt_solver;
            smt_solver.set_linkage(YicesSolver::LM_EXECUTABLE);
            //smt_solver.set_debug(stdout);

            // We deactive the simulator while we're doing this analysis.  If the simulator remains activated, then the SIGCHLD
            // that are generated from running the Yices executable will be sent to the specimen.  That probably wouldn't cause
            // problems for the specimen, but the messages are annoying.
            args.thread->get_process()->get_simulator()->deactivate();

            // Create the policy that holds the analysis state which is modified by each instruction.  Then plug the policy
            // into the X86InstructionSemantics to which we'll feed each instruction.
            SymbolicSemantics::Policy<SymbolicSemantics::State, SymbolicSemantics::ValueType> policy(&smt_solver);
            X86InstructionSemantics<SymbolicSemantics::Policy<SymbolicSemantics::State, SymbolicSemantics::ValueType>,
                                    SymbolicSemantics::ValueType> semantics(policy);

            // The top of the stack contains the (unknown) return address.  The value above that (in memory) is the address of
            // the buffer, to which we give a concrete value, and above that is the size of the buffer, which we also give a
            // concrete value).  The contents of the buffer are unknown.  Process memory is maintained by the policy we created
            // above, so none of these memory writes are actually affecting the specimen's state in the simulator.
            policy.writeRegister("esp", policy.number<32>(4000));
            SymbolicSemantics::ValueType<32> arg1_va = policy.add(policy.readRegister<32>("esp"), policy.number<32>(4));
            SymbolicSemantics::ValueType<32> arg2_va = policy.add(arg1_va, policy.number<32>(4));
            policy.writeMemory<32>(x86_segreg_ss, arg1_va, policy.number<32>(12345), policy.true_());   // ptr to buffer
            policy.writeMemory<32>(x86_segreg_ss, arg2_va, policy.number<32>(2), policy.true_());       // bytes in buffer
            policy.writeRegister("eip", SymbolicSemantics::ValueType<32>(analysis_addr));            // branch to analysis address

#if 1
            {
                // This is a kludge.  If the first instruction is an indirect JMP then assume we're executing through a dynamic
                // linker thunk and execute the instruction concretely to advance the instruction pointer.
                SgAsmx86Instruction *insn = isSgAsmx86Instruction(args.thread->get_process()->get_instruction(analysis_addr));
                if (x86_jmp==insn->get_kind()) {
                    VirtualMachineSemantics::Policy<VirtualMachineSemantics::State, VirtualMachineSemantics::ValueType> p;
                    X86InstructionSemantics<VirtualMachineSemantics::Policy<VirtualMachineSemantics::State,
                                                                            VirtualMachineSemantics::ValueType>,
                                            VirtualMachineSemantics::ValueType> sem(p);
                    p.set_map(args.thread->get_process()->get_memory()); // won't be thread safe
                    sem.processInstruction(insn);
                    policy.writeRegister("eip", SymbolicSemantics::ValueType<32>(p.readRegister<32>("eip").known_value()));
                    trace->mesg("%s: dynamic linker thunk kludge triggered: changed eip from 0x%08"PRIx64" to 0x%08"PRIx64,
                                name, analysis_addr, p.readRegister<32>("eip").known_value());
                }
            }
#endif

            // Run the analysis until we can't figure out what instruction is next.  If we set things up correctly, the
            // simulation will stop when we hit the RET instruction to return from this function.
            size_t nbranches = 0;
            std::vector<TreeNodePtr> constraints; // path constraints for the SMT solver
            while (policy.readRegister<32>("eip").is_known()) {
                uint64_t va = policy.readRegister<32>("eip").known_value();
                SgAsmx86Instruction *insn = isSgAsmx86Instruction(args.thread->get_process()->get_instruction(va));
                assert(insn!=NULL);
                trace->mesg("%s: analysing instruction %s", name, unparseInstructionWithAddress(insn).c_str());
                semantics.processInstruction(insn);
                if (policy.readRegister<32>("eip").is_known())
                    continue;
                
                bool complete;
                std::set<rose_addr_t> succs = insn->get_successors(&complete);
                if (complete && 2==succs.size()) {
                    if (nbranches>=take_branch.size()) {
                        std::ostringstream s; s<<policy.readRegister<32>("eip");
                        trace->mesg("%s: EIP = %s", name, s.str().c_str());
                        trace->mesg("%s: analysis cannot continue; out of \"take_branch\" values", name);
                        throw this;
                    }

                    // Decide whether we should take the branch or not.
                    bool take = take_branch[nbranches++];
                    rose_addr_t target = 0;
                    for (std::set<rose_addr_t>::iterator si=succs.begin(); si!=succs.end(); ++si) {
                        if ((take && *si!=insn->get_address()+insn->get_size()) ||
                            (!take && *si==insn->get_address()+insn->get_size()))
                            target = *si;
                    }
                    assert(target!=0);
                    trace->mesg("%s: branch %staken; target=0x%08"PRIx64, name, take?"":"not ", target);

                    // Is this path feasible?  We don't really need to check it now; we could wait until the end.
                    InternalNodePtr c = InternalNode::create(32, OP_EQ, policy.readRegister<32>("eip").get_expression(),
                                                             LeafNode::create_integer(32, target));
                    constraints.push_back(c); // shouldn't really have to do this again if we could save some state
                    if (smt_solver.satisfiable(constraints)) {
                        policy.writeRegister("eip", SymbolicSemantics::ValueType<32>(target));
                    } else {
                        trace->mesg("%s: chosen control flow path is not feasible.", name);
                        break;
                    }
                }
            }

            // Show the value of the EAX register since this is where GCC puts the function's return value.  If we did things
            // right, the return value should depend only on the unknown bytes from the beginning of the buffer.
            SymbolicSemantics::ValueType<32> result = policy.readRegister<32>("eax");
            std::set<InsnSemanticsExpr::LeafNodePtr> vars = result.get_expression()->get_variables();
            {
                std::ostringstream s;
                s <<name <<": symbolic return value is " <<result <<"\n"
                  <<name <<": return value has " <<vars.size() <<" variables:";
                for (std::set<InsnSemanticsExpr::LeafNodePtr>::iterator vi=vars.begin(); vi!=vars.end(); ++vi)
                    s <<" " <<*vi;
                s <<"\n";
                if (!constraints.empty()) {
                    s <<name <<": path constraints:\n";
                    for (std::vector<TreeNodePtr>::iterator ci=constraints.begin(); ci!=constraints.end(); ++ci)
                        s <<name <<":   " <<*ci <<"\n";
                }
                trace->mesg("%s", s.str().c_str());
            }

            // Now give values to those bytes and solve the equation for the result using an SMT solver.
            if (!result.is_known()) {
                trace->mesg("%s: setting variables (buffer bytes) to 'x' and evaluating the function symbolically...", name);
                std::vector<TreeNodePtr> exprs = constraints;
                LeafNodePtr result_var = LeafNode::create_variable(32);
                InternalNodePtr expr = InternalNode::create(32, OP_EQ, result.get_expression(), result_var);
                exprs.push_back(expr);
                for (std::set<LeafNodePtr>::iterator vi=vars.begin(); vi!=vars.end(); ++vi) {
                    expr = InternalNode::create(32, OP_EQ, *vi, LeafNode::create_integer(32, (int)'x'));
                    exprs.push_back(expr);
                }
                if (smt_solver.satisfiable(exprs)) {
                    LeafNodePtr result_value = smt_solver.get_definition(result_var)->isLeafNode();
                    if (!result_value) {
                        trace->mesg("%s: evaluation result could not be determined. ERROR!", name);
                    } else if (!result_value->is_known()) {
                        trace->mesg("%s: evaluation result is not constant. ERROR!", name);
                    } else {
                        trace->mesg("%s: evaluation result is 0x%08"PRIx64, name, result_value->get_value());
                    }
                } else {
                    trace->mesg("%s: expression is not satisfiable.", name);
                }
            }

            // Now try going the other direction.  Set the return expression to a value and try to discover what two bytes
            // would satisfy the equation.
            if (!result.is_known()) {
                trace->mesg("%s: setting result equal to 0xff015e7c and trying to find inputs...", name);
                std::vector<TreeNodePtr> exprs = constraints;
                InternalNodePtr expr = InternalNode::create(32, OP_EQ, result.get_expression(),
                                                            LeafNode::create_integer(32, 0xff015e7c));
                exprs.push_back(expr);
                if (smt_solver.satisfiable(exprs)) {
                    for (std::set<LeafNodePtr>::iterator vi=vars.begin(); vi!=vars.end(); ++vi) {
                        LeafNodePtr var_val = smt_solver.get_definition(*vi)->isLeafNode();
                        if (var_val && var_val->is_known())
                            trace->mesg("%s:   v%"PRIu64" = %"PRIu64" %c",
                                        name, (*vi)->get_name(), var_val->get_value(),
                                        isprint(var_val->get_value())?(char)var_val->get_value():' ');
                    }
                } else {
                    trace->mesg("%s:   expression is not satisfiable.  No solutions.", name);
                }
            }

            // Reactivate the simulator in case we want to continue simulating.
            args.thread->get_process()->get_simulator()->activate();
            throw this; // Optional: will exit simulator, caught in main(), which then deactivates the simulator
        }
        return enabled;
    } catch (const Analysis*) {
        args.thread->get_process()->get_simulator()->activate();
        throw;
    }
Beispiel #13
0
 void visit(SgNode *node) {
     SgAsmx86Instruction *insn = isSgAsmx86Instruction(node);
     if (insn)
         insns[insn->get_address()] = insn;
 }