Beispiel #1
0
// TODO: Expand to allow for more functions.
// TODO: When parsing e^(f(z)), use Exponential class instead of Power class.
// Evaluates the given expression tree on the given variable value.
ComplexNumber evaluate_tree(const ExpressionTreeNode *root, const ComplexNumber z) {
    if (root->is_op_node()) {
        ExpressionTreeBinaryOp *temp = (ExpressionTreeBinaryOp *) root;
        ComplexNumber left = evaluate_tree(temp->get_left(), z);
        ComplexNumber right = evaluate_tree(temp->get_right(), z);

        // Find the appropriate operator, apply, then return.
        if (temp->get_operator() == PLUS) {
            return left + right;
        } else if (temp->get_operator() == MINUS) {
            return left - right;
        } else if (temp->get_operator() == TIMES) {
            return left * right;
        } else if (temp->get_operator() == DIVIDE) {
            return left / right;
        } else { // temp->get_operator() == EXP
            Power p (right);
            return p.eval(left);
        }
    } else if (root->is_func_node()) {
        ExpressionTreeFunction *temp = (ExpressionTreeFunction *) root;
        ComplexNumber arg = evaluate_tree(temp->get_argument(), z);

        // Find the appropriate function, evaluate, then return.
        if (temp->get_function() == LOG) {
            Logarithm l (1, 0);
            return l.eval(arg);
        } else if (temp->get_function() == SIN) {
            Sine s (1, 1, 0);
            return s.eval(arg);
        } else if (temp->get_function() == COS) {
            Cosine c (1, 1, 0);
            return c.eval(arg);
        } else { // temp->get_function() == TAN
            Tangent t (1, 1, 0);
            return t.eval(arg);
        }
    } else if (root->is_leaf_node()) {
        ExpressionTreeLeaf *temp = (ExpressionTreeLeaf *) root;
        return temp->get_val(); // Return the value itself
    } else if (root->is_const_node()) {
        ExpressionTreeConstant *temp = (ExpressionTreeConstant *) root;

        // Return the corresponding mathematical constant
        if (temp->get_constant() == e) {
            return E;
        } else if (temp->get_constant() == pi) {
            return PI;
        } else { // temp->get_constant() == phi
            return PHI;
        }
    } else { // root->is_var_node()
        return z;
    }
}
Beispiel #2
0
ComplexNumber Tangent::eval(const ComplexNumber z) const {
    Sine sine (a, b, c);
    Cosine cosine (a, b, c);

    return sine.eval(z) / cosine.eval(z);
}