void RoughCoatBsdf::substrateEvalAndPdf(const SurfaceScatterEvent &event, float eta,
        float Fi, float cosThetaTi, float &pdf, Vec3f &brdf) const
{
    const Vec3f &wi = event.wi;
    const Vec3f &wo = event.wo;

    float cosThetaTo;
    float Fo = Fresnel::dielectricReflectance(eta, wo.z(), cosThetaTo);

    if (Fi == 1.0f || Fo == 1.0f) {
        pdf = 0.0f;
        brdf = Vec3f(0.0f);
        return;
    }

    Vec3f wiSubstrate(wi.x()*eta, wi.y()*eta, std::copysign(cosThetaTi, wi.z()));
    Vec3f woSubstrate(wo.x()*eta, wo.y()*eta, std::copysign(cosThetaTo, wo.z()));

    pdf = _substrate->pdf(event.makeWarpedQuery(wiSubstrate, woSubstrate));
    pdf *= eta*eta*std::abs(wo.z()/cosThetaTo);

    float compressionProjection = eta*eta*wo.z()/cosThetaTo;

    Vec3f substrateF = _substrate->eval(event.makeWarpedQuery(wiSubstrate, woSubstrate));

    if (_scaledSigmaA.max() > 0.0f)
        substrateF *= std::exp(_scaledSigmaA*(-1.0f/cosThetaTo - 1.0f/cosThetaTi));

    brdf = compressionProjection*(1.0f - Fi)*(1.0f - Fo)*substrateF;
}
Beispiel #2
0
bool TraceBase::handleSurface(SurfaceScatterEvent &event, IntersectionTemporary &data,
                              IntersectionInfo &info, const Medium *&medium,
                              int bounce, bool adjoint, bool enableLightSampling, Ray &ray,
                              Vec3f &throughput, Vec3f &emission, bool &wasSpecular,
                              Medium::MediumState &state, Vec3f *transmittance)
{
    const Bsdf &bsdf = *info.bsdf;

    // For forward events, the transport direction does not matter (since wi = -wo)
    Vec3f transparency = bsdf.eval(event.makeForwardEvent(), false);
    float transparencyScalar = transparency.avg();

    Vec3f wo;
    if (event.sampler->nextBoolean(transparencyScalar) ){
        wo = ray.dir();
        event.pdf = transparencyScalar;
        event.weight = transparency/transparencyScalar;
        event.sampledLobe = BsdfLobes::ForwardLobe;
        throughput *= event.weight;
    } else {
        if (!adjoint) {
            if (enableLightSampling && bounce < _settings.maxBounces - 1)
                emission += estimateDirect(event, medium, bounce + 1, ray, transmittance)*throughput;

            if (info.primitive->isEmissive() && bounce >= _settings.minBounces) {
                if (!enableLightSampling || wasSpecular || !info.primitive->isSamplable())
                    emission += info.primitive->evalDirect(data, info)*throughput;
            }
        }

        event.requestedLobe = BsdfLobes::AllLobes;
        if (!bsdf.sample(event, adjoint))
            return false;

        wo = event.frame.toGlobal(event.wo);

        if (!isConsistent(event, wo))
            return false;

        throughput *= event.weight;
        wasSpecular = event.sampledLobe.hasSpecular();
        if (!wasSpecular)
            ray.setPrimaryRay(false);
    }

    bool geometricBackside = (wo.dot(info.Ng) < 0.0f);
    medium = info.primitive->selectMedium(medium, geometricBackside);
    state.reset();

    ray = ray.scatter(ray.hitpoint(), wo, info.epsilon);

    return true;
}
float RoughCoatBsdf::pdf(const SurfaceScatterEvent &event) const
{
    bool sampleR = event.requestedLobe.test(BsdfLobes::GlossyReflectionLobe);
    bool sampleT = event.requestedLobe.test(_substrate->lobes());

    if (!sampleT && !sampleR)
        return 0.0f;
    if (event.wi.z() <= 0.0f || event.wo.z() <= 0.0f)
        return 0.0f;

    const Vec3f &wi = event.wi;
    const Vec3f &wo = event.wo;
    float eta = 1.0f/_ior;

    float cosThetaTi, cosThetaTo;
    float Fi = Fresnel::dielectricReflectance(eta, wi.z(), cosThetaTi);
    float Fo = Fresnel::dielectricReflectance(eta, wo.z(), cosThetaTo);

    float specularProbability;
    if (sampleR && sampleT) {
        float substrateWeight = _avgTransmittance*(1.0f - Fi);
        float specularWeight = Fi;
        specularProbability = specularWeight/(specularWeight + substrateWeight);
    } else {
        specularProbability = sampleR ? 1.0f : 0.0f;
    }

    float glossyPdf = 0.0f;
    if (sampleR)
        glossyPdf = RoughDielectricBsdf::pdfBase(event, true, false, (*_roughness)[*event.info].x(), _ior, _distribution);

    float substratePdf = 0.0f;
    if (sampleT) {
        if (Fi < 1.0f && Fo < 1.0f) {
            Vec3f wiSubstrate(wi.x()*eta, wi.y()*eta, std::copysign(cosThetaTi, wi.z()));
            Vec3f woSubstrate(wo.x()*eta, wo.y()*eta, std::copysign(cosThetaTo, wo.z()));

            substratePdf = _substrate->pdf(event.makeWarpedQuery(wiSubstrate, woSubstrate));
            substratePdf *= eta*eta*std::abs(wo.z()/cosThetaTo);
        }
    }

    return glossyPdf*specularProbability + substratePdf*(1.0f - specularProbability);
}
Vec3f RoughCoatBsdf::eval(const SurfaceScatterEvent &event) const
{
    bool sampleR = event.requestedLobe.test(BsdfLobes::GlossyReflectionLobe);
    bool sampleT = event.requestedLobe.test(_substrate->lobes());

    if (!sampleT && !sampleR)
        return Vec3f(0.0f);
    if (event.wi.z() <= 0.0f || event.wo.z() <= 0.0f)
        return Vec3f(0.0f);

    Vec3f glossyR(0.0f);
    if (sampleR)
        glossyR = RoughDielectricBsdf::evalBase(event, true, false, (*_roughness)[*event.info].x(), _ior, _distribution);


    Vec3f substrateR(0.0f);
    if (sampleT) {
        const Vec3f &wi = event.wi;
        const Vec3f &wo = event.wo;
        float eta = 1.0f/_ior;

        float cosThetaTi, cosThetaTo;
        float Fi = Fresnel::dielectricReflectance(eta, wi.z(), cosThetaTi);
        float Fo = Fresnel::dielectricReflectance(eta, wo.z(), cosThetaTo);

        if (Fi == 1.0f || Fo == 1.0f)
            return glossyR;

        Vec3f wiSubstrate(wi.x()*eta, wi.y()*eta, std::copysign(cosThetaTi, wi.z()));
        Vec3f woSubstrate(wo.x()*eta, wo.y()*eta, std::copysign(cosThetaTo, wo.z()));

        float compressionProjection = eta*eta*wo.z()/cosThetaTo;

        Vec3f substrateF = _substrate->eval(event.makeWarpedQuery(wiSubstrate, woSubstrate));

        if (_scaledSigmaA.max() > 0.0f)
            substrateF *= std::exp(_scaledSigmaA*(-1.0f/cosThetaTo - 1.0f/cosThetaTi));

        substrateR = compressionProjection*(1.0f - Fi)*(1.0f - Fo)*substrateF;
    }

    return glossyR + substrateR;
}
Beispiel #5
0
Vec3f PhotonTracer::traceSample(Vec2u pixel, const KdTree<Photon> &surfaceTree,
        const KdTree<VolumePhoton> *mediumTree, PathSampleGenerator &sampler,
        float gatherRadius)
{
    PositionSample point;
    if (!_scene->cam().samplePosition(sampler, point))
        return Vec3f(0.0f);
    DirectionSample direction;
    if (!_scene->cam().sampleDirection(sampler, point, pixel, direction))
        return Vec3f(0.0f);
    sampler.advancePath();

    Vec3f throughput = point.weight*direction.weight;
    Ray ray(point.p, direction.d);
    ray.setPrimaryRay(true);

    IntersectionTemporary data;
    IntersectionInfo info;
    const Medium *medium = _scene->cam().medium().get();

    Vec3f result(0.0f);
    int bounce = 0;
    bool didHit = _scene->intersect(ray, data, info);
    while ((medium || didHit) && bounce < _settings.maxBounces - 1) {
        if (medium) {
            if (mediumTree) {
                Vec3f beamEstimate(0.0f);
                mediumTree->beamQuery(ray.pos(), ray.dir(), ray.farT(), [&](const VolumePhoton &p, float t, float distSq) {
                    Ray mediumQuery(ray);
                    mediumQuery.setFarT(t);
                    beamEstimate += (3.0f*INV_PI*sqr(1.0f - distSq/p.radiusSq))/p.radiusSq
                            *medium->phaseFunction(p.pos)->eval(ray.dir(), -p.dir)
                            *medium->transmittance(mediumQuery)*p.power;
                });
                result += throughput*beamEstimate;
            }
            throughput *= medium->transmittance(ray);
        }
        if (!didHit)
            break;

        const Bsdf &bsdf = *info.bsdf;

        SurfaceScatterEvent event = makeLocalScatterEvent(data, info, ray, &sampler);

        Vec3f transparency = bsdf.eval(event.makeForwardEvent(), false);
        float transparencyScalar = transparency.avg();

        Vec3f wo;
        if (sampler.nextBoolean(DiscreteTransparencySample, transparencyScalar)) {
            wo = ray.dir();
            throughput *= transparency/transparencyScalar;
        } else {
            event.requestedLobe = BsdfLobes::SpecularLobe;
            if (!bsdf.sample(event, false))
                break;

            wo = event.frame.toGlobal(event.wo);

            throughput *= event.weight;
        }

        bool geometricBackside = (wo.dot(info.Ng) < 0.0f);
        medium = info.primitive->selectMedium(medium, geometricBackside);

        ray = ray.scatter(ray.hitpoint(), wo, info.epsilon);

        if (std::isnan(ray.dir().sum() + ray.pos().sum()))
            break;
        if (std::isnan(throughput.sum()))
            break;

        sampler.advancePath();
        bounce++;
        if (bounce < _settings.maxBounces)
            didHit = _scene->intersect(ray, data, info);
    }

    if (!didHit) {
        if (!medium && _scene->intersectInfinites(ray, data, info))
            result += throughput*info.primitive->evalDirect(data, info);
        return result;
    }
    if (info.primitive->isEmissive())
        result += throughput*info.primitive->evalDirect(data, info);

    int count = surfaceTree.nearestNeighbours(ray.hitpoint(), _photonQuery.get(), _distanceQuery.get(),
            _settings.gatherCount, gatherRadius);
    if (count == 0)
        return result;

    const Bsdf &bsdf = *info.bsdf;
    SurfaceScatterEvent event = makeLocalScatterEvent(data, info, ray, &sampler);

    Vec3f surfaceEstimate(0.0f);
    for (int i = 0; i < count; ++i) {
        event.wo = event.frame.toLocal(-_photonQuery[i]->dir);
        // Asymmetry due to shading normals already compensated for when storing the photon,
        // so we don't use the adjoint BSDF here
        surfaceEstimate += _photonQuery[i]->power*bsdf.eval(event, false)/std::abs(event.wo.z());
    }
    float radiusSq = count == int(_settings.gatherCount) ? _distanceQuery[0] : gatherRadius*gatherRadius;
    result += throughput*surfaceEstimate*(INV_PI/radiusSq);

    return result;
}
Beispiel #6
0
inline Vec3f TraceBase::generalizedShadowRayImpl(PathSampleGenerator &sampler,
                           Ray &ray,
                           const Medium *medium,
                           const Primitive *endCap,
                           int bounce,
                           bool startsOnSurface,
                           bool endsOnSurface,
                           float &pdfForward,
                           float &pdfBackward) const
{
    IntersectionTemporary data;
    IntersectionInfo info;

    float initialFarT = ray.farT();
    Vec3f throughput(1.0f);
    do {
        bool didHit = _scene->intersect(ray, data, info) && info.primitive != endCap;
        if (didHit) {
            if (!info.bsdf->lobes().hasForward())
                return Vec3f(0.0f);

            SurfaceScatterEvent event = makeLocalScatterEvent(data, info, ray, nullptr);

            // For forward events, the transport direction does not matter (since wi = -wo)
            Vec3f transparency = info.bsdf->eval(event.makeForwardEvent(), false);
            if (transparency == 0.0f)
                return Vec3f(0.0f);

            if (ComputePdfs) {
                float transparencyScalar = transparency.avg();
                pdfForward  *= transparencyScalar;
                pdfBackward *= transparencyScalar;
            }

            throughput *= transparency;
            bounce++;

            if (bounce >= _settings.maxBounces)
                return Vec3f(0.0f);
        }

        if (medium) {
            if (ComputePdfs) {
                float forward, backward;
                throughput *= medium->transmittanceAndPdfs(sampler, ray, startsOnSurface, didHit || endsOnSurface, forward, backward);
                pdfForward *= forward;
                pdfBackward *= backward;
            } else {
                throughput *= medium->transmittance(sampler, ray, startsOnSurface, endsOnSurface);
            }
        }
        if (info.primitive == nullptr || info.primitive == endCap)
            return bounce >= _settings.minBounces ? throughput : Vec3f(0.0f);
        medium = info.primitive->selectMedium(medium, !info.primitive->hitBackside(data));
        startsOnSurface = true;

        ray.setPos(ray.hitpoint());
        initialFarT -= ray.farT();
        ray.setNearT(info.epsilon);
        ray.setFarT(initialFarT);
    } while(true);
    return Vec3f(0.0f);
}