Beispiel #1
0
void plotParitialDegDistribution(const PNGraph& graph, std::vector<int>& nodeList) {
	std::map<int, int> inDegDistMap;
	std::map<int, int> outDegDistMap;
	
	for (int i = 0; i < nodeList.size(); ++i) {
		int curNodeId = nodeList[i];
		if (!graph->IsNode(curNodeId)) continue;
		TNGraph::TNodeI ni = graph->GetNI(curNodeId);

		int curNodeInDeg = ni.GetInDeg();
		if (inDegDistMap.find(curNodeInDeg) == inDegDistMap.end()) {
			inDegDistMap.insert(std::pair<int, int>(curNodeInDeg, 0));
		}
		inDegDistMap[curNodeInDeg]++;

		int curNodeOutDeg = ni.GetOutDeg();
		if (outDegDistMap.find(curNodeOutDeg) == outDegDistMap.end()) {
			outDegDistMap.insert(std::pair<int, int>(curNodeOutDeg, 0));
		}
		outDegDistMap[curNodeOutDeg]++;
		
	}
	
	TFltPrV inDegDist;
	for (std::map<int, int>::iterator itr = inDegDistMap.begin(); itr != inDegDistMap.end(); itr++) {
		inDegDist.Add(TFltPr(itr->first, itr->second));
	}

	TFltPrV outDegDist;
	for (std::map<int, int>::iterator itr = outDegDistMap.begin(); itr != outDegDistMap.end(); itr++) {
		outDegDist.Add(TFltPr(itr->first, itr->second));
	}
	
	TGnuPlot plot1("inDegDistParitial", "");
	plot1.AddPlot(inDegDist, gpwPoints, "");
	plot1.SetScale(gpsLog10XY);
	plot1.SavePng();

	TGnuPlot plot2("outDegDistParitial", "");
	plot2.AddPlot(outDegDist, gpwPoints, "");
	plot2.SetScale(gpsLog10XY);
	plot2.SavePng();

	TGnuPlot plot3("DegDistParitial", "");
	plot3.AddCmd("set key right top");
	plot3.AddPlot(inDegDist, gpwPoints, "In Degree");
	plot3.AddPlot(outDegDist, gpwPoints, "Out Degree");
	plot3.SetScale(gpsLog10XY);
	plot3.SavePng();
}
Beispiel #2
0
void getSampledDistance(const PNGraph& graph, std::vector<int> srcIds, std::vector<int> dstIds, int sampleSize, TFltPrV& ret) {
	std::random_shuffle(srcIds.begin(), srcIds.end());
	std::random_shuffle(dstIds.begin(), dstIds.end());

	int distance[20];
	for (int i = 0; i < 20; distance[i++] = 0);

	int sampleCount = 0;
	for (int i = 0; i < sampleSize; ) {
		int srcNodeId = srcIds[rand() % srcIds.size()];
		int dstNodeId = dstIds[rand() % dstIds.size()];

		if (!graph->IsNode(srcNodeId)) continue;
		if (!graph->IsNode(dstNodeId)) continue;
		int shortDist = TSnap::GetShortPath(graph, srcNodeId, dstNodeId, true);
		distance[shortDist]++;
		sampleCount++;
		printIntArray(distance, 20);
		++i;
	}

	for (int i = 0; i < 20; ++i) {
		ret.Add(TFltPr(i, distance[i]));
	}
}
Beispiel #3
0
int TGnuPlot::AddExpFit(const int& PlotId, const TGpSeriesTy& SeriesTy, const double& FitXOffset, const TStr& Style) {
  const TGpSeries& Plot = SeriesV[PlotId];
  if(Plot.XYValV.Empty()) return -1;
  const TFltKdV& XY = Plot.XYValV;
  double A, B, R2, SigA, SigB, Chi2;
  // power fit
  TFltPrV XYPr;
  int s;
  for (s = 0; s < XY.Len(); s++) {
    if (XY[s].Key-FitXOffset > 0) {
      XYPr.Add(TFltPr(XY[s].Key-FitXOffset, XY[s].Dat)); } //!!! skip zero values
  }
  TSpecFunc::ExpFit(XYPr, A, B, SigA, SigB, Chi2, R2);
  TStr Label, StyleStr=Style;
  if (FitXOffset == 0) { Label = TStr::Fmt("%.4g exp(%.4g x)  R^2:%.2g", A, B, R2); }
  else { Label = TStr::Fmt("%.4g exp(%.4g x - %g)  R^2:%.2g", A, B, FitXOffset, R2); }
  if (StyleStr.Empty()) { StyleStr = "linewidth 3"; }
  const int FitId = AddFunc(TStr::Fmt("%f*exp(%f*x-%f)", A, B, FitXOffset),
    SeriesTy, Label, StyleStr);
  return FitId;
  /*SeriesV.Add();
  TGpSeries& NewPlot = SeriesV.Last();
  TFltKdV& EstXY = NewPlot.XYValV;
  for (s = 0; s < XYPr.Len(); s++) {
    EstXY.Add(TFltKd(XYPr[s].Val1+FitXOffset, A*exp(B*XYPr[s].Val1)));
  }
  NewPlot.SeriesTy = SeriesTy;
  if (Style.Empty()) { NewPlot.WithStyle = "linewidth 3"; }
  else { NewPlot.WithStyle = Style; }
  return SeriesV.Len() - 1;*/
}
Beispiel #4
0
int TGnuPlot::AddLogFit(const int& PlotId, const TGpSeriesTy& SeriesTy, const TStr& Style) {
  const TGpSeries& Plot = SeriesV[PlotId];
  if(Plot.XYValV.Empty()) return -1;
  const TFltKdV& XY = Plot.XYValV;
  double A, B, R2, SigA, SigB, Chi2;
  // power fit
  TFltPrV XYPr;
  int s;
  for (s = 0; s < XY.Len(); s++) {
    if (XY[s].Key > 0) {
      XYPr.Add(TFltPr(XY[s].Key, XY[s].Dat)); } //!!! skip zero values
  }
  TSpecFunc::LogFit(XYPr, A, B, SigA, SigB, Chi2, R2);
  TStr StyleStr=Style;
  if (StyleStr.Empty()) { StyleStr = "linewidth 3"; }
  const int FitId = AddFunc(TStr::Fmt("%f+%f*log(x)", A, B),
    SeriesTy, TStr::Fmt("%.4g + %.4g log(x)  R^2:%.2g", A, B, R2), StyleStr);
  return FitId;
  /*SeriesV.Add();
  TGpSeries& NewPlot = SeriesV.Last();
  TFltKdV& EstXY = NewPlot.XYValV;
  for (s = 0; s < XYPr.Len(); s++) {
    EstXY.Add(TFltKd(XYPr[s].Val1, A+B*log((double)XYPr[s].Val1)));
  }
  NewPlot.Label = TStr::Fmt("%.4g + %.4g log(x)  R^2:%.2g", A, B, R2);
  NewPlot.SeriesTy = SeriesTy;
  if (Style.Empty()) { NewPlot.WithStyle = "linewidth 3"; }
  else { NewPlot.WithStyle = Style; }
  return SeriesV.Len() - 1;*/
}
Beispiel #5
0
// CHECK
void ExpBinning(const TFltPrV& deg, TFltPrV& degSparse, const int& BinRadix){
	TFlt maxDeg(deg[deg.Len()-1].Val1.Val), minDeg(deg[0].Val1.Val);
	bool maxPowerReached = false;
	// idx - index of border, previdx - index of previous border
	int power = 0, previdx = 0, idx, binSize;
	TFltPr val;
	double binBorder = 0.0;
	while (binBorder <= minDeg)
		binBorder = pow(static_cast<double>(BinRadix), power++);

	TFltPr v(minDeg, deg[0].Val2.Val);
	degSparse.Add(v);

	bool isExact = false;
	while (!maxPowerReached){
		if (binBorder >= maxDeg){
			// when last element of deg was previous bin border
			if (previdx == deg.Len() - 1)
				break;
			// if we have another elements
			binBorder = maxDeg;
			maxPowerReached = true;
		}
		// find next element
		idx = FindVal1Elem(deg, binBorder, isExact);
		// if bin size == 0
		if (previdx + 1 == idx && !isExact)
			continue;
		if (!isExact)
			idx = idx - 1;
		double sum = 0.0;
		binSize = idx - previdx;
		for (int i = previdx + 1; i <= idx; i++){
			sum += deg[i].Val2.Val;
		}
		sum /= binSize;
		// if prevBinBorder was the smallest degree, it can be more than binBorder / BinRadix
		double SumBinBorder = previdx > 0 ? binBorder + static_cast<double>(binBorder) / BinRadix : binBorder + static_cast<double>(minDeg); 
		double avgDeg = SumBinBorder / 2.0;
		val.Val1 = avgDeg; val.Val2 = sum;
		degSparse.Add(val);
		previdx = idx;
		binBorder = pow(static_cast<double>(BinRadix), power++);
	}
}
Beispiel #6
0
// Inverse participation ratio: normalize EigVec to have L2=1 and then I=sum_k EigVec[i]^4
// see Spectra of "real-world" graphs: Beyond the semicircle law by Farkas, Derenyi, Barabasi and Vicsek
void PlotInvParticipRat(const PUNGraph& Graph, const int& MaxEigVecs, const int& TimeLimit, const TStr& FNmPref, TStr DescStr) {
  TFltPrV EigIprV;
  GetInvParticipRat(Graph, MaxEigVecs, TimeLimit, EigIprV);
  if (DescStr.Empty()) { DescStr = FNmPref; }
  if (EigIprV.Empty()) { DescStr+=". FAIL"; EigIprV.Add(TFltPr(-1,-1)); return; }
  TGnuPlot::PlotValV(EigIprV, "eigIPR."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f (%d values)",
    DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges(), EigIprV.Last().Val1(), EigIprV.Len()),
    "Eigenvalue", "Inverse Participation Ratio of corresponding Eigenvector", gpsLog10Y, false, gpwPoints);
}
Beispiel #7
0
void TGStatVec::GetValV(const TGStatVal& XVal, const TGStatVal& YVal, TFltPrV& ValV) const {
  ValV.Gen(Len(), 0);
  double x;
  for (int t = 0; t < Len(); t++) {
    if (XVal == gsvTime) { x = t+1; }
    else { x = At(t)->GetVal(XVal); }
    ValV.Add(TFltPr(x, At(t)->GetVal(YVal)));
  }
}
Beispiel #8
0
void TGnuPlot::MakeExpBins(const TFltPrV& XYValV, TFltPrV& ExpXYValV, const double& BinFactor, const double& MinYVal) {
  TFltKdV KdV(XYValV.Len(), 0), OutV;
  for (int i = 0; i < XYValV.Len(); i++) {
    KdV.Add(TFltKd(XYValV[i].Val1, XYValV[i].Val2)); }
  KdV.Sort();
  TGnuPlot::MakeExpBins(KdV, OutV, BinFactor, MinYVal);
  ExpXYValV.Gen(OutV.Len(), 0);
  for (int i = 0; i < OutV.Len(); i++) {
    ExpXYValV.Add(TFltPr(OutV[i].Key, OutV[i].Dat)); }
}
Beispiel #9
0
void TFfGGen::PlotFireSize(const TStr& FNmPref, const TStr& DescStr) {
  TGnuPlot GnuPlot("fs."+FNmPref, TStr::Fmt("%s. Fire size. G(%d, %d)",
    DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges()));
  GnuPlot.SetXYLabel("Vertex id (iterations)", "Fire size (node out-degree)");
  TFltPrV IdToOutDegV;
  for (TNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
    IdToOutDegV.Add(TFltPr(NI.GetId(), NI.GetOutDeg())); }
  IdToOutDegV.Sort();
  GnuPlot.AddPlot(IdToOutDegV, gpwImpulses, "Node out-degree");
  GnuPlot.SavePng();
}
Beispiel #10
0
void GetCumDistr(const TFltPrV& nonCum, TFltPrV& res){
	for (int i = nonCum.Len() - 1; i >=0; i--){
		TFlt count;
		if (i == nonCum.Len() - 1)
			count = nonCum[i].Val2.Val;
		else
			count = nonCum[i].Val2.Val + res[res.Len()-1].Val2.Val;
		TFltPr val(nonCum[i].Val1, count);
		res.Add(val);
	}
	res.Sort();
}
void plotScatterLengthOfEachCascade(THash<TUInt,TSecTmV>& c1, THash<TUInt,TSecTmV>& c2)
{
	printf("\n\nPlotting ...\n");
	TFltPrV plotdata;
	for(int q=0;q<c1.Len();q++)
	{
		TFltPr elem;
		elem.Val1 = c1[q].Len();
		elem.Val2 = c2[q].Len();
		plotdata.Add(elem);
	}
	Tools::plotScatter(plotdata, "TwitterUrlsOverContents", "Urls on Twitter", "Contents on Twitter");
}
Beispiel #12
0
void plotScatterLengthOfEachCascade(THash<TStr,CascadeElementV>& quotes, THash<TUInt,TSecTmV>& twitter, char* name)
{
	printf("\n\nPlotting ...\n");
	TFltPrV plotdata;
	for(int q=0;q<quotes.Len();q++)
	{
		TFltPr elem;
		elem.Val1 = quotes[q].Len();
		elem.Val2 = twitter[q].Len();
		plotdata.Add(elem);
	}
	Tools::plotScatter(plotdata, name, "Blogs/News", TStr::Fmt("%s on Twitter",name).CStr());
}
Beispiel #13
0
void GetPoints(const TFlt& maxDegLog, const TFlt& minDegLog, const int& NInt, const TFltPrV& base, TFltPrV& points){
	int beginIndex = 0;
	// ignore nodes with zero degree (for Kronecker graphs)
	/*if (base[0].Val1.Val != 0)
		points.Add(base[beginIndex]);
	else {
		points.Add(base[++beginIndex]);
	}*/
	points.Add(base[beginIndex]);
	TFlt baseMaxDeg = base[base.Len()-1].Val1.Val,
		baseMinDeg = base[beginIndex].Val1.Val;
	for (int i = beginIndex + 1; i < NInt; i++){
		// deg - degree to be found in base
		TFlt degRound (pow (10, minDegLog.Val + i * (maxDegLog.Val - minDegLog.Val) / NInt));
		TInt degInt(static_cast<int>(degRound.Val));
		TFlt deg(degInt);
		// if deg < baseMinDeg (for cases when baseMinDeg > minDeg)
		if (deg.Val <= baseMinDeg)
			continue;
		// if deg > baseMaxDeg, add last point and finish
		if (deg.Val >= baseMaxDeg){
			points.Add(base[base.Len()-1]);
			break;
		}
		// we have two cases: when we can find an exact value of deg, or when we have not this value
		bool isExact = false;
		int index = FindVal1Elem(base, deg, isExact);
		if (isExact){
			points.Add(base[index]);
		}
		else 
		{
			TFltPr x;
			x.Val1.Val = deg;
			x.Val2.Val = ( base[index].Val2.Val + base [index + 1].Val2.Val ) / 2;
			points.Add(x);
		}
	}
}
Beispiel #14
0
void plotpaths(char* fileName, TFltPrV& ret) {
	int distance[10000];
	for (int i = 0; i < 10000; distance[i++] = 0);

	int lineCount = 1;
	std::ifstream inputFile(fileName);
	for (std::string line; std::getline(inputFile, line);) {
		std::istringstream isss(line);
		int a, c;
		double b, d;
		isss >> a;
		ret.Add(TFltPr(lineCount++, a));
	}
}
Beispiel #15
0
// MLE power-coefficient
int TGnuPlot::AddPwrFit2(const int& PlotId, const TGpSeriesTy& SeriesTy, const double& MinX, const TStr& Style) {
  const TGpSeries& Plot = SeriesV[PlotId];
  if(Plot.XYValV.Empty()) return -1;
  const TFltKdV& XY = Plot.XYValV;
  // power fit
  TFltPrV XYPr;
  double MinY = TFlt::Mx;
  for (int s = 0; s < XY.Len(); s++) {
    if (XY[s].Key > 0.0) {
      XYPr.Add(TFltPr(XY[s].Key, XY[s].Dat));
      MinY = TMath::Mn(MinY, XY[s].Dat());
    }
  }
  if (XYPr.Empty()) return -1;
  MinY = TMath::Mn(1.0, MinY);
  // determine the sign of power coefficient
  double CoefSign = 0.0;
  { double A, B, R2, SigA, SigB, Chi2;
  TSpecFunc::PowerFit(XYPr, A, B, SigA, SigB, Chi2, R2);
  CoefSign = B > 0.0 ? +1.0 : -1.0; }
  const double PowerCf = CoefSign * TSpecFunc::GetPowerCoef(XYPr, MinX);
  int Mid = (int) exp(log((double)XYPr.Len())/2.0);
  if (Mid >= XYPr.Len()) { Mid = XYPr.Len()-1; }
  const double MidX = XYPr[Mid].Val1();
  const double MidY = XYPr[Mid].Val2();
  const double B = MidY / pow(MidX, PowerCf);
  TStr StyleStr=Style;
  if (StyleStr.Empty()) { StyleStr = "linewidth 3"; }
  const int FitId = AddFunc(TStr::Fmt("%f*x**%f", B, PowerCf),
    SeriesTy, TStr::Fmt("MLE = x^{%.4g}", PowerCf), StyleStr);
  return FitId;
  /*SeriesV.Add();
  TGpSeries& NewPlot = SeriesV.Last();
  TFltKdV& XYFit = NewPlot.XYValV;
  XYFit.Gen(XYPr.Len(), 0);
  for (int s = 0; s < XYPr.Len(); s++) {
    const double XVal = XYPr[s].Val1;
    const double YVal = B * pow(XYPr[s].Val1(), PowerCf);
    if (YVal < MinY || XVal < MinX) continue;
    XYFit.Add(TFltKd(XVal, YVal));
  }
  NewPlot.Label = TStr::Fmt("PowerFit: %g", PowerCf);
  NewPlot.SeriesTy = SeriesTy;
  if (Style.Empty()) { NewPlot.WithStyle = "linewidth 3"; }
  else { NewPlot.WithStyle = Style; }
  return SeriesV.Len() - 1;*/
}
Beispiel #16
0
// linear fit on log-log scales{%
int TGnuPlot::AddPwrFit1(const int& PlotId, const TGpSeriesTy& SeriesTy, const TStr& Style) {
  if (PlotId < 0 || PlotId >= SeriesV.Len()) return -1;
  const TGpSeries& Plot = SeriesV[PlotId];
  if(Plot.XYValV.Empty()) return -1;
  const TFltKdV& XY = Plot.XYValV;
  double A, B, R2, SigA, SigB, Chi2, MinY = TFlt::Mx, MinX = TFlt::Mx;
  // power fit
  TFltPrV XYPr;
  int s;
  for (s = 0; s < XY.Len(); s++) {
    if (XY[s].Key > 0) {
      XYPr.Add(TFltPr(XY[s].Key, XY[s].Dat)); //!!! skip zero values
      MinX = TMath::Mn(MinX, XY[s].Key());
      MinY = TMath::Mn(MinY, XY[s].Dat());
    }
  }
  MinY = TMath::Mn(1.0, MinY);
  TSpecFunc::PowerFit(XYPr, A, B, SigA, SigB, Chi2, R2);
  TStr StyleStr=Style;
  if (StyleStr.Empty()) { StyleStr = "linewidth 3"; }
  const int FitId = AddFunc(TStr::Fmt("%f*x**%f", A, B),
    SeriesTy, TStr::Fmt("%.1g * x^{%.4g}  R^2:%.2g", A, B, R2), StyleStr);
  return FitId;
  /*SeriesV.Add();
  TGpSeries& NewPlot = SeriesV.Last();
  const int FitId = SeriesV.Len() - 1;
  NewPlot.DataFNm = ;
  TFltKdV& EstXY = NewPlot.XYValV;
  for (s = 0; s < XYPr.Len(); s++) {
    const double YVal = A*pow(XYPr[s].Val1(), B);
    if (YVal < MinY) continue;
    EstXY.Add(TFltKd(XYPr[s].Val1, YVal));
  }
  NewPlot.Label = ;
  NewPlot.SeriesTy = SeriesTy;
  if (Style.Empty()) { NewPlot.WithStyle = "linewidth 3"; }
  else { NewPlot.WithStyle = Style; }
  //if (MinX < 5.0) MinX = 5.0;
  //AddPwrFit2(PlotId, SeriesTy, MinX);*/
}
Beispiel #17
0
void GetInvParticipRat(const PUNGraph& Graph, int MaxEigVecs, int TimeLimit, TFltPrV& EigValIprV) {
  TUNGraphMtx GraphMtx(Graph);
  TFltVV EigVecVV;
  TFltV EigValV;
  TExeTm ExeTm;
  if (MaxEigVecs<=1) { MaxEigVecs=1000; }
  int EigVecs = TMath::Mn(Graph->GetNodes(), MaxEigVecs);
  printf("start %d vecs...", EigVecs);
  try {
    TSparseSVD::Lanczos2(GraphMtx, EigVecs, TimeLimit, ssotFull, EigValV, EigVecVV, false);
  } catch(...) {
    printf("\n  ***EXCEPTION:  TRIED %d GOT %d values** \n", EigVecs, EigValV.Len()); }
  printf("  ***TRIED %d GOT %d values in %s\n", EigVecs, EigValV.Len(), ExeTm.GetStr());
  TFltV EigVec;
  EigValIprV.Clr();
  if (EigValV.Empty()) { return; }
  for (int v = 0; v < EigVecVV.GetCols(); v++) {
    EigVecVV.GetCol(v, EigVec);
    EigValIprV.Add(TFltPr(EigValV[v], GetInvParticipRat(EigVec)));
  }
  EigValIprV.Sort();
}
Beispiel #18
0
// get degrees from current and add it to degrees
void AddDegreeStat(const TFltPrV& current, TFltPrV& degrees, TIntPrV& samples){
	for (int j = 0; j < current.Len(); j++){
		const TFltPr& elem = current[j];
		const double& deg = elem.Val1.Val, &nodesCount = elem.Val2.Val;
		bool wasFound = false;
		// silly search
		for (int k = 0; k < degrees.Len(); k++){
			if (degrees[k].Val1.Val == deg){
				degrees[k].Val2.Val += nodesCount;
				samples[k].Val2.Val++;
				wasFound = true; break;
			}
		}
		if (!wasFound){
			TFlt d(deg), n(nodesCount);
			TFltPr val(d,n);
			degrees.Add(val);
			TInt di(static_cast<int>(deg));
			TIntPr valI(di, 1);
			samples.Add(valI);
		}
	}
}
Beispiel #19
0
void plotPR(char* fileName, TFltPrV& ret) {
	int distance[10000];
	for (int i = 0; i < 10000; distance[i++] = 0);

	std::ifstream inputFile(fileName);
	for (std::string line; std::getline(inputFile, line);) {
		std::istringstream isss(line);
		int a, c;
		double b, d;
		isss >> a >> b >> c >> d;

		int val = (int)(d * 1000);
		val -= (val % 100);
		if (val >= 10000) continue;
		//double idd = std::stold(line);
		printf("%d\n", val);
		distance[val]++;
	}

	for (int i = 0; i < 10000; ++i) {
		if (distance[i] == 0) continue;
		ret.Add(TFltPr(i, distance[i]));
	}
}
Beispiel #20
0
int main(int argc, char* argv[]) {
  Env = TEnv(argc, argv, TNotify::StdNotify);
  Env.PrepArgs(TStr::Fmt("\nNETINF. build: %s, %s. Time: %s", __TIME__, __DATE__, TExeTm::GetCurTm()));
  TExeTm ExeTm;
  Try
  const TStr InFNm  = Env.GetIfArgPrefixStr("-i:", "example-cascades.txt", "Input cascades (one file)");
  const TStr GroundTruthFNm = Env.GetIfArgPrefixStr("-n:", "example-network.txt", "Input ground-truth network (one file)");
  const TStr OutFNm  = Env.GetIfArgPrefixStr("-o:", "network", "Output file name(s) prefix");
  const TStr Iters  = Env.GetIfArgPrefixStr("-e:", "5", "Number of iterations");
  const double alpha = Env.GetIfArgPrefixFlt("-a:", 1.0, "Alpha for transmission model");
  const int Model = Env.GetIfArgPrefixInt("-m:", 0, "0:exponential, 1:power law, 2:rayleigh");
  const int Top =Env.GetIfArgPrefixInt("-t:", 10, "select top k as friends");
  const int TakeAdditional = Env.GetIfArgPrefixInt("-s:", 1, "How much additional files to create?\n\
    1:info about each edge, 2:objective function value (+upper bound), 3:Precision-recall plot, 4:all-additional-files (default:1)\n");

  bool ComputeBound = false, ComputeInfo = false; bool CompareGroundTruth = false;
  switch (TakeAdditional) {
     case 1 : ComputeInfo = true; break;
     case 2 : ComputeBound = true; break;
     case 3 : CompareGroundTruth = true; break;
     case 4 :
    	 ComputeInfo = true;
    	 // ComputeBound = true;
    	 CompareGroundTruth = true; break;
     default: FailR("Bad -s: parameter.");
  }

  TNetInfBs NIB(ComputeBound, CompareGroundTruth, Top);
  printf("\nLoading input cascades: %s\n", InFNm.CStr());

  // load cascade from file
  TFIn FIn(InFNm);
  NIB.LoadCascadesTxt(FIn, Model, alpha);

  // load ground truth network
  if (CompareGroundTruth) {
	  TFIn FInG(GroundTruthFNm);
	  NIB.LoadGroundTruthTxt(FInG);
  }

  NIB.Init();
  printf("cascades:%d nodes:%d potential edges:%d\nRunning NETINF...\n", NIB.GetCascs(), NIB.GetNodes(), NIB.CascPerEdge.Len());
  NIB.GreedyOpt(Iters.GetInt());

  // plot showing precision/recall using groundtruth
  if (CompareGroundTruth)
	  TGnuPlot::PlotValV(NIB.PrecisionRecall, TStr::Fmt("%s-precision-recall", OutFNm.CStr()), "Precision Recall", "Recall",
						 "Precision", gpsAuto, false, gpwLinesPoints, false);

  // plot objective function
  if (ComputeBound) {
	  TFltPrV Gains;
	  for (int i=0; i<NIB.EdgeInfoH.Len(); i++)
		  Gains.Add(TFltPr((double)(i+1), NIB.EdgeInfoH[i].MarginalGain));

	  TGnuPlot::PlotValV(Gains, TStr::Fmt("%s-objective", OutFNm.CStr()), "Objective Function", "Iters", "Objective Function");
  }

  // save network in plain text
  NIB.SavePlaneTextNet(TStr::Fmt("%s.txt", OutFNm.CStr()));

  // save edge info
  if (ComputeInfo)
	  NIB.SaveEdgeInfo(TStr::Fmt("%s-edge.info", OutFNm.CStr()));

  // save obj+bound info
  if (ComputeBound)
	  NIB.SaveObjInfo(TStr::Fmt("%s-obj", OutFNm.CStr()));

  Catch
  printf("\nrun time: %s (%s)\n", ExeTm.GetTmStr(), TSecTm::GetCurTm().GetTmStr().CStr());
  return 0;
}