Beispiel #1
0
/*---------------------------------------------------------------
						Navigate
  ---------------------------------------------------------------*/
void  CHolonomicND::navigate(
	const mrpt::math::TPoint2D &target,
	const std::vector<double>	&obstacles,
	double			maxRobotSpeed,
	double			&desiredDirection,
	double			&desiredSpeed,
	CHolonomicLogFileRecordPtr &logRecord,
	const double    max_obstacle_dist)
{
	TGapArray			gaps;
	TSituations			situation;
	unsigned int		selectedSector;
	double				riskEvaluation;
	CLogFileRecord_NDPtr log;
	double				evaluation;

	// Create a log record for returning data.
	if (!logRecord.present())
	{
		log = CLogFileRecord_ND::Create();
		logRecord = log;
	}


	// Search gaps:
	gaps.clear();
	gapsEstimator( obstacles, target, gaps);


	// Select best gap:
	searchBestGap(	obstacles,
					1.0,
					gaps,
					target,
					selectedSector,
					evaluation,
					situation,
					riskEvaluation,
					log);

	if (situation == SITUATION_NO_WAY_FOUND)
	{
		// No way found!
		desiredDirection = 0;
		desiredSpeed = 0;
	}
	else
	{
		// A valid movement:
		desiredDirection = (double)(M_PI*(-1 + 2*(0.5f+selectedSector)/((double)obstacles.size())));

		// Speed control: Reduction factors
		// ---------------------------------------------
		const double targetNearnessFactor = std::min( 1.0, target.norm()/(options.TARGET_SLOW_APPROACHING_DISTANCE));
		const double riskFactor = std::min(1.0, riskEvaluation / options.RISK_EVALUATION_DISTANCE );
		desiredSpeed = maxRobotSpeed * std::min(riskFactor,targetNearnessFactor);
	}

	m_last_selected_sector = selectedSector;

	// LOG --------------------------
	if (log)
	{
		// gaps:
		{
			int	i,n = gaps.size();
			log->gaps_ini.resize(n);
			log->gaps_end.resize(n);
			for (i=0;i<n;i++)
			{
				log->gaps_ini[i]  = gaps[i].ini;
				log->gaps_end[i]  = gaps[i].end;
			}
		}
		// Selection:
		log->selectedSector = selectedSector;
		log->evaluation = evaluation;
		log->situation = situation;
		log->riskEvaluation = riskEvaluation;
	}
}
Beispiel #2
0
/*---------------------------------------------------------------
						Evaluate each gap
  ---------------------------------------------------------------*/
void  CHolonomicND::evaluateGaps(
	const std::vector<double>	&obstacles,
	const double maxObsRange,
	const TGapArray		&gaps,
	const unsigned int	target_sector,
	const float		target_dist,
	std::vector<double>		&out_gaps_evaluation )
{
	out_gaps_evaluation.resize( gaps.size());

	double	targetAng = M_PI*(-1 + 2*(0.5+target_sector)/double(obstacles.size()));
	double	target_x =  target_dist*cos(targetAng);
	double	target_y =  target_dist*sin(targetAng);

	for (unsigned int i=0;i<gaps.size();i++)
	{
		// Short cut:
		const TGap *gap = &gaps[i];

		const float d = min3(
			obstacles[ gap->representative_sector ],
			maxObsRange,
			0.95*target_dist );

		// The TP-Space representative coordinates for this gap:
		const double	phi = M_PI*(-1 + 2*(0.5+gap->representative_sector)/double(obstacles.size()));
		const double	x =  d*cos(phi);
		const double	y =  d*sin(phi);


		// Factor #1: Maximum reachable distance with this PTG:
		// -----------------------------------------------------
		// It computes the average free distance of the gap:
		float	meanDist = 0.f;
		for (unsigned int j=gap->ini;j<=gap->end;j++)
			meanDist+= obstacles[j];
		meanDist/= ( gap->end - gap->ini + 1);

		double factor1;
		if (mrpt::utils::abs_diff(gap->representative_sector,target_sector)<=1 && target_dist<1)
		      factor1 = std::min(target_dist,meanDist) / target_dist;
		else  factor1 = meanDist;



		// Factor #2: Distance to target in "sectors"
		// -------------------------------------------
		unsigned int dif = mrpt::utils::abs_diff(target_sector, gap->representative_sector );

		// Handle the -PI,PI circular topology:
		if (dif> 0.5*obstacles.size())
			dif = obstacles.size() - dif;

		const double factor2= exp(-square( dif / (obstacles.size()*0.25))) ;



		// Factor #3: Punish paths that take us far away wrt the target:  **** I don't understand it *********
		// -----------------------------------------------------
		double	closestX,closestY;
		double dist_eucl = math::minimumDistanceFromPointToSegment(
			target_x, target_y, // Point
			0,0,  x,y,          // Segment
			closestX,closestY   // Out
			);

		const float factor3 = ( maxObsRange - std::min(maxObsRange ,dist_eucl) ) / maxObsRange;



		// Factor #4: Stabilizing factor (hysteresis) to avoid quick switch among very similar paths:
		// ------------------------------------------------------------------------------------------
		double factor_AntiCab;


		if (m_last_selected_sector != std::numeric_limits<unsigned int>::max() )
		{
			unsigned int dist = mrpt::utils::abs_diff(m_last_selected_sector, gap->representative_sector);

			if (dist > unsigned(0.1*obstacles.size()))
				factor_AntiCab = 0.0;
			else
				factor_AntiCab = 1.0;
		}
		else
		{
			factor_AntiCab = 0;
		}


		ASSERT_(options.factorWeights.size()==4);

		if ( obstacles[gap->representative_sector] < options.TOO_CLOSE_OBSTACLE ) // Too close to obstacles
				out_gaps_evaluation[i] = 0;
		else	out_gaps_evaluation[i] = (
				  options.factorWeights[0] * factor1 +
				  options.factorWeights[1] * factor2 +
				  options.factorWeights[2] * factor3 +
				  options.factorWeights[3] * factor_AntiCab ) / (math::sum(options.factorWeights)) ;
	} // for each gap
}
Beispiel #3
0
/*---------------------------------------------------------------
				Find gaps in the obtacles (Beta version)
  ---------------------------------------------------------------*/
void  CHolonomicND::gapsEstimator(
	const std::vector<double>         & obstacles,
	const mrpt::math::TPoint2D  & target,
	TGapArray                   & gaps_out)
{
	const size_t n = obstacles.size();
	ASSERT_(n>2);

	// ================ Parameters ================
	const int     GAPS_MIN_WIDTH = ceil(n*0.01); // was: 3
	const double  GAPS_MIN_DEPTH_CONSIDERED = 0.6;
	const double  GAPS_MAX_RELATIVE_DEPTH = 0.5;
	// ============================================

	// Find the maximum distances to obstacles:
	// ----------------------------------------------------------
	float overall_max_dist = std::numeric_limits<float>::min(), overall_min_dist = std::numeric_limits<float>::max();
	for (size_t i=1;i<(n-1);i++)
	{
		mrpt::utils::keep_max(overall_max_dist, obstacles[i]);
		mrpt::utils::keep_min(overall_min_dist, obstacles[i]);
	}
	double max_depth = overall_max_dist - overall_min_dist;

	//  Build list of "GAPS":
	// --------------------------------------------------------
	TGapArray gaps_temp;
	gaps_temp.reserve( 150 );

	for (double threshold_ratio = 0.95;threshold_ratio>=0.05;threshold_ratio-=0.05)
	{
			const double  dist_threshold = threshold_ratio* overall_max_dist + (1.0f-threshold_ratio)*min(target.norm(), GAPS_MIN_DEPTH_CONSIDERED);

			bool    is_inside = false;
			size_t  sec_ini=0, sec_end=0;
			double  maxDist=0.;

			for (size_t i=0;i<n;i++)
			{
				if ( !is_inside && ( obstacles[i]>=dist_threshold) )	//A gap begins
				{
					sec_ini = i;
					maxDist = obstacles[i];
					is_inside = true;
				}
				else if (is_inside && (i==(n-1) || obstacles[i]<dist_threshold ))	//A gap ends
				{
					if (obstacles[i]<dist_threshold)
						sec_end = i-1;
					else
						sec_end = i;

					is_inside = false;

					if ( (sec_end-sec_ini) >= (size_t)GAPS_MIN_WIDTH )
					{
						// Add new gap:
						gaps_temp.resize( gaps_temp.size() + 1 );
						TGap	& newGap = *gaps_temp.rbegin();

						newGap.ini				= sec_ini;
						newGap.end				= sec_end;
						newGap.minDistance		= min( obstacles[sec_ini], obstacles[sec_end] );
						newGap.maxDistance		= maxDist;
					}
				}

				if (is_inside)
					maxDist = std::max( maxDist, obstacles[i] );
			}
	}

	//Start to filter the gap list
	//--------------------------------------------------------------

	const size_t nTempGaps = gaps_temp.size();

	std::vector<bool> delete_gaps;
	delete_gaps.assign( nTempGaps, false);

	// First, remove redundant gaps
	for (size_t i=0;i<nTempGaps;i++)
	{
		if (delete_gaps[i] == 1)
			continue;

		for (size_t j=i+1;j<nTempGaps;j++)
		{
			if (gaps_temp[i].ini == gaps_temp[j].ini || gaps_temp[i].end == gaps_temp[j].end)
				delete_gaps[j] = 1;
		}
	}

	// Remove gaps with a big depth
	for (size_t i=0;i<nTempGaps;i++)
	{
		if (delete_gaps[i] == 1)
			continue;

		if ((gaps_temp[i].maxDistance - gaps_temp[i].minDistance) > max_depth*GAPS_MAX_RELATIVE_DEPTH)
			delete_gaps[i] = 1;
	}

	//Delete gaps which contain more than one other gaps
	for (size_t i=0;i<nTempGaps;i++)
	{
		if (delete_gaps[i])
			continue;

		unsigned int inner_gap_count = 0;

		for (unsigned int j=0;j<nTempGaps;j++)
		{
			if (i==j || delete_gaps[j])
				continue;

			// j is inside of i?
			if (gaps_temp[j].ini >= gaps_temp[i].ini && gaps_temp[j].end <= gaps_temp[i].end )
				if (++inner_gap_count>1)
				{
					delete_gaps[i] = 1;
					break;
				}
		}
	}

	//Delete gaps included in other gaps
	for (size_t i=0;i<nTempGaps;i++)
	{
		if (delete_gaps[i])
			continue;

		for (unsigned int j=0;j<nTempGaps;j++)
		{
			if (i==j || delete_gaps[j])
				continue;
			if (gaps_temp[i].ini <= gaps_temp[j].ini && gaps_temp[i].end >= gaps_temp[j].end)
				delete_gaps[j] = 1;
		}
	}


	// Copy as result only those gaps not marked for deletion:
	// --------------------------------------------------------
	gaps_out.clear();
	gaps_out.reserve( nTempGaps/2 );
	for (size_t i=0;i<nTempGaps;i++)
	{
		if (delete_gaps[i]) continue;

		// Compute the representative direction ("sector") for this gap:
		calcRepresentativeSectorForGap( gaps_temp[i], target, obstacles);

		gaps_out.push_back( gaps_temp[i] );
	}

}
Beispiel #4
0
/*---------------------------------------------------------------
						Search the best gap.
  ---------------------------------------------------------------*/
void  CHolonomicND::searchBestGap(
	const std::vector<double>         & obstacles,
	const double                  maxObsRange,
	const TGapArray             & in_gaps,
	const mrpt::math::TPoint2D  & target,
	unsigned int                & out_selDirection,
	double                      & out_selEvaluation,
	TSituations                 & out_situation,
	double                      & out_riskEvaluation,
	CLogFileRecord_NDPtr	      log)
{
	// For evaluating the "risk":
	unsigned int min_risk_eval_sector = 0;
	unsigned int max_risk_eval_sector = obstacles.size()-1;
	const unsigned int target_sector  = direction2sector(atan2(target.y,target.x),obstacles.size());
	const double target_dist          = std::max(0.01,target.norm());
	// (Risk is evaluated at the end, for all the situations)

	// D1 : Straight path?
	// --------------------------------------------------------
	const int freeSectorsNearTarget = ceil(0.02*obstacles.size());
	bool theyAreFree = true, caseD1 = false;
	if (target_sector>static_cast<unsigned int>(freeSectorsNearTarget) &&
		target_sector<static_cast<unsigned int>(obstacles.size()-freeSectorsNearTarget) )
	{
		const double min_free_dist = std::min(1.05*target_dist, 0.95*maxObsRange);
		for (int j=-freeSectorsNearTarget;theyAreFree && j<=freeSectorsNearTarget;j++)
			if (obstacles[ (int(target_sector) + j) % obstacles.size()]<min_free_dist)
				theyAreFree = false;
		caseD1 = theyAreFree;
	}

	if (caseD1)
	{
		// S1: Move straight towards target:
		out_selDirection	= target_sector;

		// In case of several paths, the shortest:
		out_selEvaluation   =	1.0 + std::max( 0.0, (maxObsRange - target_dist) / maxObsRange );
		out_situation		=	SITUATION_TARGET_DIRECTLY;
	}
	else
	{
		// Evaluate all gaps (if any):
		std::vector<double>  gaps_evaluation;
		int            selected_gap			=-1;
		double         selected_gap_eval	= -100;

		evaluateGaps(
				obstacles,
				maxObsRange,
				in_gaps,
				target_sector,
				target_dist,
				gaps_evaluation );

		if (log) log->gaps_eval = gaps_evaluation;

		// D2: is there any gap "beyond" the target (and not too far away)?   (Not used)
		// ----------------------------------------------------------------

		//unsigned int dist;
		//for ( unsigned int i=0;i<in_gaps.size();i++ )
		//{
		//	dist = mrpt::utils::abs_diff(target_sector, in_gaps[i].representative_sector );
		//	if (dist > 0.5*obstacles.size())
		//		dist = obstacles.size() - dist;
		//
		//	if ( in_gaps[i].maxDistance >= target_dist && dist <= (int)floor(options.MAX_SECTOR_DIST_FOR_D2_PERCENT * obstacles.size()) )
		//
		//		if ( gaps_evaluation[i]>selected_gap_eval )
		//		{
		//			selected_gap_eval = gaps_evaluation[i];
		//			selected_gap = i;
		//		}
		//}


		// Keep the best gaps (if none was picked up to this point)
		if ( selected_gap==-1 )
			for ( unsigned int i=0;i<in_gaps.size();i++ )
				if ( gaps_evaluation[i]>selected_gap_eval )
				{
					selected_gap_eval = gaps_evaluation[i];
					selected_gap = i;
				}

		//  D3: Wasn't a good enough gap (or there were none)?
		// ----------------------------------------------------------
		if ( selected_gap_eval <= 0 )
		{
			// S2: No way found
			// ------------------------------------------------------
			out_selDirection	= 0;
			out_selEvaluation	= 0.0; // Worst case
			out_situation		= SITUATION_NO_WAY_FOUND;
		}
		else
		{
			// The selected gap:
			const TGap & gap = in_gaps[selected_gap];

			const unsigned int sectors_to_be_wide = round( options.WIDE_GAP_SIZE_PERCENT * obstacles.size() );

			out_selDirection	= in_gaps[selected_gap].representative_sector;
			out_selEvaluation	= selected_gap_eval;

			// D4: Is it a WIDE gap?
			// -----------------------------------------------------
			if ( (gap.end-gap.ini) < sectors_to_be_wide )
			{
				// S3: Narrow gap
				// -------------------------------------------
				out_situation	= SITUATION_SMALL_GAP;
			}
			else
			{
				// S4: Wide gap
				// -------------------------------------------
				out_situation	= SITUATION_WIDE_GAP;
			}

			// Evaluate the risk only within the gap:
			min_risk_eval_sector = gap.ini;
			max_risk_eval_sector = gap.end;
		}
	}

	// Evaluate short-term minimum distance to obstacles, in a small interval around the selected direction:
	const unsigned int risk_eval_nsectors = round( options.RISK_EVALUATION_SECTORS_PERCENT * obstacles.size() );
	const unsigned int sec_ini = std::max(min_risk_eval_sector, risk_eval_nsectors<out_selDirection ? out_selDirection-risk_eval_nsectors : 0 );
	const unsigned int sec_fin = std::min(max_risk_eval_sector, out_selDirection + risk_eval_nsectors );

	out_riskEvaluation = 0.0;
	for (unsigned int i=sec_ini;i<=sec_fin;i++) out_riskEvaluation+= obstacles[ i ];
	out_riskEvaluation /= (sec_fin - sec_ini + 1 );
}
Beispiel #5
0
/*---------------------------------------------------------------
						Navigate
  ---------------------------------------------------------------*/
void  CHolonomicND::navigate(
				poses::CPoint2D	&target,
				vector_double	&obstacles,
				double			maxRobotSpeed,
				double			&desiredDirection,
				double			&desiredSpeed,
				CHolonomicLogFileRecordPtr &logRecord)
{
	TGapArray			gaps;
	TSituations			situation;
	int					selectedSector;
	double				riskEvaluation;
	CLogFileRecord_NDPtr log;
	double				evaluation;

	// Create a log record for returning data.
	if (!logRecord.present())
	{
		log = CLogFileRecord_ND::Create();
		logRecord = log;
	}


	// Search gaps:
    gaps.clear();
	gapsEstimator(	obstacles,
					target,
					gaps );


	// Select best gap:
	searchBestGap(	obstacles,
					1.0f,
					gaps,
					target,
					selectedSector,
					evaluation,
					situation,
					riskEvaluation,
					log);

	if (situation == SITUATION_NO_WAY_FOUND)
	{
		// No way found!
		desiredDirection = 0;
		desiredSpeed = 0;
	}
	else
	{
		// A valid movement:
		desiredDirection = (double)(M_PI*(-1 + 2*(0.5f+selectedSector)/((double)obstacles.size())));

		// Speed control: Reduction factors
		// ---------------------------------------------
		double		targetNearnessFactor = max(0.20, min(1.0, 1.0-exp(-(target.norm()+0.01)/TARGET_SLOW_APPROACHING_DISTANCE)));
		//printf(" TARGET NEARNESS = %f\n",targetNearnessFactor);
		double		riskFactor = min(1.0, riskEvaluation / RISK_EVALUATION_DISTANCE );

		desiredSpeed = maxRobotSpeed * min(riskFactor,targetNearnessFactor);
	}

	last_selected_sector = selectedSector;

	// LOG --------------------------
	if (log)
	{
		// gaps:
		if (situation != SITUATION_TARGET_DIRECTLY )
		{
			int	i,n = gaps.size();
			log->gaps_ini.resize(n);
			log->gaps_end.resize(n);
			for (i=0;i<n;i++)
			{
				log->gaps_ini[i]  = gaps[i].ini;
				log->gaps_end[i]  = gaps[i].end;
			}
		}
        // Selection:
        log->selectedSector = selectedSector;
        log->evaluation = evaluation;
        log->situation = situation;
        log->riskEvaluation = riskEvaluation;
	}
}
Beispiel #6
0
/*---------------------------------------------------------------
						Evaluate each gap
  ---------------------------------------------------------------*/
void  CHolonomicND::evaluateGaps(
	const vector_double	&obstacles,
	const double		maxObsRange,
	const TGapArray		&gaps,
	const int			TargetSector,
	const double		TargetDist,
	vector_double		&out_gaps_evaluation )
{
	out_gaps_evaluation.resize( gaps.size());

	double	targetAng = M_PI*(-1 + 2*(0.5+TargetSector)/double(obstacles.size()));
	double	target_x =  TargetDist*cos(targetAng);
	double	target_y =  TargetDist*sin(targetAng);

    for (unsigned int i=0;i<gaps.size();i++)
    {
        // Para referenciarlo mas facilmente:
        const TGap	*gap = &gaps[i];

        double   d;
        d = min( obstacles[ gap->representative_sector ],
				min( maxObsRange,  0.95f*TargetDist) );

		// Las coordenadas (en el TP-Space) representativas del gap:
		double	phi = M_PI*(-1 + 2*(0.5+gap->representative_sector)/double(obstacles.size()));
		double	x =  d*cos(phi);
		double	y =  d*sin(phi);

        // Factor 1: Distancia hasta donde llego por esta GPT:
        // -----------------------------------------------------
		double factor1;
/*		if (gap->representative_sector == TargetSector )
				factor1 = min(TargetDist,obstacles[gap->representative_sector]) / TargetDist;
		else
		{
			if (TargetDist>1)
					factor1 = obstacles[gap->representative_sector] / TargetDist;
			else	factor1 = obstacles[gap->representative_sector];
		}
*/
		// Calcular la distancia media a donde llego por este gap:
		double	meanDist = 0;
		for (int j=gap->ini;j<=gap->end;j++)
			meanDist+= obstacles[j];
		meanDist/= ( gap->end - gap->ini + 1);

		if (abs(gap->representative_sector-TargetSector)<=1 && TargetDist<1)
				factor1 = min(TargetDist,meanDist) / TargetDist;
		else	factor1 = meanDist;

        // Factor 2: Distancia en sectores:
        // -------------------------------------------
        double   dif = fabs(((double)( TargetSector - gap->representative_sector )));
//		if (dif> (0.5f*obstacles.size()) ) dif = obstacles.size() - dif;
		// Solo si NO estan el target y el gap atravesando el alfa = "-pi" o "pi"
		if (dif> (0.5f*obstacles.size()) && (TargetSector-0.5f*obstacles.size())*(gap->representative_sector-0.5f*obstacles.size())<0 )
			dif = obstacles.size() - dif;

        double   factor2= exp(-square( dif / (obstacles.size()/4))) ;

        // Factor3: Para evitar cabeceos entre 2 o mas caminos que sean casi iguales:
        // -------------------------------------------
		double dist = (double)(abs(last_selected_sector - gap->representative_sector));
		//
		if (dist> (0.5f*obstacles.size()) ) dist = obstacles.size() - dist;

		double factor_AntiCab;
		if (last_selected_sector==-1)
				factor_AntiCab = 0;
		else	factor_AntiCab = (dist > 0.10f*obstacles.size()) ? 0.0f:1.0f;

        // Factor3: Minima distancia entre el segmento y el target:
		//  Se valora negativamente el alejarse del target
        // -----------------------------------------------------
		double	closestX,closestY;
        double dist_eucl = math::minimumDistanceFromPointToSegment(
					target_x,
					target_y,
					0,0,
					x,y,
					closestX,closestY);

        double factor3=  ( maxObsRange - min(maxObsRange ,dist_eucl) ) / maxObsRange;

		ASSERT_(factorWeights.size()==4);

		if ( obstacles[gap->representative_sector] < TOO_CLOSE_OBSTACLE ) // Too close to obstacles
				out_gaps_evaluation[i] = 0;
		else	out_gaps_evaluation[i] = (
				  factorWeights[0] * factor1 +
				  factorWeights[1] * factor2 +
				  factorWeights[2] * factor3 +
				  factorWeights[3] * factor_AntiCab ) / (math::sum(factorWeights)) ;

	} // for each gap

}
Beispiel #7
0
/*---------------------------------------------------------------
						Search the best gap.
  ---------------------------------------------------------------*/
void  CHolonomicND::searchBestGap(
			vector_double		&obstacles,
			double				maxObsRange,
			TGapArray			&in_gaps,
			poses::CPoint2D		&target,
			int					&out_selDirection,
			double				&out_selEvaluation,
			TSituations			&out_situation,
			double				&out_riskEvaluation,
			CLogFileRecord_NDPtr log)
{
	// Para evaluar el risk:
	unsigned int min_risk_eval_sector	= 0;
	unsigned int max_risk_eval_sector	= obstacles.size()-1;
	unsigned int TargetSector		= direction2sector(atan2(target.y(),target.x()),obstacles.size());
	const double TargetDist	= std::max(0.01,target.norm());

    // El "risk" se calcula al final para todos los casos.

    // D1 : Camino directo?
    // --------------------------------------------------------
    const int freeSectorsNearTarget = 10;  // 3
    bool theyAreFree = true, caseD1 = false;
    if (TargetSector>(unsigned int)freeSectorsNearTarget &&
		TargetSector<(unsigned int)(obstacles.size()-freeSectorsNearTarget) )
    {
        for (int j=-freeSectorsNearTarget;j<=freeSectorsNearTarget;j++)
                if (obstacles[ TargetSector + j ]<0.95*TargetDist)
                        theyAreFree = false;
        caseD1 = theyAreFree;
    }

    if (caseD1)
    {
        // S1: Camino libre hacia target:
        out_selDirection	= TargetSector;

		// Si hay mas de una, la que llegue antes
		out_selEvaluation   =	1.0 + std::max( 0.0, (maxObsRange - TargetDist) / maxObsRange );
        out_situation		=	SITUATION_TARGET_DIRECTLY;
    }
    else
    {
        // Evaluar los GAPs (Si no hay ninguno, nada, claro):
        vector_double	gaps_evaluation;
        int				selected_gap		=-1;
        double			selected_gap_eval	= -100;

        evaluateGaps(
                obstacles,
				maxObsRange,
                in_gaps,
                TargetSector,
                TargetDist,
                gaps_evaluation );

		if (log) log->gaps_eval = gaps_evaluation;

        // D2: Hay algun gap que pase por detras del target?
        //   ( y no este demasiado lejos):
        // -------------------------------------------------
        for ( unsigned int i=0;i<in_gaps.size();i++ )
			if ( in_gaps[i].maxDistance >= TargetDist &&
				 abs((int)(in_gaps[i].representative_sector-(int)TargetSector)) <= (int)floor(MAX_SECTOR_DIST_FOR_D2_PERCENT * obstacles.size()) )
					if ( gaps_evaluation[i]>selected_gap_eval )
					{
						selected_gap_eval = gaps_evaluation[i];
						selected_gap = i;
					}


        // Coger el mejor GAP:
        //  (Esto ya solo si no se ha cogido antes)
        if ( selected_gap==-1 )
			for ( unsigned int i=0;i<in_gaps.size();i++ )
				if ( gaps_evaluation[i]>selected_gap_eval )
				{
						selected_gap_eval = gaps_evaluation[i];
						selected_gap = i;
				}
        //  D3:  No es suficientemente bueno? ( o no habia ninguno?)
        // ------------------------------------------------------------
        if ( selected_gap_eval <= 0 )
        {
            // S2: No way found
            // ------------------------------------------------------
            out_selDirection	= 0;
            out_selEvaluation	= 0.0f; // La peor
            out_situation		= SITUATION_NO_WAY_FOUND;
        }
        else
        {
            // El seleccionado:
            TGap    gap = in_gaps[selected_gap];

            int     sectors_to_be_wide = round( WIDE_GAP_SIZE_PERCENT * obstacles.size() );

            out_selDirection	= in_gaps[selected_gap].representative_sector;
            out_selEvaluation	= selected_gap_eval;

            // D4: Es un gap ancho?
            // -----------------------------------------------------
            if ( (gap.end-gap.ini) < sectors_to_be_wide )
            {
                    // S3: Small gap
                    // -------------------------------------------
                    out_situation	= SITUATION_SMALL_GAP;
            }
            else
            {
                    // S4: Wide gap
                    // -------------------------------------------
                    out_situation	= SITUATION_WIDE_GAP;
            }

			// Que el risk no salga del gap:
			min_risk_eval_sector = gap.ini;
			max_risk_eval_sector = gap.end;
        }
    }

    // Calcular minima distancia a obstaculos a corto plazo, en
    //   un intervalo de sectores en torno al sector elegido:
    int     ancho_sectores = round( RISK_EVALUATION_SECTORS_PERCENT * obstacles.size() );
    int     sec_ini = max((int)min_risk_eval_sector, out_selDirection - ancho_sectores );
    int     sec_fin = min((int)max_risk_eval_sector, out_selDirection + ancho_sectores );

    out_riskEvaluation = 0.0;
    for (int i=sec_ini;i<=sec_fin;i++) out_riskEvaluation+= obstacles[ i ];
    out_riskEvaluation /= (sec_fin - sec_ini + 1 );

}
Beispiel #8
0
/*---------------------------------------------------------------
						Find gaps in the obtacles.
  ---------------------------------------------------------------*/
void  CHolonomicND::gapsEstimator(
		vector_double		&obstacles,
		poses::CPoint2D		&target,
		TGapArray			&gaps_out )
{
	unsigned int	i,n;
	int				nMaximos=0;
    double			MaximoAbsoluto = -100;
	double			MinimoAbsoluto = 100;
    vector_int		MaximoIdx;
    vector_double	MaximoValor;

    // Hacer una lista con los maximos de las distancias a obs:
    // ----------------------------------------------------------
	MaximoIdx.resize(obstacles.size());
	MaximoValor.resize(obstacles.size());
	n = obstacles.size();

    for (i=1;i<(n-1);i++)
    {
		// Actualizar max. y min. absolutos:
		MaximoAbsoluto= max( MaximoAbsoluto, obstacles[i] );
		MinimoAbsoluto= min( MinimoAbsoluto, obstacles[i] );

		// Buscar maximos locales:
		if ( ( obstacles[i] >= obstacles[i+1] &&
			  obstacles[i] > obstacles[i-1] ) ||
			  ( obstacles[i] > obstacles[i+1] &&
			  obstacles[i] >= obstacles[i-1] ) )
		{
				MaximoIdx[nMaximos] = i;
				MaximoValor[nMaximos++] = obstacles[i];
		}
    }

    //  Crear GAPS:
    // --------------------------------------------------------
	TGapArray    gaps_temp;
   	gaps_temp.reserve( 150 );

	for (double factorUmbral = 0.975f;factorUmbral>=0.04f;factorUmbral-=0.05f)
	{
            double   umbral = factorUmbral* MaximoAbsoluto + (1.0f-factorUmbral)*MinimoAbsoluto;
			bool	dentro = false;
			int		sec_ini=0, sec_end;
			double	maxDist=0;

			for (i=0;i<n;i++)
			{
				if ( !dentro && (!i || obstacles[i]>=umbral) )
				{
					sec_ini = i;
					maxDist = obstacles[i];
					dentro = true;
				}
				else if (dentro && (i==(n-1) || obstacles[i]<umbral ))
				{
					sec_end = i;
					dentro = false;

					if ( (sec_end-sec_ini) > 2 )
					{
						// Add new gap:
						TGap	newGap;
						newGap.ini				= sec_ini;
						newGap.end				= sec_end;
						newGap.entranceDistance = min( obstacles[sec_ini], obstacles[sec_end] );
						newGap.maxDistance		= maxDist;

						gaps_temp.push_back(newGap);
					}
				}

				if (dentro) maxDist = max( maxDist, obstacles[i] );
			}
	}

    // Proceso de eliminacion de huecos redundantes:
    // -------------------------------------------------------------
	std::vector<bool>	borrar_gap;
	borrar_gap.resize( gaps_temp.size() );
        for (i=0;i<gaps_temp.size();i++)
			borrar_gap[i] = false;


    // Eliminar huecos con muy poca profundidad si estan dentro de otros:
	double	maxProfundidad = 0;
	for (i=0;i<gaps_temp.size();i++)
    {
		double profundidad =
				gaps_temp[i].maxDistance -
				gaps_temp[i].entranceDistance;
		maxProfundidad = max(maxProfundidad, profundidad);
	}

	for (i=0;i<gaps_temp.size();i++)
    {
		double profundidad =
				gaps_temp[i].maxDistance -
				gaps_temp[i].entranceDistance;

		if ( profundidad< maxProfundidad / 10.0f )
				borrar_gap[i]=true;
    }


	// Si es muy estrecho, pero hay uno casi igual pero UN POCO mas grande,
	//  borrar el estrecho:
    for (i=0;i<gaps_temp.size();i++)
    {
        int     ini_i = gaps_temp[i].ini;
        int     fin_i = gaps_temp[i].end;
		int		ancho_i = fin_i - ini_i;

		if ( !borrar_gap[i] )
		{
			for (unsigned int j=0;j<gaps_temp.size() && !borrar_gap[i];j++)
			{
				if (i!=j)
				{
					int     ini_j = gaps_temp[j].ini;
					int     fin_j = gaps_temp[j].end;
					int		ancho_j = fin_j - ini_j;

					// j dentro de i y UN POCO mas grande nada mas:
					if (	!borrar_gap[j] &&
							ini_j>=ini_i &&
							fin_j<=fin_i &&
							ancho_i < (0.05f*n) &&
							ancho_j < (0.25f*n)
						)
						borrar_gap[i] = true;
				}
			}
		}
	}

	// Si dentro tiene mas de 1, borrarlo:
   for (i=0;i<gaps_temp.size();i++)
    {
        int     ini_i = gaps_temp[i].ini;
        int     fin_i = gaps_temp[i].end;
		int		nDentro = 0;

		if ( !borrar_gap[i] )
		{
			for (unsigned int j=0;j<gaps_temp.size();j++)
			{
				if (i!=j)
				{
					int     ini_j = gaps_temp[j].ini;
					int     fin_j = gaps_temp[j].end;

					// j dentro de i:
					if (    !borrar_gap[j] &&
							ini_j>=ini_i &&
							fin_j<=fin_i ) nDentro++;
				}
			}
			if (nDentro>1) borrar_gap[i] = true;
		}
	}


	// Uno dentro de otro y practicamente a la misma altura: Eliminarlo tambien:
   for (i=0;i<gaps_temp.size();i++)
    {
		if (!borrar_gap[i])
		{
            double	ent_i = gaps_temp[i].entranceDistance;
            int     ini_i = gaps_temp[i].ini;
            int     fin_i = gaps_temp[i].end;

            double MIN_GAPS_ENTR_DIST = (MaximoAbsoluto-MinimoAbsoluto)/10.0f;

            for (unsigned int j=0;j<gaps_temp.size() && !borrar_gap[i];j++)
				if (i!=j)
				{
                    double	ent_j = gaps_temp[j].entranceDistance;
                    int		ini_j = gaps_temp[j].ini;
                    int		fin_j = gaps_temp[j].end;

                    // j dentro de i y casi misma "altura":
                    if (    !borrar_gap[j] &&
							!borrar_gap[i] &&
                            ini_j>=ini_i &&
                            fin_j<=fin_i &&
                            fabs(ent_i-ent_j)< MIN_GAPS_ENTR_DIST )
                                    borrar_gap[i]=true;
				}
		}
    }

    // Copiar solo huecos no marcados para borrar:
    // ---------------------------------------------------
    gaps_out.clear();
	gaps_out.reserve(15);
    for (i=0;i<gaps_temp.size();i++)
            if ( !borrar_gap[i] )
			{
				// Calcular direccion representativa:
				calcRepresentativeSectorForGap( gaps_temp[i], target, obstacles);

				gaps_out.push_back( gaps_temp[i] );
			}

}
Beispiel #9
0
/*---------------------------------------------------------------
						Navigate
  ---------------------------------------------------------------*/
void CHolonomicND::navigate(const NavInput& ni, NavOutput& no)
{
	const auto ptg = getAssociatedPTG();
	const double ptg_ref_dist = ptg ? ptg->getRefDistance() : 1.0;

	TGapArray gaps;
	TSituations situation;
	unsigned int selectedSector;
	double riskEvaluation;
	double evaluation;

	// Create a log record for returning data.
	CLogFileRecord_ND::Ptr log = mrpt::make_aligned_shared<CLogFileRecord_ND>();
	no.logRecord = log;

	// Search gaps:
	gaps.clear();
	ASSERT_(!ni.targets.empty());
	const auto trg = *ni.targets.rbegin();

	gapsEstimator(ni.obstacles, trg, gaps);

	// Select best gap:
	searchBestGap(
		ni.obstacles, 1.0 /* max obs range*/, gaps, trg, selectedSector,
		evaluation, situation, riskEvaluation, *log);

	if (situation == SITUATION_NO_WAY_FOUND)
	{
		// No way found!
		no.desiredDirection = 0;
		no.desiredSpeed = 0;
	}
	else
	{
		// A valid movement:
		no.desiredDirection = CParameterizedTrajectoryGenerator::index2alpha(
			selectedSector, ni.obstacles.size());

		// Speed control: Reduction factors
		// ---------------------------------------------
		const double targetNearnessFactor =
			m_enableApproachTargetSlowDown
				? std::min(
					  1.0,
					  trg.norm() / (options.TARGET_SLOW_APPROACHING_DISTANCE /
									ptg_ref_dist))
				: 1.0;

		const double riskFactor =
			std::min(1.0, riskEvaluation / options.RISK_EVALUATION_DISTANCE);
		no.desiredSpeed =
			ni.maxRobotSpeed * std::min(riskFactor, targetNearnessFactor);
	}

	m_last_selected_sector = selectedSector;

	// LOG --------------------------
	if (log)
	{
		// gaps:
		{
			int i, n = gaps.size();
			log->gaps_ini.resize(n);
			log->gaps_end.resize(n);
			for (i = 0; i < n; i++)
			{
				log->gaps_ini[i] = gaps[i].ini;
				log->gaps_end[i] = gaps[i].end;
			}
		}
		// Selection:
		log->selectedSector = selectedSector;
		log->evaluation = evaluation;
		log->situation = situation;
		log->riskEvaluation = riskEvaluation;
	}
}