// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a 
// float, then float is converted to int.
//
// Returns 0 for an error or the constructed node.
//
TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
{
    TIntermTyped* newNode;
    TOperator basicOp;

    //
    // First, convert types as needed.
    //
    switch (op) {
    case EOpConstructVec2:
    case EOpConstructVec3:
    case EOpConstructVec4:
    case EOpConstructMat2:
    case EOpConstructMat3:
    case EOpConstructMat4:
    case EOpConstructFloat:
        basicOp = EOpConstructFloat;
        break;

    case EOpConstructIVec2:
    case EOpConstructIVec3:
    case EOpConstructIVec4:
    case EOpConstructInt:
        basicOp = EOpConstructInt;
        break;

    case EOpConstructBVec2:
    case EOpConstructBVec3:
    case EOpConstructBVec4:
    case EOpConstructBool:
        basicOp = EOpConstructBool;
        break;

    default:
        error(line, "unsupported construction", "", "");
        recover();

        return 0;
    }
    newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
    if (newNode == 0) {
        error(line, "can't convert", "constructor", "");
        return 0;
    }

    //
    // Now, if there still isn't an operation to do the construction, and we need one, add one.
    //
    
    // Otherwise, skip out early.
    if (subset || (newNode != node && newNode->getType() == *type))
        return newNode;

    // setAggregateOperator will insert a new node for the constructor, as needed.
    return intermediate.setAggregateOperator(newNode, op, line);
}
Beispiel #2
0
bool CollectVariables::visitBinary(Visit, TIntermBinary *binaryNode)
{
    if (binaryNode->getOp() == EOpIndexDirectInterfaceBlock)
    {
        // NOTE: we do not determine static use for individual blocks of an array
        TIntermTyped *blockNode = binaryNode->getLeft()->getAsTyped();
        ASSERT(blockNode);

        TIntermConstantUnion *constantUnion = binaryNode->getRight()->getAsConstantUnion();
        ASSERT(constantUnion);

        const TInterfaceBlock *interfaceBlock = blockNode->getType().getInterfaceBlock();
        InterfaceBlock *namedBlock = FindVariable(interfaceBlock->name(), mInterfaceBlocks);
        ASSERT(namedBlock);
        namedBlock->staticUse = true;

        unsigned int fieldIndex = constantUnion->getUConst(0);
        ASSERT(fieldIndex < namedBlock->fields.size());
        namedBlock->fields[fieldIndex].staticUse = true;
        return false;
    }

    return true;
}
Beispiel #3
0
bool IntermNodePatternMatcher::match(TIntermDeclaration *node)
{
    if ((mMask & kMultiDeclaration) != 0)
    {
        if (node->getSequence()->size() > 1)
        {
            return true;
        }
    }
    if ((mMask & kArrayDeclaration) != 0)
    {
        if (node->getSequence()->front()->getAsTyped()->getType().isStructureContainingArrays())
        {
            return true;
        }
        // Need to check from all declarators whether they are arrays since that may vary between
        // declarators.
        for (TIntermNode *declarator : *node->getSequence())
        {
            if (declarator->getAsTyped()->isArray())
            {
                return true;
            }
        }
    }
    if ((mMask & kNamelessStructDeclaration) != 0)
    {
        TIntermTyped *declarator = node->getSequence()->front()->getAsTyped();
        if (declarator->getBasicType() == EbtStruct &&
            declarator->getType().getStruct()->name() == "")
        {
            return true;
        }
    }
    return false;
}
Beispiel #4
0
//
// Add one node as the parent of another that it operates on.
//
// Returns the added node.
//
TIntermTyped *TIntermediate::addUnaryMath(
    TOperator op, TIntermNode *childNode, const TSourceLoc &line)
{
    TIntermUnary *node;
    TIntermTyped *child = childNode->getAsTyped();

    if (child == NULL)
    {
        mInfoSink.info.message(EPrefixInternalError, line,
                               "Bad type in AddUnaryMath");
        return NULL;
    }

    switch (op)
    {
      case EOpLogicalNot:
        if (child->getType().getBasicType() != EbtBool ||
            child->getType().isMatrix() ||
            child->getType().isArray() ||
            child->getType().isVector())
        {
            return NULL;
        }
        break;

      case EOpPostIncrement:
      case EOpPreIncrement:
      case EOpPostDecrement:
      case EOpPreDecrement:
      case EOpNegative:
      case EOpPositive:
        if (child->getType().getBasicType() == EbtStruct ||
            child->getType().isArray())
        {
            return NULL;
        }
      default:
        break;
    }

    TIntermConstantUnion *childTempConstant = 0;
    if (child->getAsConstantUnion())
        childTempConstant = child->getAsConstantUnion();

    //
    // Make a new node for the operator.
    //
    node = new TIntermUnary(op);
    node->setLine(line);
    node->setOperand(child);

    if (!node->promote(mInfoSink))
        return 0;

    if (childTempConstant)
    {
        TIntermTyped *newChild = childTempConstant->fold(op, 0, mInfoSink);

        if (newChild)
            return newChild;
    }

    return node;
}
void ScalarizeVecAndMatConstructorArgs::scalarizeArgs(
    TIntermAggregate *aggregate, bool scalarizeVector, bool scalarizeMatrix)
{
    ASSERT(aggregate);
    int size = 0;
    switch (aggregate->getOp())
    {
      case EOpConstructVec2:
      case EOpConstructBVec2:
      case EOpConstructIVec2:
        size = 2;
        break;
      case EOpConstructVec3:
      case EOpConstructBVec3:
      case EOpConstructIVec3:
        size = 3;
        break;
      case EOpConstructVec4:
      case EOpConstructBVec4:
      case EOpConstructIVec4:
      case EOpConstructMat2:
        size = 4;
        break;
      case EOpConstructMat2x3:
      case EOpConstructMat3x2:
        size = 6;
        break;
      case EOpConstructMat2x4:
      case EOpConstructMat4x2:
        size = 8;
        break;
      case EOpConstructMat3:
        size = 9;
        break;
      case EOpConstructMat3x4:
      case EOpConstructMat4x3:
        size = 12;
        break;
      case EOpConstructMat4:
        size = 16;
        break;
      default:
        break;
    }
    TIntermSequence *sequence = aggregate->getSequence();
    TIntermSequence original(*sequence);
    sequence->clear();
    for (size_t ii = 0; ii < original.size(); ++ii)
    {
        ASSERT(size > 0);
        TIntermTyped *node = original[ii]->getAsTyped();
        ASSERT(node);
        TString varName = createTempVariable(node);
        if (node->isScalar())
        {
            TIntermSymbol *symbolNode =
                new TIntermSymbol(-1, varName, node->getType());
            sequence->push_back(symbolNode);
            size--;
        }
        else if (node->isVector())
        {
            if (scalarizeVector)
            {
                int repeat = std::min(size, node->getNominalSize());
                size -= repeat;
                for (int index = 0; index < repeat; ++index)
                {
                    TIntermSymbol *symbolNode =
                        new TIntermSymbol(-1, varName, node->getType());
                    TIntermBinary *newNode = ConstructVectorIndexBinaryNode(
                        symbolNode, index);
                    sequence->push_back(newNode);
                }
            }
            else
            {
                TIntermSymbol *symbolNode =
                    new TIntermSymbol(-1, varName, node->getType());
                sequence->push_back(symbolNode);
                size -= node->getNominalSize();
            }
        }
        else
        {
            ASSERT(node->isMatrix());
            if (scalarizeMatrix)
            {
                int colIndex = 0, rowIndex = 0;
                int repeat = std::min(size, node->getCols() * node->getRows());
                size -= repeat;
                while (repeat > 0)
                {
                    TIntermSymbol *symbolNode =
                        new TIntermSymbol(-1, varName, node->getType());
                    TIntermBinary *newNode = ConstructMatrixIndexBinaryNode(
                        symbolNode, colIndex, rowIndex);
                    sequence->push_back(newNode);
                    rowIndex++;
                    if (rowIndex >= node->getRows())
                    {
                        rowIndex = 0;
                        colIndex++;
                    }
                    repeat--;
                }
            }
            else
            {
                TIntermSymbol *symbolNode =
                    new TIntermSymbol(-1, varName, node->getType());
                sequence->push_back(symbolNode);
                size -= node->getCols() * node->getRows();
            }
        }
    }
}
// Add one node as the parent of another that it operates on.
TIntermTyped* ir_add_unary_math(TOperator op, TIntermNode* childNode, TSourceLoc line, TParseContext& ctx)
{
   TIntermUnary* node;
   TIntermTyped* child = childNode->getAsTyped();

   if (child == 0)
   {
      ctx.infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
      return 0;
   }

   switch (op)
   {
   case EOpLogicalNot:
      if (!child->isScalar())
         return 0;
      break;

   case EOpPostIncrement:
   case EOpPreIncrement:
   case EOpPostDecrement:
   case EOpPreDecrement:
   case EOpNegative:
      if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
         return 0;
   default: break;
   }

   //
   // Do we need to promote the operand?
   //
   // Note: Implicit promotions were removed from the language.
   //
   TBasicType newType = EbtVoid;
   switch (op)
   {
   case EOpConstructInt:   newType = EbtInt;   break;
   case EOpConstructBool:  newType = EbtBool;  break;
   case EOpConstructFloat: newType = EbtFloat; break;
   case EOpLogicalNot:     newType = EbtBool; break;
   default: break;
   }

   if (newType != EbtVoid)
   {
      child = ir_add_conversion(op, TType(newType, child->getPrecision(), EvqTemporary, child->getColsCount(), child->getRowsCount(), 
                                      child->isMatrix(), 
                                      child->isArray()),
                            child, ctx.infoSink);
      if (child == 0)
         return 0;
   }

   //
   // For constructors, we are now done, it's all in the conversion.
   //
   switch (op)
   {
   case EOpConstructInt:
   case EOpConstructBool:
   case EOpConstructFloat:
      return child;
   default: break;
   }

   TIntermConstant* childConst = child->getAsConstant();

   //
   // Make a new node for the operator.
   //
   node = new TIntermUnary(op);
   if (line.line == 0)
      line = child->getLine();
   node->setLine(line);
   node->setOperand(child);

   if (! node->promote(ctx))
      return 0;
	
	
	//
	// See if we can fold constants
	
	if (childConst)
	{
		TIntermConstant* FoldUnaryConstantExpression(TOperator op, TIntermConstant* node);
		TIntermConstant* res = FoldUnaryConstantExpression(node->getOp(), childConst);
		if (res)
		{
			delete node;
			return res;
		}
	}
	

	return node;
}
//
// Add one node as the parent of another that it operates on.
//
// Returns the added node.
//
TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line, TSymbolTable& symbolTable)
{
    TIntermUnary* node;
    TIntermTyped* child = childNode->getAsTyped();

    if (child == 0) {
        infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
        return 0;
    }

    switch (op) {
        case EOpLogicalNot:
            if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
                return 0;
            }
            break;

        case EOpPostIncrement:
        case EOpPreIncrement:
        case EOpPostDecrement:
        case EOpPreDecrement:
        case EOpNegative:
            if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
                return 0;
        default: break;
    }

    //
    // Do we need to promote the operand?
    //
    // Note: Implicit promotions were removed from the language.
    //
    TBasicType newType = EbtVoid;
    switch (op) {
        case EOpConstructInt:   newType = EbtInt;   break;
        case EOpConstructBool:  newType = EbtBool;  break;
        case EOpConstructFloat: newType = EbtFloat; break;
        default: break;
    }

    if (newType != EbtVoid) {
        child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
            child->getNominalSize(),
            child->isMatrix(),
            child->isArray()),
            child);
        if (child == 0)
            return 0;
    }

    //
    // For constructors, we are now done, it's all in the conversion.
    //
    switch (op) {
        case EOpConstructInt:
        case EOpConstructBool:
        case EOpConstructFloat:
            return child;
        default: break;
    }

    TIntermConstantUnion *childTempConstant = 0;
    if (child->getAsConstantUnion())
        childTempConstant = child->getAsConstantUnion();

    //
    // Make a new node for the operator.
    //
    node = new TIntermUnary(op);
    if (line == 0)
        line = child->getLine();
    node->setLine(line);
    node->setOperand(child);

    if (! node->promote(infoSink))
        return 0;

    if (childTempConstant)  {
        TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);

        if (newChild)
            return newChild;
    }

    return node;
}
Beispiel #8
0
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary* node)
{
    bool visitChildren = true;
    TInfoSinkBase& out = objSink();
    switch (node->getOp())
    {
        case EOpInitialize:
            if (visit == InVisit)
            {
                out << " = ";
                // RHS of initialize is not being declared.
                mDeclaringVariables = false;
            }
            break;
        case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break;
        case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break;
        case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break;
        case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break;
        // Notice the fall-through.
        case EOpMulAssign: 
        case EOpVectorTimesMatrixAssign:
        case EOpVectorTimesScalarAssign:
        case EOpMatrixTimesScalarAssign:
        case EOpMatrixTimesMatrixAssign:
            writeTriplet(visit, "(", " *= ", ")");
            break;

        case EOpIndexDirect:
            writeTriplet(visit, NULL, "[", "]");
            break;
        case EOpIndexIndirect:
            if (node->getAddIndexClamp())
            {
                if (visit == InVisit)
                {
                    if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) {
                        out << "[int(clamp(float(";
                    } else {
                        out << "[webgl_int_clamp(";
                    }
                }
                else if (visit == PostVisit)
                {
                    int maxSize;
                    TIntermTyped *left = node->getLeft();
                    TType leftType = left->getType();

                    if (left->isArray())
                    {
                        // The shader will fail validation if the array length is not > 0.
                        maxSize = leftType.getArraySize() - 1;
                    }
                    else
                    {
                        maxSize = leftType.getNominalSize() - 1;
                    }

                    if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) {
                        out << "), 0.0, float(" << maxSize << ")))]";
                    } else {
                        out << ", 0, " << maxSize << ")]";
                    }
                }
            }
            else
            {
                writeTriplet(visit, NULL, "[", "]");
            }
            break;
        case EOpIndexDirectStruct:
            if (visit == InVisit)
            {
                out << ".";
                // TODO(alokp): ASSERT
                TString fieldName = node->getType().getFieldName();

                const TType& structType = node->getLeft()->getType();
                if (!mSymbolTable.findBuiltIn(structType.getTypeName()))
                    fieldName = hashName(fieldName);

                out << fieldName;
                visitChildren = false;
            }
            break;
        case EOpVectorSwizzle:
            if (visit == InVisit)
            {
                out << ".";
                TIntermAggregate* rightChild = node->getRight()->getAsAggregate();
                TIntermSequence& sequence = rightChild->getSequence();
                for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit)
                {
                    TIntermConstantUnion* element = (*sit)->getAsConstantUnion();
                    ASSERT(element->getBasicType() == EbtInt);
                    ASSERT(element->getNominalSize() == 1);
                    const ConstantUnion& data = element->getUnionArrayPointer()[0];
                    ASSERT(data.getType() == EbtInt);
                    switch (data.getIConst())
                    {
                        case 0: out << "x"; break;
                        case 1: out << "y"; break;
                        case 2: out << "z"; break;
                        case 3: out << "w"; break;
                        default: UNREACHABLE(); break;
                    }
                }
                visitChildren = false;
            }
            break;

        case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break;
        case EOpSub: writeTriplet(visit, "(", " - ", ")"); break;
        case EOpMul: writeTriplet(visit, "(", " * ", ")"); break;
        case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break;
        case EOpMod: UNIMPLEMENTED(); break;
        case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break;
        case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break;
        case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break;
        case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break;
        case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break;
        case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break;

        // Notice the fall-through.
        case EOpVectorTimesScalar:
        case EOpVectorTimesMatrix:
        case EOpMatrixTimesVector:
        case EOpMatrixTimesScalar:
        case EOpMatrixTimesMatrix:
            writeTriplet(visit, "(", " * ", ")");
            break;

        case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break;
        case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break;
        case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break;
        default: UNREACHABLE(); break;
    }

    return visitChildren;
}
bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary *node)
{
    bool visitChildren = true;
    TInfoSinkBase &out = objSink();
    switch (node->getOp())
    {
      case EOpInitialize:
        if (visit == InVisit)
        {
            out << " = ";
            // RHS of initialize is not being declared.
            mDeclaringVariables = false;
        }
        break;
      case EOpAssign:
        writeTriplet(visit, "(", " = ", ")");
        break;
      case EOpAddAssign:
        writeTriplet(visit, "(", " += ", ")");
        break;
      case EOpSubAssign:
        writeTriplet(visit, "(", " -= ", ")");
        break;
      case EOpDivAssign:
        writeTriplet(visit, "(", " /= ", ")");
        break;
      case EOpIModAssign:
        writeTriplet(visit, "(", " %= ", ")");
        break;
      // Notice the fall-through.
      case EOpMulAssign:
      case EOpVectorTimesMatrixAssign:
      case EOpVectorTimesScalarAssign:
      case EOpMatrixTimesScalarAssign:
      case EOpMatrixTimesMatrixAssign:
        writeTriplet(visit, "(", " *= ", ")");
        break;
      case EOpBitShiftLeftAssign:
        writeTriplet(visit, "(", " <<= ", ")");
        break;
      case EOpBitShiftRightAssign:
        writeTriplet(visit, "(", " >>= ", ")");
        break;
      case EOpBitwiseAndAssign:
        writeTriplet(visit, "(", " &= ", ")");
        break;
      case EOpBitwiseXorAssign:
        writeTriplet(visit, "(", " ^= ", ")");
        break;
      case EOpBitwiseOrAssign:
        writeTriplet(visit, "(", " |= ", ")");
        break;

      case EOpIndexDirect:
        writeTriplet(visit, NULL, "[", "]");
        break;
      case EOpIndexIndirect:
        if (node->getAddIndexClamp())
        {
            if (visit == InVisit)
            {
                if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC)
                    out << "[int(clamp(float(";
                else
                    out << "[webgl_int_clamp(";
            }
            else if (visit == PostVisit)
            {
                int maxSize;
                TIntermTyped *left = node->getLeft();
                TType leftType = left->getType();

                if (left->isArray())
                {
                    // The shader will fail validation if the array length is not > 0.
                    maxSize = leftType.getArraySize() - 1;
                }
                else
                {
                    maxSize = leftType.getNominalSize() - 1;
                }

                if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC)
                    out << "), 0.0, float(" << maxSize << ")))]";
                else
                    out << ", 0, " << maxSize << ")]";
            }
        }
        else
        {
            writeTriplet(visit, NULL, "[", "]");
        }
        break;
      case EOpIndexDirectStruct:
        if (visit == InVisit)
        {
            // Here we are writing out "foo.bar", where "foo" is struct
            // and "bar" is field. In AST, it is represented as a binary
            // node, where left child represents "foo" and right child "bar".
            // The node itself represents ".". The struct field "bar" is
            // actually stored as an index into TStructure::fields.
            out << ".";
            const TStructure *structure = node->getLeft()->getType().getStruct();
            const TIntermConstantUnion *index = node->getRight()->getAsConstantUnion();
            const TField *field = structure->fields()[index->getIConst(0)];

            TString fieldName = field->name();
            if (!mSymbolTable.findBuiltIn(structure->name(), mShaderVersion))
                fieldName = hashName(fieldName);

            out << fieldName;
            visitChildren = false;
        }
        break;
      case EOpIndexDirectInterfaceBlock:
          if (visit == InVisit)
          {
              out << ".";
              const TInterfaceBlock *interfaceBlock = node->getLeft()->getType().getInterfaceBlock();
              const TIntermConstantUnion *index = node->getRight()->getAsConstantUnion();
              const TField *field = interfaceBlock->fields()[index->getIConst(0)];

              TString fieldName = field->name();
              ASSERT(!mSymbolTable.findBuiltIn(interfaceBlock->name(), mShaderVersion));
              fieldName = hashName(fieldName);

              out << fieldName;
              visitChildren = false;
          }
          break;
      case EOpVectorSwizzle:
        if (visit == InVisit)
        {
            out << ".";
            TIntermAggregate *rightChild = node->getRight()->getAsAggregate();
            TIntermSequence *sequence = rightChild->getSequence();
            for (TIntermSequence::iterator sit = sequence->begin(); sit != sequence->end(); ++sit)
            {
                TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
                ASSERT(element->getBasicType() == EbtInt);
                ASSERT(element->getNominalSize() == 1);
                const TConstantUnion& data = element->getUnionArrayPointer()[0];
                ASSERT(data.getType() == EbtInt);
                switch (data.getIConst())
                {
                  case 0:
                    out << "x";
                    break;
                  case 1:
                    out << "y";
                    break;
                  case 2:
                    out << "z";
                    break;
                  case 3:
                    out << "w";
                    break;
                  default:
                    UNREACHABLE();
                }
            }
            visitChildren = false;
        }
        break;

      case EOpAdd:
        writeTriplet(visit, "(", " + ", ")");
        break;
      case EOpSub:
        writeTriplet(visit, "(", " - ", ")");
        break;
      case EOpMul:
        writeTriplet(visit, "(", " * ", ")");
        break;
      case EOpDiv:
        writeTriplet(visit, "(", " / ", ")");
        break;
      case EOpIMod:
        writeTriplet(visit, "(", " % ", ")");
        break;
      case EOpBitShiftLeft:
        writeTriplet(visit, "(", " << ", ")");
        break;
      case EOpBitShiftRight:
        writeTriplet(visit, "(", " >> ", ")");
        break;
      case EOpBitwiseAnd:
        writeTriplet(visit, "(", " & ", ")");
        break;
      case EOpBitwiseXor:
        writeTriplet(visit, "(", " ^ ", ")");
        break;
      case EOpBitwiseOr:
        writeTriplet(visit, "(", " | ", ")");
        break;

      case EOpEqual:
        writeTriplet(visit, "(", " == ", ")");
        break;
      case EOpNotEqual:
        writeTriplet(visit, "(", " != ", ")");
        break;
      case EOpLessThan:
        writeTriplet(visit, "(", " < ", ")");
        break;
      case EOpGreaterThan:
        writeTriplet(visit, "(", " > ", ")");
        break;
      case EOpLessThanEqual:
        writeTriplet(visit, "(", " <= ", ")");
        break;
      case EOpGreaterThanEqual:
        writeTriplet(visit, "(", " >= ", ")");
        break;

      // Notice the fall-through.
      case EOpVectorTimesScalar:
      case EOpVectorTimesMatrix:
      case EOpMatrixTimesVector:
      case EOpMatrixTimesScalar:
      case EOpMatrixTimesMatrix:
        writeTriplet(visit, "(", " * ", ")");
        break;

      case EOpLogicalOr:
        writeTriplet(visit, "(", " || ", ")");
        break;
      case EOpLogicalXor:
        writeTriplet(visit, "(", " ^^ ", ")");
        break;
      case EOpLogicalAnd:
        writeTriplet(visit, "(", " && ", ")");
        break;
      default:
        UNREACHABLE();
    }

    return visitChildren;
}