void NLSimpleGuiWindow::drawClarkAnalysis( const ConsentrationGraph &xGraph,
                                           const ConsentrationGraph &yGraph,
                                           bool isCgmsVMeter )
{
  ui->tabWidget->setCurrentWidget(ui->clarkeGridTab);
  cleanupClarkAnalysis();

  TimeDuration cmgsDelay(0,0,0,0);

  if( isCgmsVMeter )
  {
    TCanvas *can = ui->clarkResultsWidget->GetCanvas();
    can->cd();
    can->SetEditable( kTRUE );
    TPaveText *delayErrorEqnPt = new TPaveText(0, 0, 1.0, 1.0, "NDC");
    delayErrorEqnPt->SetBorderSize(0);
    delayErrorEqnPt->SetTextAlign(12);
    cmgsDelay = m_model->findCgmsDelayFromFingerStick();
    double sigma = 1000.0 * m_model->findCgmsErrorFromFingerStick(cmgsDelay);
    sigma = static_cast<int>(sigma + 0.5) / 10.0; //nearest tenth of a percent

    string delayStr = "Delay=";
    delayStr += boost::posix_time::to_simple_string(cmgsDelay).substr(3,5);
    delayStr += "   ";
    ostringstream uncertDescript;
    uncertDescript << "#sigma_{cgms}^{finger}=" << sigma << "%";

    delayErrorEqnPt->AddText( uncertDescript.str().c_str() );
    delayErrorEqnPt->AddText( delayStr.c_str() );
    delayErrorEqnPt->Draw();
    can->SetEditable( kFALSE );
    can->Update();
  }//if( isCgmsVMeter )


  TCanvas *can = ui->clarkeErrorGridWidget->GetCanvas();
  can->cd();
  can->SetEditable( kTRUE );
  vector<TObject *> clarkesObj;
  clarkesObj = getClarkeErrorGridObjs( yGraph, xGraph, cmgsDelay, true );

  assert( dynamic_cast<TH1 *>(clarkesObj[0]) );
  dynamic_cast<TH1 *>(clarkesObj[0])->GetYaxis()->SetTitleOffset(1.3);

  clarkesObj[0]->Draw("SCAT");
  clarkesObj[1]->Draw("SCAT SAME");
  clarkesObj[2]->Draw("SCAT SAME");
  clarkesObj[3]->Draw("SCAT SAME");
  clarkesObj[4]->Draw("SCAT SAME");
  TLegend *leg = dynamic_cast<TLegend *>( clarkesObj[5] );
  assert( leg );

  //Now draw all the boundry lines
  for( size_t i=6; i < clarkesObj.size(); ++i ) clarkesObj[i]->Draw();
  can->SetEditable( kFALSE );
  can->Update();
  // can->ResizePad();
  // ui->clarkeErrorGridWidget->Refresh();

  can = ui->clarkeLegendWidget->GetCanvas();
  can->cd();
  leg->SetX1(-0.1);
  leg->SetX2(1.1);
  leg->SetY1(0.0);
  leg->SetY2(1.0);
  leg->Draw();
  can->SetEditable( kFALSE );
  can->Update();
}// void NLSimpleGuiWindow::drawPredictedClarkAnalysis()
//--------------------------------------------------------------------------------------------------
void plot(long int xStart, long int xEnd, TString text, TString pngFileName)
{
  // Make sure we have the right styles
  MitStyle::Init();
  MitStyle::SetStyleWide();
  gStyle->SetPadRightMargin(0.07); // to make sure the exponent is on the picture

  // will execute a shell command to get the data
  TString timeSeriesFile("timeSeriesOfFailures.txt");

  // Now open our database output
  ifstream input;
  input.open(timeSeriesFile.Data());

  Int_t time=0, nFail=0, nLines=0;
  Double_t xMin=double(xStart), xMax=double(xEnd), max=1.0;

  // First loop to determine the boundaries (could be done in one round, dynamically)
  //---------------------------------------------------------------------------------
  while (1) {
    // read in 
    input >> time >> nFail;
    // check it worked
    if (! input.good())
      break;

    //printf(" Min / Time / Max: %d %d %d\n",xStart,time,xEnd);

    // check whether in our requested time window
    if (xStart>0 && xStart>time)
      continue;
    if (xEnd>0 && xEnd<time)
      continue;
    
    // Show what we are reading
    if (nLines < 5)
      printf(" time=%d, nFails=%d\n",time, nFail);

    // Determine plot maximum
    if (nFail > max)
      max = nFail;

    nLines++;
  }
  input.close();

  printf(" \n");
  printf(" Found %d measurements.\n",nLines);
  printf(" Maximum failures at: %6.2f in 90 sec\n",max);
  printf(" \n");

  // Open a canvas
  TCanvas *cv = new TCanvas();
  cv->SetLogy(kTRUE);
  cv->Draw();

  if (nLines<1) {
    printf(" WARNING - no measurements selected.\n");
    plotFrame(double(xStart),double(xEnd));
    overlayFrame(text);
    cv->SaveAs(pngFileName.Data());
    return;
  }

  const int numVals = nLines;
  double xVals[numVals];
  double yVals[numVals];


  input.open(timeSeriesFile.Data());

  // Second loop to register the measured values
  //--------------------------------------------
  Int_t i = 0;
  while (1) {
    // read in 
    input >> time >> nFail;
    // check it worked
    if (!input.good())
      break;

    // check whether in our requested time window
    if (xStart>0 && xStart>time)
      continue;
    if (xEnd>0 && xEnd<time)
      continue;

    xVals[i] = time;
    yVals[i] = nFail;

    i++;
  }
  input.close();

  // Make a good frame
  plotFrame(xMin,xMax,max);

  // Prepare our graphs
  TGraph* graph1 = new TGraph(numVals, xVals, yVals);
  graph1->SetLineColor(2);
  graph1->SetLineWidth(2);
  graph1->SetMarkerColor(4);
  graph1->SetMarkerStyle(21);
  graph1->SetMarkerSize(0.4);

  // Through them into the multigraph
  TMultiGraph *mg = new TMultiGraph();
  mg->Add(graph1,"lp");

  // Draw the graphs
  mg->Draw("CP");

  // Add a nice legend to the picture
  TLegend *leg = new TLegend(0.4,0.6,0.89,0.89);
  leg->SetX1(0.15);
  leg->SetX2(0.30);
  leg->SetY1(0.95);
  leg->SetY2(0.85);
  leg->SetBorderSize(0);
  leg->SetFillStyle(0);
  leg->AddEntry(graph1,"number of failures","lp");
  leg->Draw();

  overlayFrame(text);
  cv->SaveAs(pngFileName);
}
//--------------------------------------------------------------------------------------------------
void plot(long int xStart, long int xEnd, TString text, TString pngFileName)
{
  // Make sure we have the right styles
  MitRootStyle::Init();
  MitRootStyle::SetStyleWide();
  gStyle->SetPadRightMargin(0.07); // to make sure the exponent is on the picture

  // will execute a shell command to get the data
  TString timeSeriesFile("timeSeriesOfRates.txt");

  // Now open our database output
  ifstream input;
  input.open(timeSeriesFile.Data());

  Int_t time=0, nConn=0, nLines=0;
  Double_t rate=0, xMin=double(xStart), xMax=double(xEnd), maxRate=1.0;

  // First loop to determine the boundaries (could be done in one round, dynamically)
  //---------------------------------------------------------------------------------
  while (1) {
    // read in 
    input >> time >> rate >> nConn;
    // check it worked
    if (! input.good())
      break;

    //printf(" Min / Time / Max: %d %d %d\n",xStart,time,xEnd);

    // check whether in our requested time window
    if (xStart>0 && xStart>time)
      continue;
    if (xEnd>0 && xEnd<time)
      continue;
    
    // Show what we are reading
    if (nLines < 5)
      printf(" time=%d, rate=%8f nConnections=%d\n",time, rate, nConn);

    // Determine plot maximum
    if (rate > maxRate)
      maxRate = rate;
    if (nConn > maxRate)
      maxRate = double(nConn);

    nLines++;
  }
  input.close();

  printf(" \n");
  printf(" Found %d measurements.\n",nLines);
  printf(" Maximum tranfer rate at: %6.2f MB/sec\n",maxRate);
  printf(" \n");

  // Open a canvas
  TCanvas *cv = new TCanvas();
  cv->Draw();

  if (nLines<1) {
    printf(" WARNING - no measurements selected.\n");
    plotFrame(double(xStart),double(xEnd));
    double dX = double(xEnd)-double(xStart);
    TText *plotText = new TText(xMin-dX*0.14,0.-(maxRate*1.2*0.14),text.Data());
    printf("Text size: %f\n",plotText->GetTextSize());
    plotText->SetTextSize(0.04);
    plotText->SetTextColor(kBlue);
    plotText->Draw();
    cv->SaveAs(pngFileName.Data());
    return;
  }

  const int numVals = nLines;
  double xVals[numVals];
  double y1Vals[numVals];
  double y2Vals[numVals];

  input.open(timeSeriesFile.Data());

  // Second loop to register the measured values
  //--------------------------------------------
  Int_t i = 0;
  while (1) {
    // read in 
    input >> time >> rate >> nConn;
    // check it worked
    if (!input.good())
      break;

    // check whether in our requested time window
    if (xStart>0 && xStart>time)
      continue;
    if (xEnd>0 && xEnd<time)
      continue;

    xVals[i] = time;
    y1Vals[i] = rate;
    y2Vals[i] = nConn;

    i++;
  }
  input.close();

  // Make a good frame
  plotFrame(xMin,xMax,maxRate);
  double dX = double(xEnd)-double(xStart);
  TText *plotText = new TText(xMin-dX*0.14,0.-(maxRate*1.2*0.14),text.Data());
  plotText->SetTextSize(0.04);
  plotText->SetTextColor(kBlue);
  plotText->Draw();

  // Prepare our graphs
  TGraph* graph1 = new TGraph(numVals, xVals, y1Vals);
  graph1->SetLineColor(2);
  graph1->SetLineWidth(2);
  graph1->SetMarkerColor(4);
  graph1->SetMarkerStyle(21);
  graph1->SetMarkerSize(0.4);
  TGraph* graph2 = new TGraph(numVals, xVals, y2Vals);
  graph2->SetLineColor(3);
  graph2->SetLineWidth(2);
  graph2->SetMarkerColor(4);
  graph2->SetMarkerStyle(20);
  graph2->SetMarkerSize(0.4);

  // Through them into the multigraph
  TMultiGraph *mg = new TMultiGraph();
  mg->Add(graph1,"lp");
  mg->Add(graph2,"lp");

  // Draw the graphs
  mg->Draw("CP");

  // Add a nice legend to the picture
  TLegend *leg = new TLegend(0.4,0.6,0.89,0.89);
  //leg->SetTextSize(0.036);
  leg->SetX1(0.15);
  leg->SetX2(0.30);
  leg->SetY1(0.95);
  leg->SetY2(0.85);
  leg->SetBorderSize(0);
  leg->SetFillStyle(0);
  leg->AddEntry(graph2,"number of tranfers","lp");
  leg->AddEntry(graph1,"data tranfer rate","lp");
  leg->Draw();

  cv->SaveAs(pngFileName);
}
void EstimateBg_76X(bool save=0, std::string in = "",
		std::string out = "/afs/cern.ch/user/j/jkarancs/public/NOTES/notes/AN-14-290/trunk/Plots/v1.0/", std::string ext="png") {
  gStyle->SetOptTitle(0);
  gStyle->SetOptStat(0);
  
  bool latex = save;
  
  bool ABCD_prime = 0;
  bool TT_only = 0;
  
  std::stringstream ss, ss2;
  ss<<DPHI_CUT; ss2<<R_CUT;
  std::string dphi_cut = ss.str().replace(ss.str().find("."),1,"p");
  std::string r_cut = ss2.str().replace(ss2.str().find("."),1,"p");
  
  std::string filename = in.size() ? in : 
    //"results/Plotter_out_2016_05_31_08h48m57_replot.root";
    "results/Plotter_out_2016_06_24_14h28m51.root";
  
  std::vector<std::string> samples[4];
  //samples[0].push_back("TTJetsMGHT");
  //samples[0].push_back("TTJetsMG");
  //samples[0].push_back("TTJetsNLOFXFX");
  //samples[0].push_back("TTNLO");
  //samples[0].push_back("TTNLOHerwig");
  //samples[0].push_back("TTPowheg");
  //samples[0].push_back("TTPowhegmpiOff");
  //samples[0].push_back("TTPowhegnoCR");
  //samples[0].push_back("TTPowhegHerwig");
  
  //+data+ samples[1].push_back("SingleElectron");
  //+data+ samples[1].push_back("SingleMuon");
  if (TT_only) {
    samples[1].push_back("TTJetsMGHT");
    samples[1].push_back("TTJetsMG");
    samples[1].push_back("TTJetsNLOFXFX");
    samples[1].push_back("TTNLO");
    samples[1].push_back("TTNLOHerwig");
    samples[1].push_back("TTPowheg");
    samples[1].push_back("TTPowhegmpiOFF");
    samples[1].push_back("TTPowhegnoCR");
    samples[1].push_back("TTPowhegHerwig");
  } else {
    samples[1].push_back("TTJetsMGHT");
    //samples[1].push_back("TTJetsMG");
    //samples[1].push_back("TTJetsNLOFXFX");
    //samples[1].push_back("TTNLO");
    //samples[1].push_back("TTNLOHerwig");
    //samples[1].push_back("TTPowheg");
    //samples[1].push_back("TTPowhegmpiOff");
    //samples[1].push_back("TTPowhegnoCR");
    //samples[1].push_back("TTPowhegHerwig");
    samples[1].push_back("ZJets");
    samples[1].push_back("TTX");
    samples[1].push_back("WJets");
    samples[1].push_back("Diboson");
    samples[1].push_back("Top");
    samples[1].push_back("QCD");
    //ZERO samples[1].push_back("TZQ");
    //ZERO samples[1].push_back("ZJetsToQQ"); // Also WJetsToQQ
    //ZERO samples[1].push_back("GJets");
  }
  //samples[1].push_back("Data");
  // NTop Sideband All background summed
  samples[2].push_back("All Bkg.");
    
  // Signal in NTop bins
  samples[3].push_back("T1tttt");
  
  bool baderror = false;
  double weight[] = { 0.32686, 0.0505037, 0.00921411, 6.80717, 0.354934, 0.00484915 };
  int rebin = /*(R_CUT*10-int(R_CUT*10))==0 ? 10 :*/ (R_CUT*20-int(R_CUT*20))==0 ? 5 : (R_CUT*50-int(R_CUT*50))==0 ? 2 : 1;
  double sideband_fit_low_range[] = { 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15 };
  
  int i_h_side[]   = { 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  int i_h_signal[] = { 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
  
  double scale_factors[] = { 1, 1, 1, 1, 1, 1, 1}; // All normal
  //double scale_factors[] = { /* TT */ 1, /* W */ 1, /* Z */ 1, /* T */ 1, /* TTV */ 1, /* QCD */ 2, /* VV */ 1 }; // QCD high
  //double scale_factors[] = { /* TT */ 5, /* W */ 1, /* Z */ 1, /* T */ 1, /* TTV */ 5, /* QCD */ 1, /* VV */ 1 }; // TT/TTV high
  //double scale_factors[] = { /* TT */ 1, /* W */ 2, /* Z */ 2, /* T */ 2, /* TTV */ 1, /* QCD */ 1, /* VV */ 2 }; // T/V/VV high
  
  Double_t Rranges_ABCD[][4] = 
    { { DPHI_CUT, 3.2, 0.0, DPHI_CUT  },
      { R_CUT_LOW-1e-10, R_CUT, R_CUT-1e-10, 1.20 },
      { R_CUT_LOW-1e-10, R_CUT, R_CUT-1e-10, 1.20 },
      { R_CUT_LOW-1e-10, R_CUT, R_CUT-1e-10, 1.20 } };
  bool doFitting = false;
  double sum_a = 0, sum_b = 0, sum_c = 0, sum_d = 0, sum_d_abcd = 0, sum_d_nevt = 0;
  double sum_a_err = 0, sum_b_err = 0, sum_c_err = 0, sum_d_err = 0, sum_d_abcd_err = 0;
  double sum_b_fit = 0, sum_d_fit = 0, sum_d_fit_comb = 0;
  double sum_b_fit_err = 0, sum_d_fit_err = 0, sum_d_fit_comb_err = 0;
  double comb_d = 0, comb_d_err = 0, comb_d_abcd = 0, comb_d_abcd_err = 0;
  if (latex) {
    printf("\\begin{table*}[htbH]\n");
    printf("\\small\n");
    printf("\\begin{center}\n");
    printf("\\topcaption{Estimated Standard Model background yields in ABCD regions. A, B is in the sideband, C and D is the signal band, D is the signal region.\\label{tab:SMBkgEstimate}}\n");
    printf("\\begin{tabular}{lrrrrrrrr}\n");
  }
  TFile *f = TFile::Open(filename.c_str());
  for (size_t iMethod = 0; iMethod<4; ++iMethod) if (!(iMethod==0&&samples[0].size()==0)){
    // Print Top row for each method
    if (latex) {
      if (iMethod==0) {
        printf("\\hline\n");
        printf("Method 2 & A & B & C & D = B*C/A & D obs. & Ratio pred./obs. & Pull & KS test\\\\\n");
      }	else if (iMethod==1){
        printf("\\hline\n");
        printf("Method 1 & A & B & C & D = B*C/A & D obs. & Ratio pred./obs. & Pull & KS test\\\\\n");
      }
      printf("\\hline\n");
    } else {
      std::stringstream r_sb_cut;
      if (R_CUT_LOW==0) r_sb_cut<<"R<"<<R_CUT;
      else r_sb_cut<<R_CUT_LOW<<"<R<"<<R_CUT;
      const char* prime = ABCD_prime ? "'" : "";
      //if (iMethod==0) printf("| *Sample* | *A (DPhi>2.8, SB)* | *B (DPhi<2.8, SB)* | *C (DPhi>2.8, Sig.B.)* | - | *D = B*C/A pred.* | *D (DPhi<2.8, Sig.B.) obs.* | *Ratio pred./obs.* |\n");
      //else if (iMethod==1) printf("| *Sample* | *A (R<%1.1f, SB)* | *B (R>%1.1f, SB)* | *C (R<%1.1f, Sig.B.)* | *D = B (R fit, SB) * C/A pred.* | *D = B*C/A pred.* | *D (R>%1.1f, Sig.B.) obs.* | *Ratio pred./obs.* | \n", R_CUT, R_CUT, R_CUT, R_CUT);
      if (iMethod==0) printf("| *Sample* | *A (DPhi>%1.1f, %s)* | *B (DPhi<%1.1f, %s)* | *C (DPhi>%1.1f, R>0.4)* | *D = B*C/A pred.* | *D (DPhi<%1.1f, R>0.4) obs.* | *Ratio pred./obs.* | *Pull (pred-obs)/error* | *KS test* |\n", DPHI_CUT, r_sb_cut.str().c_str(), DPHI_CUT, r_sb_cut.str().c_str(), DPHI_CUT, DPHI_CUT);
      else if (iMethod==1) printf("| *Sample* | *A%s (%s, <2 tag)* | *B%s (R>%1.1f, <2 tag)* | *C%s (%s, 2 tag)* | *D%s = B%s*C%s/A%s pred.* | *D%s (R>%1.1f, 2 tag) obs.* | *Ratio pred./obs.* | *Pull (pred-obs)/error* | *KS test* |\n", prime, r_sb_cut.str().c_str(), prime, R_CUT, prime, r_sb_cut.str().c_str(), prime, prime, prime, prime, prime, R_CUT);
    }
    TH1D *h_side_sum, *h_signal_sum;
    for (size_t iSample = 0; iSample<samples[iMethod].size(); ++iSample)  {
      std::string canname = 
	iMethod==0 ? std::string("DPhiBins")+(ABCD_prime ? "/RBins_0To1HadTop_" : "/RBins_2HadTop_")+samples[iMethod][iSample] :
	iMethod==1 ? std::string("RFine/Tau32Cuts_")+(ABCD_prime ? "Fail" : "Pass")+"DPhiCut_"+samples[iMethod][iSample] :
	iMethod==2 ? std::string("RFine/Tau32Cuts_")+(ABCD_prime ? "Fail" : "Pass")+"DPhiCut_Background" :
	iMethod==3 ? std::string("RFine/Tau32Cuts_")+(ABCD_prime ? "Fail" : "Pass")+"DPhiCut_"+samples[iMethod][iSample] : "";
      TCanvas *can = (TCanvas*)(f->Get(canname.c_str()));
      can = (TCanvas*)can->Clone();
      can->Draw();
      TH1D *h_side = (TH1D*)can->GetListOfPrimitives()->At(i_h_side[iMethod]);
      TH1D *h_signal = (TH1D*)can->GetListOfPrimitives()->At(i_h_signal[iMethod]);
      // Simulate different cross section by scaling a certain background
      if (iMethod==1) {
        TH1D *h_side_temp_scaled = (TH1D*)h_side->Clone(); h_side_temp_scaled->Scale(scale_factors[iSample]);
        TH1D *h_signal_temp_scaled = (TH1D*)h_signal->Clone(); h_signal_temp_scaled->Scale(scale_factors[iSample]);
        if (iSample==0) {
          h_side_sum = h_side_temp_scaled;
          h_signal_sum = h_signal_temp_scaled;
        } else {
          h_side_sum->Add(h_side_temp_scaled);
          h_signal_sum->Add(h_signal_temp_scaled);
        }
      } else if (iMethod==2) {
        h_side = h_side_sum;
        h_signal = h_signal_sum;
      }
      TH1D *h_pred =(TH1D*)h_side->Clone();
      if (iMethod!=0&&rebin>1) { h_side->Rebin(rebin); h_signal->Rebin(rebin); h_pred->Rebin(rebin); }
      TLegend *leg = (TLegend*)can->GetListOfPrimitives()->At(can->GetListOfPrimitives()->GetEntries()-1);
      leg->SetX1(0.35); leg->SetX2(0.65); leg->SetY1(0.6);
      
      // Add ratio plot
      int y1 = 350;
      int y2 = 150;
      int mid2 = 10;
      can->Divide(1,2);
      // Pad 1 (80+500+20 x 40+500)
      TVirtualPad* p = can->cd(1);
      p->SetPad(0,(y2+60+mid2)/(y1+y2+100.0+mid2),1,1);
      p->SetTopMargin(40.0/(y1+40));
      p->SetBottomMargin(0);
      p->SetRightMargin(0.05);
      p->SetLogy(1);
      h_side->GetYaxis()->SetRangeUser(1.00001e-4,1e4);
      h_side->Draw("HIST");
      h_signal->Draw("SAMEHISTE1");
      leg->Draw();
      // Pad 2 (80+500+20 x 200+60)
      p = can->cd(2);
      p->SetGrid(0,1);
      p->SetPad(0,0,1,(y2+60+mid2)/(y1+y2+100.0+mid2));
      p->SetTopMargin(((float)mid2)/(y2+60+mid2));
      p->SetBottomMargin(60.0/(y2+60+mid2));
      p->SetRightMargin(0.05);
      TH1D* ratio = (TH1D*)h_signal->Clone();
      TH1D* div = (TH1D*)h_side->Clone();
      //ratio->Scale(1/ratio->GetSumOfWeights());
      double sum_bins_ratio = iMethod==0 ? ratio->Integral():
	ratio->Integral(ratio->FindBin(R_CUT_LOW),ratio->FindBin(Rranges_ABCD[iMethod][3]));
      ratio->Scale(1/sum_bins_ratio);
      ratio->SetTitleSize(32.0/(y2+60+mid2),"xyz");
      ratio->SetLabelSize(20.0/(y2+60+mid2),"xyz");
      //ratio->Scale(1/div->GetSumOfWeights());
      double sum_bins_div = iMethod==0 ? div->Integral():
	div->Integral(div->FindBin(R_CUT_LOW),div->FindBin(Rranges_ABCD[iMethod][3]));
      div->Scale(1/sum_bins_div);
      ratio->Divide(div);
      //ratio->GetYaxis()->SetRangeUser(0,2);
      ratio->GetXaxis()->SetTitleOffset(0.7);
      ratio->GetYaxis()->SetNdivisions(305);
      ratio->GetYaxis()->SetTitle("Ratio (Norm.)");
      ratio->GetYaxis()->SetTitleOffset(0.4);
      ratio->SetTitleSize(24.0/(y2+60+mid2),"y");
      ratio->SetTitle("");
      ratio->SetMarkerStyle(20);
      ratio->SetMarkerColor(1);
      ratio->SetLineColor(1);
      ratio->GetYaxis()->SetRangeUser(0,4);
      ratio->Draw("PE1");
      TLine* l = new TLine(ratio->GetXaxis()->GetXmin(), 1, ratio->GetXaxis()->GetXmax(), 1);
      l->SetLineWidth(2);
      //l->SetLineColor(2);
      l->SetLineStyle(2);
      l->Draw();
      gPad->Update();
      // Fit ratio
      //TF1 *fit_ratio;
      //if (iMethod==1) {
      //  fit_ratio = new TF1("fit_ratio","pol0", Rranges_ABCD[iMethod][0], Rranges_ABCD[iMethod][1]);
      //  fit_ratio->SetLineColor(1);
      //  ratio->Fit("fit_ratio","RE");
      //  fit_ratio->SetRange(Rranges_ABCD[iMethod][0], Rranges_ABCD[iMethod][2]);
      //  fit_ratio->Draw("SAME");
      //}
      p = can->cd(1);
      
      // calculate integrals
      double integral[2][2] = { { 0, 0 }, { 0, 0 } };
      double integral_error[2][2] = { { 0, 0 }, { 0, 0 } };
      double nevt[2][2] = { { 0, 0 }, { 0, 0 } };
      //std::cout<<samples[iMethod][iSample]<<":"<<std::endl;
      for (int i=0; i<2; ++i) {
        for (int bin=1; bin<=h_side->GetNbinsX(); ++bin) {
          if (h_signal->GetXaxis()->GetBinLowEdge(bin)>=Rranges_ABCD[iMethod][i*2] && 
              h_signal->GetXaxis()->GetBinUpEdge(bin)<=Rranges_ABCD[iMethod][i*2+1]) {
	    //std::cout<<bin<<"="<<h_side->GetBinCenter(bin);
	    //if (i==0) std::cout<<" in, ";
	    //else std::cout<<" out, ";
            double c0 = h_side->GetBinContent(bin), c1 = h_signal->GetBinContent(bin);
            double e0 = h_side->GetBinError(bin),   e1 = h_signal->GetBinError(bin);
            //std::cout<<h_signal->GetBinError(bin)<<" "<<sqrt(c1*weight[iSample])<<std::endl;
            if (baderror&&iMethod==1) {
              e0 = sqrt(c0*weight[iSample]);
              e1 = sqrt(c1*weight[iSample]);
            }
            nevt[0][i] += (int)(c0*c0/(e0*e0) + 0.5);
            nevt[1][i] += (int)(c1*c1/(e1*e1) + 0.5);
            integral[0][i] += c0;
            integral[1][i] += c1;
            //if (iMethod==1) { // weight bin by projected ratio (correction)
            //  double bincent = h_signal->GetXaxis()->GetBinLowEdge(bin);
            //  integral[0][1] *= fit_ratio->Eval(bincent);
            //}
            integral_error[0][i] += e0*e0;
            integral_error[1][i] += e1*e1;
            //if (iSample==0&&e1>0) std::cout<<bin<<" "<<c1<<" +- "<<e1*e1<<" nevt = "<<((int)(c1*c1/(e1*e1) + 0.5))<<std::endl;
          }
        }
        //if (iSample==1&&i==1) std::cout<<integral[1][i]<<" +- "<<integral_error[1][i]<<std::endl;
        integral_error[0][i] = sqrt(integral_error[0][i]);
        integral_error[1][i] = sqrt(integral_error[1][i]);
      }
      //std::cout<<nevt[1][1]<<std::endl;
      
      // predict yields using 2 methods (ABCD and constrained R-shape fit method combined)
      // ABCD method
      double a = integral[0][0], b = integral[0][1], c = integral[1][0], d = integral[1][1];
      double a_err = integral_error[0][0], b_err = integral_error[0][1], c_err = integral_error[1][0], d_err = integral_error[1][1];
      // Calculate error
      // z = x / y -> z_err = sqrt( (x*x*y_err*y_err + y*y*x_err*x_err)/(y*y*y*y) )
      // z = x * y -> z_err = sqrt ( x*x*y_err*y_err + y*y*x_err*x_err )
      double c_per_a_err = sqrt((c*c*a_err*a_err + a*a*c_err*c_err)/(a*a*a*a));
      double d_abcd = b * (c/a), d_abcd_err = sqrt(b*b*c_per_a_err*c_per_a_err + (c/a)*(c/a)*b_err*b_err);
      double d_nevt = nevt[1][1];
      double d_ratio = d_abcd / d;
      double d_ratio_err = sqrt((d_err/d)*(d_err/d) + (d_abcd_err/d_abcd)*(d_abcd_err/d_abcd))*d_ratio;
      double d_pull = (d_abcd-d)/sqrt(d_abcd_err*d_abcd_err + d_err*d_err);
      // Scaled plot
      h_pred->Scale(c/a);
      h_pred->SetLineColor(1);
      h_pred->SetLineStyle(2);
      h_pred->Draw("SAMEHIST");
      leg->AddEntry(h_pred, "Prediction (ABCD)", "l");
      
      double fit_integral[2][2], fit_integral_error[2][2], d_fit_comb = 0, d_fit_comb_err = 0;
      if (iMethod==1) {
	// Fit in the full range of NTop Sideband
	// Do fitting and calculate integrals
	TF1 *fit_side = new TF1("NTopSide_fit","exp([0]+[1]*x)", iMethod==2 ? 0.2 : sideband_fit_low_range[iSample], Rranges_ABCD[iMethod][3]);
        fit_side->SetLineColor(h_side->GetLineColor());
        h_side->Fit("NTopSide_fit","QRE");
        //fit_side->Draw("SAME");
        double Rranges_ACfit[3] = { sideband_fit_low_range[iSample], Rranges_ABCD[iMethod][2], Rranges_ABCD[iMethod][3] };
        for (int i=0; i<2; ++i) {
          fit_integral[0][i] = fit_side->Integral(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1);
          fit_integral_error[0][i] = fit_side->IntegralError(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1);
        }
        double par0 = fit_side->GetParameter(0), par0_error = fit_side->GetParError(0);
        double par1 = fit_side->GetParameter(1), par1_error = fit_side->GetParError(1);
        double par1min, par1max; fit_side->GetParLimits(1, par1min, par1max);
	
        // Fit in the Signal region
        // Fitting in sideband, get B area under curve and scale by C/A
        TF1 *fit_signal = new TF1("NTopSignal_RSide_fit","exp([0]+[1]*x)", Rranges_ACfit[0], Rranges_ABCD[iMethod][3]);
        fit_signal->SetLineColor(h_signal->GetLineColor());
        //fit_signal->SetParameter(1, par1); 
        //fit_signal->SetParLimits(1, par1min, par1max);
        h_signal->Fit("NTopSignal_RSide_fit","QREB");
        //fit_signal->Draw("SAME");
        for (int i=0; i<2; ++i) {
          fit_integral[1][i] = fit_signal->Integral(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1);
          fit_integral_error[1][i] = fit_signal->IntegralError(Rranges_ACfit[i], Rranges_ACfit[i+1])/h_signal->GetXaxis()->GetBinWidth(1);
        }
        d_fit_comb = fit_integral[0][1] * (c/a);
        d_fit_comb_err = sqrt(fit_integral[0][1]*fit_integral[0][1]*c_per_a_err*c_per_a_err + (c/a)*(c/a)*fit_integral_error[0][1]*fit_integral_error[0][1]);
        TF1 *fit_pred = new TF1("Predicted_fit","exp([0]+[1]*x)", Rranges_ACfit[0], Rranges_ACfit[2]);
        fit_pred->SetLineColor(1);
        fit_pred->SetLineStyle(2);
        fit_pred->FixParameter(0, par0+std::log(c/a)); 
        fit_pred->FixParameter(1, par1); 
        h_signal->Fit("Predicted_fit","QREB+");
        //fit_pred->Draw("SAME");
      }
      // Save plot
      if (iMethod==3) samples[iMethod][iSample] = "T1tttt";
      std::string name = samples[iMethod][iSample];
      if (iMethod==2) name = "AllBkg";
      if (save)	can->SaveAs((out+"BkgEst/ABCD_closure_"+name+"."+ext).c_str());
      
      // Check compatibility of prediction to observed distribution
      double ks_test = h_pred->KolmogorovTest(h_signal);
      
      if (iMethod==1) {
	sum_a += a; sum_b += b; sum_c += c; sum_d += d;
	sum_a_err += a_err*a_err; sum_b_err += b_err*b_err; sum_c_err += c_err*c_err; sum_d_err += d_err*d_err;
	sum_d_abcd += d_abcd; sum_d_abcd_err += d_abcd_err*d_abcd_err;
	sum_b_fit += fit_integral[0][1]; sum_b_fit_err += fit_integral_error[0][1]*fit_integral_error[0][1];
	sum_d_fit += fit_integral[1][1]; sum_d_fit_err += fit_integral_error[1][1]*fit_integral_error[1][1];
	sum_d_fit_comb += d_fit_comb; sum_d_fit_comb_err += d_fit_comb_err*d_fit_comb_err;
	sum_d_nevt += d_nevt;
	//printf("  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |\n", d_fit_comb, d_fit_comb_err, d_abcd, d_abcd_err, d, d_err, d_ratio, d_ratio_err);
      }
      if (latex) {
	printf("%s &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &", samples[iMethod][iSample].c_str(), a, a_err, b, b_err, c, c_err);
	printf("  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  %.2f &  %.2f \\\\\n", d_abcd, d_abcd_err, d, d_err, d_ratio, d_ratio_err, d_pull, ks_test);
      } else {
	printf("| %s |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |", samples[iMethod][iSample].c_str(), a, a_err, b, b_err, c, c_err);
	printf("  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f |  %.2f |\n", d_abcd, d_abcd_err, d, d_err, d_ratio, d_ratio_err, d_pull, ks_test);
      }
      // Combining best methods
      if ((iMethod==0&&iSample==0)||(iMethod==1&&iSample!=0)) {
	comb_d_abcd += d_abcd; comb_d += d; comb_d_abcd_err += d_abcd_err*d_abcd_err; comb_d_err += d_err*d_err;
      }
    }
    if (iMethod==1) {
      sum_a_err = sqrt(sum_a_err); sum_b_err = sqrt(sum_b_err); sum_c_err = sqrt(sum_c_err); sum_d_err = sqrt(sum_d_err);
      sum_b_fit_err = sqrt(sum_b_fit_err); sum_d_fit_err = sqrt(sum_d_fit_err); sum_d_fit_comb_err = sqrt(sum_d_fit_comb_err);
      double sum_d_ratio = sum_d_abcd / sum_d;
      double sum_d_ratio_err = sqrt((sum_d_err/sum_d)*(sum_d_err/sum_d) + (sum_d_abcd_err/sum_d_abcd)*(sum_d_abcd_err/sum_d_abcd))*sum_d_ratio;
      double sum_d_pull = (sum_d_abcd-sum_d)/sqrt(sum_d_abcd_err*sum_d_abcd_err + sum_d_err*sum_d_err);
      if (latex) {
	printf("\\hline\n");
	printf("Sum Bkg. &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &", sum_a, sum_a_err, sum_b, sum_b_err, sum_c, sum_c_err);
	printf("  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  %.2f & \\\\\n", sum_d_abcd, sum_d_abcd_err, sum_d, sum_d_err, sum_d_ratio, sum_d_ratio_err, sum_d_pull);
      } else {
	//printf("| Sum Bkg.|  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |", sum_a, sum_a_err, sum_b_fit, sum_b_fit_err, sum_b, sum_b_err, sum_c, sum_c_err);
	printf("| Sum Bkg.|  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |", sum_a, sum_a_err, sum_b, sum_b_err, sum_c, sum_c_err);
	//printf("  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |\n", sum_d_fit_comb, sum_d_fit_comb_err, sum_d_abcd, sum_d_abcd_err, sum_d, sum_d_err, sum_d_ratio, sum_d_ratio_err);
	printf("  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f |  - |\n", sum_d_abcd, sum_d_abcd_err, sum_d, sum_d_err, sum_d_ratio, sum_d_ratio_err, sum_d_pull);
      }
    } else if (iMethod==2&&samples[0].size()) {
      double comb_d_ratio = comb_d_abcd / comb_d;
      double comb_d_ratio_err = sqrt((comb_d_err/comb_d)*(comb_d_err/comb_d) + (comb_d_abcd_err/comb_d_abcd)*(comb_d_abcd_err/comb_d_abcd))*comb_d_ratio;
      double comb_d_pull = (comb_d_abcd-comb_d)/sqrt(comb_d_abcd_err*comb_d_abcd_err + comb_d_err*comb_d_err);
      if (latex) {
	printf("\\hline\n");
	printf("\\hline\n");
	printf("Combined Bkg. & & & &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  $%.2f \\pm %.2f$ &  %.2f & \\\\\n", comb_d_abcd, comb_d_abcd_err, comb_d, comb_d_err, comb_d_ratio, comb_d_ratio_err, comb_d_pull);
	printf("\\hline\n");
      } else {
	printf("| Combined Bkg.| | | |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f +- %.2f |  %.2f | - |\n", comb_d_abcd, comb_d_abcd_err, comb_d, comb_d_err, comb_d_ratio, comb_d_ratio_err, comb_d_pull);
      }
    }
  }
  if (latex) {
    printf("\\hline\n");
    printf("\\end{tabular}\n");
    printf("\\end{center}\n");
    printf("\\end{table*}\n");
  }

  if (save) gApplication->Terminate();
}