/// Generates a small-world graph using the Watts-Strogatz model.
/// We assume a circle where each node creates links to NodeOutDeg other nodes. 
/// This way at the end each node is connected to 2*NodeOutDeg other nodes.
/// See: Collective dynamics of 'small-world' networks. Watts and Strogatz.
/// URL: http://research.yahoo.com/files/w_s_NATURE_0.pdf
PUNGraph GenSmallWorld(const int& Nodes, const int& NodeOutDeg, const double& RewireProb, TRnd& Rnd) {
  THashSet<TIntPr> EdgeSet(Nodes*NodeOutDeg);
  
  IAssertR(Nodes > NodeOutDeg, TStr::Fmt("Insufficient nodes for out degree, %d!", NodeOutDeg));
  for (int node = 0; node < Nodes; node++) {
    const int src = node;
    for (int edge = 1; edge <= NodeOutDeg; edge++) {
      int dst = (node+edge) % Nodes;      // edge to next neighbor
      if (Rnd.GetUniDev() < RewireProb) { // random edge
        dst = Rnd.GetUniDevInt(Nodes);
        while (dst == src || EdgeSet.IsKey(TIntPr(src, dst))) {
          dst = Rnd.GetUniDevInt(Nodes); }
      }
      EdgeSet.AddKey(TIntPr(src, dst));
    }
  }
  PUNGraph GraphPt = TUNGraph::New();
  TUNGraph& Graph = *GraphPt;
  Graph.Reserve(Nodes, EdgeSet.Len());
  int node;
  for (node = 0; node < Nodes; node++) {
    IAssert(Graph.AddNode(node) == node);
  }
  for (int edge = 0; edge < EdgeSet.Len(); edge++) {
    Graph.AddEdge(EdgeSet[edge].Val1, EdgeSet[edge].Val2);
  }
  Graph.Defrag();
  return GraphPt;
}
PBPGraph GenRndBipart(const int& LeftNodes, const int& RightNodes, const int& Edges, TRnd& Rnd) {
  PBPGraph G = TBPGraph::New();
  for (int i = 0; i < LeftNodes; i++) { G->AddNode(i, true); }
  for (int i = 0; i < RightNodes; i++) { G->AddNode(LeftNodes+i, false); }
  IAssertR(Edges <= LeftNodes*RightNodes, "Too many edges in the bipartite graph!");
  for (int edges = 0; edges < Edges; ) {
    const int LNId = Rnd.GetUniDevInt(LeftNodes);
    const int RNId = LeftNodes + Rnd.GetUniDevInt(RightNodes);
    if (G->AddEdge(LNId, RNId) != -2) { edges++; } // is new edge
  }
  return G;
}
THash<TInt, TInt> * choose_seeds (const PUNGraph g, const int num, const int * infection_state, const int infect) {

  THash<TInt, TInt> choices; 
  THash<TInt, TUNGraph::TNode> nodes;
  THash<TInt, TInt> * output = new THash<TInt, TInt> ();
  TInt weight = 0;
  TInt num_total = 0;
  for (TUNGraph::TNodeI n = g->BegNI(); n != g->EndNI(); n++) {
    //cout << "nodeID: " << n.GetId() << ",\tStatus: " << infection_state[n.GetId () - 1] << endl;
    if (infection_state[n.GetId () - 1] != infect) {
      weight += n.GetDeg ();
      choices.AddDat (num_total, weight);
      nodes.AddDat (num_total, n.GetId());
      num_total++;
    }
  }
  //  TRnd random ((int) time(NULL));
  // TRnd random (0);
  TInt num_chosen = 0;
  while (num_chosen < num) {
    TInt choice = my_random.GetUniDevInt (weight);
    TUNGraph::TNode node_choice = nodes[find (choice, choices, 0,  num_total-1)];
    if (!output->IsKey(node_choice.GetId())) {
      num_chosen++;
      // cout << node_choice.GetId () << "\n";
      output->AddDat(node_choice.GetId (), 1);
    }
  }
  return output;
}
Beispiel #4
0
int TBPGraph::GetRndNId(TRnd& Rnd) { 
  const int NNodes = GetNodes();
  if (Rnd.GetUniDevInt(NNodes) < GetLNodes()) {
    return GetRndLNId(Rnd); }
  else {
    return GetRndRNId(Rnd); }
}
/// Generates a random undirect graph with a given degree sequence DegSeqV.
/// Configuration model operates as follows. For each node N, of degree
/// DeqSeqV[N] we create DeqSeqV[N] spokes (half-edges). We then pick two
/// spokes at random, and connect the spokes endpoints. We continue this
/// process until no spokes are left. Generally this generates a multigraph
/// (i.e., spokes out of same nodes can be chosen multiple times).We ignore
/// (discard) self-loops and multiple edges. Thus, the generated graph will
/// only approximate follow the given degree sequence. The method is very fast!
PUNGraph GenConfModel(const TIntV& DegSeqV, TRnd& Rnd) {
  const int Nodes = DegSeqV.Len();
  PUNGraph GraphPt = TUNGraph::New();
  TUNGraph& Graph = *GraphPt;
  Graph.Reserve(Nodes, -1);
  TIntV NIdDegV(DegSeqV.Len(), 0);
  int DegSum=0, edges=0;
  for (int node = 0; node < Nodes; node++) {
    Graph.AddNode(node);
    for (int d = 0; d < DegSeqV[node]; d++) { NIdDegV.Add(node); }
    DegSum += DegSeqV[node];
  }
  NIdDegV.Shuffle(Rnd);
  TIntPrSet EdgeH(DegSum/2); // set of all edges, is faster than graph edge lookup
  if (DegSum % 2 != 0) {
    printf("Seg seq is odd [%d]: ", DegSeqV.Len());
    for (int d = 0; d < TMath::Mn(100, DegSeqV.Len()); d++) { printf("  %d", (int)DegSeqV[d]); }
    printf("\n");
  }
  int u=0, v=0;
  for (int c = 0; NIdDegV.Len() > 1; c++) {
    u = Rnd.GetUniDevInt(NIdDegV.Len());
    while ((v = Rnd.GetUniDevInt(NIdDegV.Len())) == u) { }
    if (u > v) { Swap(u, v); }
    const int E1 = NIdDegV[u];
    const int E2 = NIdDegV[v];
    if (v == NIdDegV.Len()-1) { NIdDegV.DelLast(); } 
    else { NIdDegV[v] = NIdDegV.Last();  NIdDegV.DelLast(); }
    if (u == NIdDegV.Len()-1) { NIdDegV.DelLast(); } 
    else { NIdDegV[u] = NIdDegV.Last();  NIdDegV.DelLast(); }
    if (E1 == E2 || EdgeH.IsKey(TIntPr(E1, E2))) { continue; }
    EdgeH.AddKey(TIntPr(E1, E2));
    Graph.AddEdge(E1, E2);
    edges++;
    if (c % (DegSum/100+1) == 0) { printf("\r configuration model: iter %d: edges: %d, left: %d", c, edges, NIdDegV.Len()/2); }
  }
  printf("\n");
  return GraphPt;
}
Beispiel #6
0
void TAGM::RndConnectInsideCommunity(PUNGraph& Graph, const TIntV& CmtyV, const double& Prob, TRnd& Rnd){
	int CNodes = CmtyV.Len();
	int CEdges = Rnd.GetBinomialDev(Prob,CNodes*(CNodes-1)/2);
	THashSet<TIntPr> NewEdgeSet(CEdges);
	for (int edge = 0; edge < CEdges; ) {
		int SrcNId = CmtyV[Rnd.GetUniDevInt(CNodes)];
		int DstNId = CmtyV[Rnd.GetUniDevInt(CNodes)];
		if(SrcNId>DstNId){Swap(SrcNId,DstNId);}
		if (SrcNId != DstNId && !NewEdgeSet.IsKey(TIntPr(SrcNId,DstNId))) { // is new edge
			NewEdgeSet.AddKey(TIntPr(SrcNId,DstNId));
			Graph->AddEdge(SrcNId,DstNId);
			edge++; 
		} 
	}
}
PGraph GenRndGnm(const int& Nodes, const int& Edges, const bool& IsDir, TRnd& Rnd) {
  PGraph GraphPt = PGraph::New();
  typename PGraph::TObj& Graph = *GraphPt;
  Graph.Reserve(Nodes, Edges);
  for (int node = 0; node < Nodes; node++) {
    IAssert(Graph.AddNode(node) == node);
  }
  for (int edge = 0; edge < Edges; ) {
    const int SrcNId = Rnd.GetUniDevInt(Nodes);
    const int DstNId = Rnd.GetUniDevInt(Nodes);
    if (SrcNId != DstNId && Graph.AddEdge(SrcNId, DstNId) != -2) {
      if (! IsDir) { Graph.AddEdge(DstNId, SrcNId); }
      edge++;
    }
  }
  return GraphPt;
}
/// Generates a random scale-free graph using the Geometric Preferential
/// Attachment model by Flexman, Frieze and Vera.
/// See: A geometric preferential attachment model of networks by Flexman,
/// Frieze and Vera. WAW 2004.
/// URL: http://math.cmu.edu/~af1p/Texfiles/GeoWeb.pdf
PUNGraph GenGeoPrefAttach(const int& Nodes, const int& OutDeg, const double& Beta, TRnd& Rnd) {
  PUNGraph G = TUNGraph::New(Nodes, Nodes*OutDeg);
  TFltTrV PointV(Nodes, 0);
  TFltV ValV;
  // points on a sphere of radius 1/(2*pi)
  const double Rad = 0.5 * TMath::Pi;
  for (int i = 0; i < Nodes; i++) {
    TSnapDetail::GetSphereDev(3, Rnd, ValV);
    PointV.Add(TFltTr(Rad*ValV[0], Rad*ValV[1], Rad*ValV[2]));
  }
  const double R2 = TMath::Sqr(log((double) Nodes) / (pow((double) Nodes, 0.5-Beta)));
  TIntV DegV, NIdV;
  int SumDeg;
  for (int t = 0; t < Nodes; t++) {
    const int pid = t;
    const TFltTr& P1 = PointV[pid];
    // add node
    if (! G->IsNode(pid)) { G->AddNode(pid); }
    // find neighborhood
    DegV.Clr(false);  NIdV.Clr(false);  SumDeg=0;
    for (int p = 0; p < t; p++) {
      const TFltTr& P2 = PointV[p];
      if (TMath::Sqr(P1.Val1-P2.Val1)+TMath::Sqr(P1.Val2-P2.Val2)+TMath::Sqr(P1.Val3-P2.Val3) < R2) {
        NIdV.Add(p);
        DegV.Add(G->GetNI(p).GetDeg()+1);
        SumDeg += DegV.Last();
      }
    }
    // add edges
    for (int m = 0; m < OutDeg; m++) {
      const int rnd = Rnd.GetUniDevInt(SumDeg);
      int sum = 0, dst = -1;
      for (int s = 0; s < DegV.Len(); s++) {
        sum += DegV[s];
        if (rnd < sum) { dst=s;  break; }
      }
      if (dst != -1) {
        G->AddEdge(pid, NIdV[dst]);
        SumDeg -= DegV[dst];
        NIdV.Del(dst);  DegV.Del(dst);
      }
    }
  }
  return G;
}
  THash <TInt, TInt> * choose (const TInt & population_size, const TInt & sample_size) {

    THash <TInt, TInt> * hits = new THash <TInt, TInt> ();
    //TRnd random ((int)time(NULL));
    //TRnd random (0);
    TInt min = TMath::Mn<TInt> (population_size, sample_size);

    for (int i = 0; i < min; i++) {

      TInt chosen = my_random.GetUniDevInt (population_size - i);
      if (hits->IsKey (chosen)) {

        hits->AddDat((*hits)(chosen), population_size - i - 1);
      }
      hits->AddDat(chosen, population_size - i - 1);
    }  
    return hits; 
  }
Beispiel #10
0
/// rewire bipartite community affiliation graphs
void TAGMUtil::RewireCmtyNID(THash<TInt,TIntV >& CmtyVH, TRnd& Rnd) {
    THash<TInt,TIntV > NewCmtyVH(CmtyVH.Len());
    TIntV NDegV;
    TIntV CDegV;
    for (int i = 0; i < CmtyVH.Len(); i++) {
        int CID = CmtyVH.GetKey(i);
        for (int j = 0; j < CmtyVH[i].Len(); j++) {
            int NID = CmtyVH[i][j];
            NDegV.Add(NID);
            CDegV.Add(CID);
        }
    }
    TIntPrSet CNIDSet(CDegV.Len());
    int c=0;
    while (c++ < 15 && CDegV.Len() > 1) {
        for (int i = 0; i < CDegV.Len(); i++) {
            int u = Rnd.GetUniDevInt(CDegV.Len());
            int v = Rnd.GetUniDevInt(NDegV.Len());
            if (CNIDSet.IsKey(TIntPr(CDegV[u], NDegV[v]))) {
                continue;
            }
            CNIDSet.AddKey(TIntPr(CDegV[u], NDegV[v]));
            if (u == CDegV.Len() - 1) {
                CDegV.DelLast();
            }  else {
                CDegV[u] = CDegV.Last();
                CDegV.DelLast();
            }
            if ( v == NDegV.Len() - 1) {
                NDegV.DelLast();
            }  else {
                NDegV[v] = NDegV.Last();
                NDegV.DelLast();
            }
        }
    }
    for (int i = 0; i < CNIDSet.Len(); i++) {
        TIntPr CNIDPr = CNIDSet[i];
        IAssert(CmtyVH.IsKey(CNIDPr.Val1));
        NewCmtyVH.AddDat(CNIDPr.Val1);
        NewCmtyVH.GetDat(CNIDPr.Val1).Add(CNIDPr.Val2);
    }
    CmtyVH = NewCmtyVH;
}
Beispiel #11
0
/// Generates a random scale-free network using the Copying Model.
/// The generating process operates as follows: Node u is added to a graph, it
/// selects a random node v, and with prob Beta it links to v, with 1-Beta 
/// links u links to neighbor of v. The power-law degree exponent is -1/(1-Beta).
/// See: Stochastic models for the web graph.
/// Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, Upfal.
/// URL: http://snap.stanford.edu/class/cs224w-readings/kumar00stochastic.pdf
PNGraph GenCopyModel(const int& Nodes, const double& Beta, TRnd& Rnd) {
  PNGraph GraphPt = TNGraph::New();
  TNGraph& Graph = *GraphPt;
  Graph.Reserve(Nodes, Nodes);
  const int startNId = Graph.AddNode();
  Graph.AddEdge(startNId, startNId);
  for (int n = 1; n < Nodes; n++) {
    const int rnd = Graph.GetRndNId();
    const int NId = Graph.AddNode();
    if (Rnd.GetUniDev() < Beta) {
      Graph.AddEdge(NId, rnd); }
    else {
      const TNGraph::TNodeI NI = Graph.GetNI(rnd);
      const int rnd2 = Rnd.GetUniDevInt(NI.GetOutDeg());
      Graph.AddEdge(NId, NI.GetOutNId(rnd2));
    }
  }
  return GraphPt;
}
Beispiel #12
0
void TrainModel(TVVec<TInt, int64>& WalksVV, int& Dimensions, int& WinSize, int& Iter, bool& Verbose,
   TIntV& KTable, TFltV& UTable, int64& WordCntAll, TFltV& ExpTable, double& Alpha,
   int64 CurrWalk, TRnd& Rnd, TVVec<TFlt, int64>& SynNeg, TVVec<TFlt, int64>& SynPos)  {
  TFltV Neu1V(Dimensions);
  TFltV Neu1eV(Dimensions);
  int64 AllWords = WalksVV.GetXDim()*WalksVV.GetYDim();
  TIntV WalkV(WalksVV.GetYDim());
  for (int j = 0; j < WalksVV.GetYDim(); j++) { WalkV[j] = WalksVV(CurrWalk,j); }
  for (int64 WordI=0; WordI<WalkV.Len(); WordI++) {
    if ( WordCntAll%10000 == 0 ) {
      if ( Verbose ) {
        printf("\rLearning Progress: %.2lf%% ",(double)WordCntAll*100/(double)(Iter*AllWords));
        fflush(stdout);
      }
      Alpha = StartAlpha * (1 - WordCntAll / static_cast<double>(Iter * AllWords + 1));
      if ( Alpha < StartAlpha * 0.0001 ) { Alpha = StartAlpha * 0.0001; }
    }
    int64 Word = WalkV[WordI];
    for (int i = 0; i < Dimensions; i++) {
      Neu1V[i] = 0;
      Neu1eV[i] = 0;
    }
    int Offset = Rnd.GetUniDevInt() % WinSize;
    for (int a = Offset; a < WinSize * 2 + 1 - Offset; a++) {
      if (a == WinSize) { continue; }
      int64 CurrWordI = WordI - WinSize + a;
      if (CurrWordI < 0){ continue; }
      if (CurrWordI >= WalkV.Len()){ continue; }
      int64 CurrWord = WalkV[CurrWordI];
      for (int i = 0; i < Dimensions; i++) { Neu1eV[i] = 0; }
      //negative sampling
      for (int j = 0; j < NegSamN+1; j++) {
        int64 Target, Label;
        if (j == 0) {
          Target = Word;
          Label = 1;
        } else {
          Target = RndUnigramInt(KTable, UTable, Rnd);
          if (Target == Word) { continue; }
          Label = 0;
        }
        double Product = 0;
        for (int i = 0; i < Dimensions; i++) {
          Product += SynPos(CurrWord,i) * SynNeg(Target,i);
        }
        double Grad;                     //Gradient multiplied by learning rate
        if (Product > MaxExp) { Grad = (Label - 1) * Alpha; }
        else if (Product < -MaxExp) { Grad = Label * Alpha; }
        else { 
          double Exp = ExpTable[static_cast<int>(Product*ExpTablePrecision)+TableSize/2];
          Grad = (Label - 1 + 1 / (1 + Exp)) * Alpha;
        }
        for (int i = 0; i < Dimensions; i++) { 
          Neu1eV[i] += Grad * SynNeg(Target,i);
          SynNeg(Target,i) += Grad * SynPos(CurrWord,i);
        }
      }
      for (int i = 0; i < Dimensions; i++) {
        SynPos(CurrWord,i) += Neu1eV[i];
      }
    }
    WordCntAll++;
  }
}
Beispiel #13
0
TLSHash::EuclideanHash::EuclideanHash(TRnd &Gen, int Dim) {
  for (int j=0; j<Dim; j++) {
    Line.Add(Gen.GetNrmDev());
  }
  Line.Add(Gen.GetUniDevInt(Gap));
}
Beispiel #14
0
///Generate bipartite community affiliation from given power law coefficients for membership distribution and community size distribution.
void TAGMUtil::ConnectCmtyVV(TVec<TIntV>& CmtyVV, const TIntPrV& CIDSzPrV, const TIntPrV& NIDMemPrV, TRnd& Rnd) {
    const int Nodes = NIDMemPrV.Len(), Coms = CIDSzPrV.Len();
    TIntV NDegV,CDegV;
    TIntPrSet CNIDSet;
    TIntSet HitNodes(Nodes);
    THash<TInt,TIntV> CmtyVH;
    for (int i = 0; i < CIDSzPrV.Len(); i++) {
        for (int j = 0; j < CIDSzPrV[i].Val2; j++) {
            CDegV.Add(CIDSzPrV[i].Val1);
        }
    }
    for (int i = 0; i < NIDMemPrV.Len(); i++) {
        for (int j = 0; j < NIDMemPrV[i].Val2; j++) {
            NDegV.Add(NIDMemPrV[i].Val1);
        }
    }
    while (CDegV.Len() < (int) (1.2 * Nodes)) {
        CDegV.Add(CIDSzPrV[Rnd.GetUniDevInt(Coms)].Val1);
    }
    while (NDegV.Len() < CDegV.Len()) {
        NDegV.Add(NIDMemPrV[Rnd.GetUniDevInt(Nodes)].Val1);
    }
    printf("Total Mem: %d, Total Sz: %d\n",NDegV.Len(), CDegV.Len());
    int c=0;
    while (c++ < 15 && CDegV.Len() > 1) {
        for (int i = 0; i < CDegV.Len(); i++) {
            int u = Rnd.GetUniDevInt(CDegV.Len());
            int v = Rnd.GetUniDevInt(NDegV.Len());
            if (CNIDSet.IsKey(TIntPr(CDegV[u], NDegV[v]))) {
                continue;
            }
            CNIDSet.AddKey(TIntPr(CDegV[u], NDegV[v]));
            HitNodes.AddKey(NDegV[v]);
            if (u == CDegV.Len() - 1) {
                CDegV.DelLast();
            }
            else {
                CDegV[u] = CDegV.Last();
                CDegV.DelLast();
            }
            if (v == NDegV.Len() - 1) {
                NDegV.DelLast();
            }
            else {
                NDegV[v] = NDegV.Last();
                NDegV.DelLast();
            }
        }
    }
    //make sure that every node belongs to at least one community
    for (int i = 0; i < Nodes; i++) {
        int NID = NIDMemPrV[i].Val1;
        if (! HitNodes.IsKey(NID)) {
            CNIDSet.AddKey(TIntPr(CIDSzPrV[Rnd.GetUniDevInt(Coms)].Val1, NID));
            HitNodes.AddKey(NID);
        }
    }
    IAssert(HitNodes.Len() == Nodes);
    for (int i = 0; i < CNIDSet.Len(); i++) {
        TIntPr CNIDPr = CNIDSet[i];
        CmtyVH.AddDat(CNIDPr.Val1);
        CmtyVH.GetDat(CNIDPr.Val1).Add(CNIDPr.Val2);
    }
    CmtyVH.GetDatV(CmtyVV);
}