void ChangeResolutionAction::IncreaseFrequency(TimeFrequencyData &originalData, const TimeFrequencyData &changedData, bool restoreImage, bool restoreMask)
	{
		if(restoreImage)
		{
			size_t imageCount = originalData.ImageCount();
			if(imageCount != changedData.ImageCount())
				throw std::runtime_error("When restoring resolution in change resolution action, original data and changed data do not have the same number of images");
			for(size_t i=0;i<imageCount;++i)
			{
				Image2DCPtr image = changedData.GetImage(i);
				Image2DPtr newImage(new Image2D(image->EnlargeVertically(_frequencyDecreaseFactor, originalData.ImageHeight())));
				originalData.SetImage(i, newImage);
			}
		}
		if(restoreMask)
		{
			originalData.SetMask(changedData);
			size_t maskCount = originalData.MaskCount();
			for(size_t i=0;i<maskCount;++i)
			{
				Mask2DCPtr mask = changedData.GetMask(i);
				Mask2DPtr newMask = Mask2D::CreateUnsetMaskPtr(originalData.ImageWidth(), originalData.ImageHeight());
				newMask->EnlargeVerticallyAndSet(*mask, _frequencyDecreaseFactor);
				originalData.SetMask(i, newMask);
			}
		}
	}
	void ChangeResolutionAction::DecreaseFrequency(TimeFrequencyData &timeFrequencyData)
	{
		size_t imageCount = timeFrequencyData.ImageCount();
		for(size_t i=0;i<imageCount;++i)
		{
			Image2DCPtr image = timeFrequencyData.GetImage(i);
			Image2DPtr newImage = image->ShrinkVertically(_frequencyDecreaseFactor);
			timeFrequencyData.SetImage(i, newImage);
		}
		size_t maskCount = timeFrequencyData.MaskCount();
		for(size_t i=0;i<maskCount;++i)
		{
			Mask2DCPtr mask = timeFrequencyData.GetMask(i);
			Mask2DPtr newMask = mask->ShrinkVertically(_frequencyDecreaseFactor);
			timeFrequencyData.SetMask(i, newMask);
		}
	}
	void ChangeResolutionAction::DecreaseTimeWithMask(TimeFrequencyData &data)
	{
		size_t polCount = data.PolarisationCount();
		for(size_t i=0;i<polCount;++i)
		{
			TimeFrequencyData *polData = data.CreateTFDataFromPolarisationIndex(i);
			Mask2DCPtr mask = polData->GetSingleMask();
			for(unsigned j=0;j<polData->ImageCount();++j)
			{
				Image2DCPtr image = polData->GetImage(j);
				polData->SetImage(j, ThresholdTools::ShrinkHorizontally(_timeDecreaseFactor, image, mask));
			}
			delete polData;
		}
		size_t maskCount = data.MaskCount();
		for(size_t i=0;i<maskCount;++i)
		{
			Mask2DCPtr mask = data.GetMask(i);
			Mask2DPtr newMask = mask->ShrinkHorizontallyForAveraging(_timeDecreaseFactor);
			data.SetMask(i, newMask);
		}
	}
	void ChangeResolutionAction::DecreaseTime(TimeFrequencyData &timeFrequencyData)
	{
		if(_useMaskInAveraging)
		{
			DecreaseTimeWithMask(timeFrequencyData);
		}
		else {
			size_t imageCount = timeFrequencyData.ImageCount();
			for(size_t i=0;i<imageCount;++i)
			{
				Image2DCPtr image = timeFrequencyData.GetImage(i);
				Image2DPtr newImage(new Image2D(image->ShrinkHorizontally(_timeDecreaseFactor)));
				timeFrequencyData.SetImage(i, std::move(newImage));
			}
			size_t maskCount = timeFrequencyData.MaskCount();
			for(size_t i=0;i<maskCount;++i)
			{
				Mask2DCPtr mask = timeFrequencyData.GetMask(i);
				Mask2DPtr newMask(new Mask2D(mask->ShrinkHorizontally(_timeDecreaseFactor)));
				timeFrequencyData.SetMask(i, std::move(newMask));
			}
		}
	}
	void CalibratePassbandAction::calibrate(TimeFrequencyData& data) const
	{
		const size_t height = data.ImageHeight();
		std::vector<num_t> stddev(_steps);
		for(size_t step=0; step!=_steps; ++step)
		{
			const size_t startY = step*height/_steps, endY = (step+1)*height/_steps;
			std::vector<num_t> dataVector((1+endY-startY) * data.ImageWidth() * data.ImageCount());
			std::vector<num_t>::iterator vecIter = dataVector.begin();
			const Mask2DCPtr maskPtr = data.GetSingleMask();
			const Mask2D &mask = *maskPtr;
			for(size_t i=0; i!=data.ImageCount(); ++i)
			{
				const Image2D &image = *data.GetImage(i);
				for(size_t y=startY; y!=endY; ++y)
				{
					const num_t *inputPtr = image.ValuePtr(0, y);
					const bool *maskPtr = mask.ValuePtr(0, y);
					for(size_t x=0; x!=image.Width(); ++x)
					{
						if(!*maskPtr && std::isfinite(*inputPtr))
						{
							*vecIter = *inputPtr;
							++vecIter;
						}
						++inputPtr;
						++maskPtr;
					}
				}
			}
			dataVector.resize(vecIter - dataVector.begin());
			
			num_t mean;
			ThresholdTools::WinsorizedMeanAndStdDev<num_t>(dataVector, mean, stddev[step]);
		}
			
		for(size_t i=0; i!=data.ImageCount(); ++i)
		{
			const Image2D &image = *data.GetImage(i);
			Image2D *destImage = Image2D::CreateUnsetImage(image.Width(), image.Height());
			for(size_t step=0; step!=_steps; ++step)
			{
				const size_t startY = step*height/_steps, endY = (step+1)*height/_steps;
				float correctionFactor;
				if(stddev[step] == 0.0)
					correctionFactor = 0.0;
				else
					correctionFactor = 1.0 / stddev[step];
				const __m128 corrFact4 = _mm_set_ps(correctionFactor, correctionFactor, correctionFactor, correctionFactor);
				
				for(size_t y=startY; y!=endY; ++y)
				{
					const float *inputPtr = image.ValuePtr(0, y);
					float *destPtr = destImage->ValuePtr(0, y);
					
					for(size_t x=0;x<image.Width();x+=4)
					{
						_mm_store_ps(destPtr, _mm_mul_ps(corrFact4, _mm_load_ps(inputPtr)));
						inputPtr += 4;
						destPtr += 4;
					}
				}
			}
			data.SetImage(i, Image2DPtr(destImage));
		}
	}
	void SpatialCompositionAction::Perform(ArtifactSet &artifacts, ProgressListener &progress)
	{
		size_t imageCount = artifacts.ContaminatedData().ImageCount();
		std::vector<Image2DPtr> images(imageCount);
		for(size_t p=0;p<imageCount;++p)
			images[p] = Image2D::CreateZeroImagePtr(artifacts.ContaminatedData().ImageWidth(), artifacts.ContaminatedData().ImageHeight());

		std::string filename = artifacts.ImageSet()->File();
		SpatialMSImageSet set(filename);
		ImageSetIndex *index = set.StartIndex();
		size_t progressStep = 0, totalProgress = artifacts.ContaminatedData().ImageWidth() * artifacts.ContaminatedData().ImageHeight()/256;
		while(index->IsValid())
		{
			TimeFrequencyData *data = set.LoadData(*index);
			SpatialMatrixMetaData metaData(set.SpatialMetaData(*index));
			for(size_t p=0;p!=imageCount;++p)
			{
				switch(_operation)
				{
					case SumCrossCorrelationsOperation:
						images[p]->SetValue(metaData.TimeIndex(), metaData.ChannelIndex(), sumCrossCorrelations(data->GetImage(p)));
						break;
					case SumAutoCorrelationsOperation:
						images[p]->SetValue(metaData.TimeIndex(), metaData.ChannelIndex(), sumAutoCorrelations(data->GetImage(p)));
						break;
					case EigenvalueDecompositionOperation: {
						num_t value = eigenvalue(data->GetImage(p), data->GetImage(p+1));
						images[p]->SetValue(metaData.TimeIndex(), metaData.ChannelIndex(), value);
						images[p+1]->SetValue(metaData.TimeIndex(), metaData.ChannelIndex(), 0.0);
						++p;
						} break;
					case EigenvalueRemovalOperation: {
						std::pair<num_t, num_t> value = removeEigenvalue(data->GetImage(p), data->GetImage(p+1));
						images[p]->SetValue(metaData.TimeIndex(), metaData.ChannelIndex(), value.first);
						images[p+1]->SetValue(metaData.TimeIndex(), metaData.ChannelIndex(), value.second);
						++p;
						} break;
				}
			}
			delete data;
			index->Next();
			++progressStep;
			progress.OnProgress(*this, progressStep/256, totalProgress);
		}
		delete index;

		TimeFrequencyData newRevisedData = artifacts.RevisedData();
		for(size_t p=0;p<imageCount;++p)
			newRevisedData.SetImage(p, images[p]);
		
		newRevisedData.SetMask(artifacts.RevisedData());

		TimeFrequencyData *contaminatedData =
			TimeFrequencyData::CreateTFDataFromDiff(artifacts.ContaminatedData(), newRevisedData);
		contaminatedData->SetMask(artifacts.ContaminatedData());

		artifacts.SetRevisedData(newRevisedData);
		artifacts.SetContaminatedData(*contaminatedData);

		delete contaminatedData;

	}