Beispiel #1
0
// Iterate from an initial state
void DynSysModel::Iterate( NTuple& initial_state, size_t length, TimeSeries& result )
{
	// Make sure the result is empty
	result.clear();

	// Save the initial state as the first time series entry
	result.push_back( initial_state );

	mState = initial_state;
	NTuple next_state;
	PolyModelIter iter;

	size_t i,k;
	for( i = length-1; i > 0; --i )
	{
		k = 1;
		// For each polynomial;
		next_state.Reset();
		iter = mModel.begin();
		while( iter != mModel.end() )
		{
			// Evaluate the k'th polynomial at the current state
			//   to produce a new value for the k'th variable
			next_state.Assign( k, mModel[k-1].Evaluate( mState ) );

			// next polynomial
			++iter; ++k;
		}
		// Update the current state to be the newly compute state
		mState = next_state;
		result.push_back( next_state );
	}
}
Beispiel #2
0
// Iterate only the k'th variable with respect to the given reference time series
size_t DynSysModel::Iterate( TimeSeries& ref_series, size_t k, TimeSeries& result, size_t kov )
{
	// Make sure the result is empty
	result.clear();

	// Hamming distance for bit k
	size_t h = 0;

	TimeSeriesIter t_iter = ref_series.begin();

	// Empty series in => empty series out
	if( t_iter == ref_series.end() ) return h;

	// Save the initial state as the first state in the result
	mState = *t_iter;

	// Force the knockout variable to zero - no longer needed, corrected when file is read in
	// if( kov != 0 ) mState.Reset(kov);
	result.push_back( mState );

	bool f;
	while( true )
	{
		// Merge the next state from the time series with the function evaluation
		// (a) increment iterator and check for end of time series
		++t_iter;
		if( t_iter == ref_series.end() ) break;

		// Evaluate the k'th polynomial at the current state
		//   to produce a new value for the k'th variable for time i+1
		f = mModel[k-1].Evaluate( mState );

		// (b) assign value pointed to by iterator to mState (t[i+1])
		mState = *t_iter;

		// Force the knockout variable to zero - no longer needed, corrected when file is read in
		// if( kov != 0 ) mState.Reset(kov);

		// Accumulate Hamming Distance =  t'[i+1][k] - t[i+1][k]
		h += (mState[k] ^ f) ? 1 : 0;

		// (c) create t'[i+1] = t[i+1] with k'th element replaced by f(t'[i])
		mState.Assign( k, f );

		// Save t'[i+1]
		result.push_back( mState );
	}
	return h;
}
Beispiel #3
0
// Iterate from an initial state with the k'th function knocked out
void DynSysModel::KoIterate( NTuple& initial_state, size_t length, TimeSeries& result, size_t kov )
{
	// Make sure the result is empty
	result.clear();

	// Force k'th entry to zero in the initial state -  no longer needed, corrected when file is read in
	// NTuple state1 = initial_state;
	// state1.Reset( kov );

	// Save the initial state as the first time series entry
	result.push_back( initial_state );

	mState = initial_state;
	NTuple next_state;
	PolyModelIter iter;

	size_t i,k;
	for( i = length-1; i > 0; --i )
	{
		k = 1;
		// For each polynomial
		next_state.Reset();
		iter = mModel.begin();
		while( iter != mModel.end() )
		{
			// Force the knockout function result to zero
			if( k == kov )
			{
				next_state.Assign( k, 0 );
			}
			else
			{
				// Evaluate the k'th polynomial at the current state
				//   to produce a new value for the k'th variable
				next_state.Assign( k, mModel[k-1].Evaluate( mState ) );
			}

			// next polynomial
			++iter; ++k;
		}
		// Update the current state to be the newly compute state
		mState = next_state;
		result.push_back( next_state );
	}
}