TimeSeriesClassificationDataStream KfoldTimeSeriesData::getTestFoldData(const UINT foldIndex) const {
    TimeSeriesClassificationDataStream testData;

    if( !crossValidationSetup ) {
        cout << "getTestFoldData(UINT foldIndex) - Cross Validation has not been setup! You need to call the spiltDataIntoKFolds(UINT K,bool useStratifiedSampling) function first before calling this function!" << endl;
        return testData;
    }

    if( foldIndex >= kFoldValue ) {
    	cout << "Fold index too big" << endl;
    	return testData;
    }

    //Add the data to the training
    testData.setNumDimensions( numDimensions );

    UINT index = 0;
    for(UINT classLabel = 0; classLabel < crossValidationIndexs[foldIndex].size(); classLabel++) {
    	for (UINT i = 0; i <  crossValidationIndexs[foldIndex][classLabel].size(); i++) {
			index = crossValidationIndexs[foldIndex][classLabel][i];
			testData.addSample( inputDataset[ index ].getClassLabel(),
					inputDataset[ index ].getData() );
    	}
    }

    return testData;
}
TimeSeriesClassificationDataStream TimeSeriesClassificationDataStream::getSubset(const UINT startIndex,const UINT endIndex) const {
    
    TimeSeriesClassificationDataStream subset;
    
    if( endIndex >= totalNumSamples ){
        warningLog << "getSubset(const UINT startIndex,const UINT endIndex) - The endIndex is greater than or equal to the number of samples in the current dataset!" << endl;
        return subset;
    }
    
    if( startIndex >= endIndex ){
        warningLog << "getSubset(const UINT startIndex,const UINT endIndex) - The startIndex is greater than or equal to the endIndex!" << endl;
        return subset;
    }
    
    //Set the header info
    subset.setNumDimensions( getNumDimensions() );
    subset.setDatasetName( getDatasetName() );
    subset.setInfoText( getInfoText() );
    
    //Add the data
    for(UINT i=startIndex; i<=endIndex; i++){
        subset.addSample(data[i].getClassLabel(), data[i].getSample());
    }
    
    return subset;
}
Beispiel #3
0
bool KMeansFeatures::train_(TimeSeriesClassificationDataStream &trainingData){
    MatrixDouble data = trainingData.getDataAsMatrixDouble();
    return train_( data );
}
Beispiel #4
0
bool RBMQuantizer::train_(TimeSeriesClassificationDataStream &trainingData){
    MatrixDouble data = trainingData.getDataAsMatrixDouble();
    return train_( data );
}
int main (int argc, const char * argv[])
{
    //Create a new instance of the TimeSeriesClassificationDataStream
    TimeSeriesClassificationDataStream trainingData;
    
    //Set the dimensionality of the data (you need to do this before you can add any samples)
    trainingData.setNumDimensions( 3 );
    
    //You can also give the dataset a name (the name should have no spaces)
    trainingData.setDatasetName("DummyData");
    
    //You can also add some info text about the data
    trainingData.setInfoText("This data contains some dummy timeseries data");
    
    //Here you would record a time series, when you have finished recording the time series then add the training sample to the training data
    UINT gestureLabel = 1;
    
    //For now we will just add 10 x 20 random walk data timeseries, each timeseries will be seperated by some noise which represents the null class
    Random random;
    for(UINT k=0; k<10; k++){//For the number of classes
        gestureLabel = k+1;
        
        //Get the init random walk position for this gesture
        VectorDouble startPos( trainingData.getNumDimensions() );
        for(UINT j=0; j<startPos.size(); j++){
            startPos[j] = random.getRandomNumberUniform(-1.0,1.0);
        }
        
        //Generate the 20 time series
        for(UINT x=0; x<20; x++){
            //Generate the random walk
            UINT randomWalkLength = random.getRandomNumberInt(90, 110);
            VectorDouble sample = startPos;
            for(UINT i=0; i<randomWalkLength; i++){
                for(UINT j=0; j<sample.size(); j++){
                    sample[j] += random.getRandomNumberUniform(-0.1,0.1);
                }
                
                //Add the training sample to the dataset
                trainingData.addSample(gestureLabel, sample );
            }
            
            //now add some noise to represent a null class
            for(UINT i=0; i<50; i++){
                for(UINT j=0; j<sample.size(); j++){
                    sample[j] = random.getRandomNumberUniform(-0.01,0.01);
                }
                
                //Add the training sample to the dataset, note that we set the gesture label to 0
                trainingData.addSample(0, sample );
            }
        }
    }
    
    
    //After recording your training data you can then save it to a file
    if( !trainingData.saveDatasetToFile( "TrainingData.txt" ) ){
        cout << "ERROR: Failed to save dataset to file!\n";
        return EXIT_FAILURE;
    }
    
    //This can then be loaded later
    if( !trainingData.loadDatasetFromFile( "TrainingData.txt" ) ){
        cout << "ERROR: Failed to load dataset from file!\n";
        return EXIT_FAILURE;
    }
    
    //This is how you can get some stats from the training data
    string datasetName = trainingData.getDatasetName();
    string infoText = trainingData.getInfoText();
    UINT numSamples = trainingData.getNumSamples();
    UINT numDimensions = trainingData.getNumDimensions();
    UINT numClasses = trainingData.getNumClasses();
    
    cout << "Dataset Name: " << datasetName << endl;
    cout << "InfoText: " << infoText << endl;
    cout << "NumberOfSamples: " << numSamples << endl;
    cout << "NumberOfDimensions: " << numDimensions << endl;
    cout << "NumberOfClasses: " << numClasses << endl;
    
    //Print the start and end indexs of each time series
    vector< TimeSeriesPositionTracker > positionTracker = trainingData.getTimeSeriesPositionTracker();
    for(UINT i=0; i<positionTracker.size(); i++){
        cout << "Class Label: " << positionTracker[i].getClassLabel() << "\t";
        cout << "Start Index: " << positionTracker[i].getStartIndex() << "\t";
        cout << "End Index: " << positionTracker[i].getEndIndex() << "\t";
        cout << "Length: " << positionTracker[i].getLength() << endl;
    }
    
    //You can also get the minimum and maximum ranges of the data
    vector< MinMax > ranges = trainingData.getRanges();
    
    cout << "The ranges of the dataset are: \n";
    for(UINT j=0; j<ranges.size(); j++){
        cout << "Dimension: " << j << " Min: " << ranges[j].minValue << " Max: " << ranges[j].maxValue << endl;
    }
    
    //If need you can clear any training data that you have recorded
    trainingData.clear();

    return EXIT_SUCCESS;
}