Beispiel #1
0
 static void propagate_debug (Treelog& msg, int nest, const std::string& text)
 {
   switch (nest)
     {
     case is_unknown:
     case is_debug:
     case is_plain:
     case is_warning:
     case is_error:
     case is_bug:
       msg.debug (text);
       break;
     case is_close:
       msg.close ();
       break;
     case is_touch:
       msg.touch ();
       break;
     case is_flush:
       msg.flush ();
       break;
     default:
       msg.open (text);
     }
 }
Beispiel #2
0
void 
Horizon::Implementation::initialize (Hydraulic& hydraulic,
                                     const Texture& texture, 
                                     const double quarts,
                                     int som_size,
                                     const bool top_soil,
                                     const double center_z,
                                     Treelog& msg)
{
  if (CEC < 0.0)
    {
      CEC = default_CEC (texture);
      std::ostringstream tmp;
      tmp << "(CEC " << CEC 
          << " [cmolc/kg]) ; Estimated from clay and humus.";
      msg.debug (tmp.str ());
    }

  hydraulic.initialize (texture, dry_bulk_density, top_soil, CEC, center_z, msg);
  if (som_size > 0)
    {
      // Fill out SOM_fractions and SOM_C_per_N.
      if (SOM_C_per_N.size () > 0 && SOM_C_per_N.size () < som_size + 0U)
        SOM_C_per_N.insert (SOM_C_per_N.end (),
                            som_size - SOM_C_per_N.size (), 
                            SOM_C_per_N.back ());
      if (SOM_fractions.size () > 0 && SOM_fractions.size () < som_size + 0U)
        SOM_fractions.insert (SOM_fractions.end (),
                              som_size - SOM_fractions.size (), 
                              0.0);
    }

  // Did we specify 'dry_bulk_density'?  Else calculate it now.
  if (dry_bulk_density < 0.0)
    {
      dry_bulk_density = texture.rho_soil_particles () 
        * (1.0 - hydraulic.porosity ());
      std::ostringstream tmp;
      tmp << "(dry_bulk_density " << dry_bulk_density 
          << " [g/cm^3]) ; Estimated from porosity and texture.";
      msg.debug (tmp.str ());
    }

  hor_heat.initialize (hydraulic, texture, quarts, msg);
  
}
  void initialize (const Texture& texture,
                   double rho_b, const bool top_soil, const double CEC,
                   const double center_z, Treelog& msg)
  {
    TREELOG_MODEL (msg);
    std::ostringstream tmp;

    // Find Theta_sat.
    if (Theta_sat < 0.0)
      {
        if (rho_b < 0.0)
          {
            msg.error ("You must specify either dry bulk density or porosity");
            rho_b = 1.5;
            tmp << "Forcing rho_b = "  << rho_b << " g/cm^3\n";
          }
        Theta_sat = 1.0 - rho_b / texture.rho_soil_particles ();
        tmp << "(Theta_sat " << Theta_sat << " [])\n";
        daisy_assert (Theta_sat < 1.0);
      }
    if (Theta_sat <= Theta_fc)
      {
        msg.error ("Field capacity must be below saturation point");
        Theta_sat = (1.0 + 4.0 * Theta_fc) / 5.0;
        tmp << "Forcing Theta_sat = " << Theta_sat << " []\n";
      }

    // Find Theta_wp.
    if (Theta_wp < 0.0)
      {
        const double clay_lim // USDA Clay
          = texture.fraction_of_minerals_smaller_than ( 2.0 /* [um] */);
        const double silt_lim // USDA Silt 
          = texture.fraction_of_minerals_smaller_than (50.0 /* [um] */);
        daisy_assert (clay_lim >= 0.0);
        daisy_assert (silt_lim >= clay_lim);
        daisy_assert (silt_lim <= 1.0);
        const double mineral = texture.mineral ();
        const double clay = mineral * clay_lim * 100 /* [%] */;
        const double silt = mineral * (silt_lim - clay_lim) * 100 /* [%] */;
        const double humus = texture.humus * 100 /* [%] */;
        // Madsen and Platou (1983).
        Theta_wp = 0.758 * humus + 0.520 * clay + 0.075 * silt + 0.42;
        Theta_wp /= 100.0;      // [%] -> []
      }

    b = find_b (Theta_wp, Theta_fc);
    h_b = find_h_b (Theta_wp, Theta_fc, Theta_sat, b);
    tmp << "(b " << b << " [])\n"
        << "(h_b " << h_b << " [cm])";
    msg.debug (tmp.str ());

    // Must be called last (K_init depends on the other parameters).
    Hydraulic::initialize (texture, rho_b, top_soil, CEC, center_z, msg);
  }    
Beispiel #4
0
void
SoilWater::drain (const std::vector<double>& v, Treelog& msg)
{
  forward_sink (v, v);

  daisy_assert (S_sum_.size () == v.size ());
  daisy_assert (S_drain_.size () == v.size ());
  daisy_assert (S_soil_drain_.size () == v.size ());
  for (unsigned i = 0; i < v.size (); i++)
    {
      if (v[i] < -1e-8)
        {
          std::ostringstream tmp;
          tmp << "draining " << v[i] << " [h^-1] from cell " << i;
          msg.debug (tmp.str ());
        }
      S_sum_[i] += v[i];
      S_drain_[i] += v[i];
      S_soil_drain_[i] += v[i];
    }
}
void 
UZRectMollerup::tick (const GeometryRect& geo,
		      const std::vector<size_t>& drain_cell,
		      const double drain_water_level,
		      const Soil& soil, 
		      SoilWater& soil_water, const SoilHeat& soil_heat,
		      const Surface& surface, const Groundwater& groundwater,
		      const double dt, Treelog& msg)

{
  daisy_assert (K_average.get ());
  const size_t edge_size = geo.edge_size (); // number of edges 
  const size_t cell_size = geo.cell_size (); // number of cells 

  // Insert magic here.
  
  ublas::vector<double> Theta (cell_size); // water content 
  ublas::vector<double> Theta_previous (cell_size); // at start of small t-step
  ublas::vector<double> h (cell_size); // matrix pressure
  ublas::vector<double> h_previous (cell_size); // at start of small timestep
  ublas::vector<double> h_ice (cell_size); // 
  ublas::vector<double> S (cell_size); // sink term
  ublas::vector<double> S_vol (cell_size); // sink term
#ifdef TEST_OM_DEN_ER_BRUGT
  ublas::vector<double> S_macro (cell_size);  // sink term
  std::vector<double> S_drain (cell_size, 0.0); // matrix-> macro -> drain flow 
  std::vector<double> S_drain_sum (cell_size, 0.0); // For large timestep
  const std::vector<double> S_matrix (cell_size, 0.0);  // matrix -> macro 
  std::vector<double> S_matrix_sum (cell_size, 0.0); // for large timestep
#endif
  ublas::vector<double> T (cell_size); // temperature 
  ublas::vector<double> Kold (edge_size); // old hydraulic conductivity
  ublas::vector<double> Ksum (edge_size); // Hansen hydraulic conductivity
  ublas::vector<double> Kcell (cell_size); // hydraulic conductivity
  ublas::vector<double> Kold_cell (cell_size); // old hydraulic conductivity
  ublas::vector<double> Ksum_cell (cell_size); // Hansen hydraulic conductivity
  ublas::vector<double> h_lysimeter (cell_size);
  std::vector<bool> active_lysimeter (cell_size);
  const std::vector<size_t>& edge_above = geo.cell_edges (Geometry::cell_above);
  const size_t edge_above_size = edge_above.size ();
  ublas::vector<double> remaining_water (edge_above_size);
  std::vector<bool> drain_cell_on (drain_cell.size (),false); 
  

  for (size_t i = 0; i < edge_above_size; i++)
    {
      const size_t edge = edge_above[i];
      remaining_water (i) = surface.h_top (geo, edge);
    }
  ublas::vector<double> q;	// Accumulated flux
  q = ublas::zero_vector<double> (edge_size);
  ublas::vector<double> dq (edge_size); // Flux in small timestep.
  dq = ublas::zero_vector<double> (edge_size);

  //Make Qmat area diagonal matrix 
  //Note: This only needs to be calculated once... 
  ublas::banded_matrix<double> Qmat (cell_size, cell_size, 0, 0);
  for (int c = 0; c < cell_size; c++)
    Qmat (c, c) = geo.cell_volume (c);
 
  // make vectors 
  for (size_t cell = 0; cell != cell_size ; ++cell) 
    {				
      Theta (cell) = soil_water.Theta (cell);
      h (cell) =  soil_water.h (cell);
      h_ice (cell) = soil_water.h_ice (cell);
      S (cell) =  soil_water.S_sum (cell);
      S_vol (cell) = S (cell) * geo.cell_volume (cell);
      if (use_forced_T)
	T (cell) = forced_T;
      else 
	T (cell) = soil_heat.T (cell); 
      h_lysimeter (cell) = geo.zplus (cell) - geo.cell_z (cell);
    }

  // Remember old value.
  Theta_error = Theta;

  // Start time loop 
  double time_left = dt;	// How much of the large time step left.
  double ddt = dt;		// We start with small == large time step.
  int number_of_time_step_reductions = 0;
  int iterations_with_this_time_step = 0;
  

  int n_small_time_steps = 0;
  
  while (time_left > 0.0)
    {
      if (ddt > time_left)
	ddt = time_left;

      std::ostringstream tmp_ddt;
      tmp_ddt << "Time t = " << (dt - time_left) 
              << "; ddt = " << ddt
              << "; steps " << n_small_time_steps 
              << "; time left = " << time_left;
      Treelog::Open nest (msg, tmp_ddt.str ());

      if (n_small_time_steps > 0
          && (n_small_time_steps%msg_number_of_small_time_steps) == 0)
        {
          msg.touch ();
          msg.flush ();
        }
      
      n_small_time_steps++;
      if (n_small_time_steps > max_number_of_small_time_steps) 
        {
          msg.debug ("Too many small timesteps");
          throw "Too many small timesteps";
        }
      
      // Initialization for each small time step.

      if (debug > 0)
	{
	  std::ostringstream tmp;
	  tmp << "h = " << h << "\n";
	  tmp << "Theta = " << Theta;
	  msg.message (tmp.str ());
	}

      int iterations_used = 0;
      h_previous = h;
      Theta_previous = Theta;

      if (debug == 5)
	{
	  std::ostringstream tmp;
	  tmp << "Remaining water at start: " << remaining_water;
	  msg.message (tmp.str ());
	}

      ublas::vector<double> h_conv;

      for (size_t cell = 0; cell != cell_size ; ++cell)
        active_lysimeter[cell] = h (cell) > h_lysimeter (cell);

      for (size_t edge = 0; edge != edge_size ; ++edge)
        {
          Kold[edge] = find_K_edge (soil, geo, edge, h, h_ice, h_previous, T);
          Ksum [edge] = 0.0;
        }

      std::vector<top_state> state (edge_above.size (), top_undecided);
      
      // We try harder with smaller timesteps.
      const int max_loop_iter 
        = max_iterations * (number_of_time_step_reductions 
                            * max_iterations_timestep_reduction_factor + 1);
      do // Start iteration loop
	{
	  h_conv = h;
	  iterations_used++;
          

          std::ostringstream tmp_conv;
          tmp_conv << "Convergence " << iterations_used; 
          Treelog::Open nest (msg, tmp_conv.str ());
          if (debug == 7)
            msg.touch ();

	  // Calculate conductivity - The Hansen method
	  for (size_t e = 0; e < edge_size; e++)
	    {
              Ksum[e] += find_K_edge (soil, geo, e, h, h_ice, h_previous, T);
              Kedge[e] = (Ksum[e] / (iterations_used  + 0.0)+ Kold[e]) / 2.0;
	    }

	  //Initialize diffusive matrix
	  Solver::Matrix diff (cell_size);
	  // diff = ublas::zero_matrix<double> (cell_size, cell_size);
	  diffusion (geo, Kedge, diff);

	  //Initialize gravitational matrix
	  ublas::vector<double> grav (cell_size); //ublass compatibility
	  grav = ublas::zero_vector<double> (cell_size);
	  gravitation (geo, Kedge, grav);

	  // Boundary matrices and vectors
	  ublas::banded_matrix<double>  Dm_mat (cell_size, cell_size, 
                                                0, 0); // Dir bc
	  Dm_mat = ublas::zero_matrix<double> (cell_size, cell_size);
	  ublas::vector<double>  Dm_vec (cell_size); // Dir bc
	  Dm_vec = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> Gm (cell_size); // Dir bc
	  Gm = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> B (cell_size); // Neu bc 
	  B = ublas::zero_vector<double> (cell_size);

	  lowerboundary (geo, groundwater, active_lysimeter, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, msg);
	  upperboundary (geo, soil, T, surface, state, remaining_water, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, ddt, debug, msg, dt);
          Darcy (geo, Kedge, h, dq); //for calculating drain fluxes 


	  //Initialize water capacity  matrix
	  ublas::banded_matrix<double> Cw (cell_size, cell_size, 0, 0);
	  for (size_t c = 0; c < cell_size; c++)
	    Cw (c, c) = soil.Cw2 (c, h[c]);
	  
          std::vector<double> h_std (cell_size);
          //ublas vector -> std vector 
          std::copy(h.begin (), h.end (), h_std.begin ());

#ifdef TEST_OM_DEN_ER_BRUGT
          for (size_t cell = 0; cell != cell_size ; ++cell) 
            {				
              S_macro (cell) = (S_matrix[cell] + S_drain[cell]) 
                * geo.cell_volume (cell);
            }
#endif

	  //Initialize sum matrix
	  Solver::Matrix summat (cell_size);  
	  noalias (summat) = diff + Dm_mat;

	  //Initialize sum vector
	  ublas::vector<double> sumvec (cell_size);  
	  sumvec = grav + B + Gm + Dm_vec - S_vol
#ifdef TEST_OM_DEN_ER_BRUGT
            - S_macro
#endif
            ; 

	  // QCw is shorthand for Qmatrix * Cw
	  Solver::Matrix Q_Cw (cell_size);
	  noalias (Q_Cw) = prod (Qmat, Cw);

	  //Initialize A-matrix
	  Solver::Matrix A (cell_size);  
	  noalias (A) = (1.0 / ddt) * Q_Cw - summat;  

	  // Q_Cw_h is shorthand for Qmatrix * Cw * h
	  const ublas::vector<double> Q_Cw_h = prod (Q_Cw, h);

	  //Initialize b-vector
	  ublas::vector<double> b (cell_size);  
	  //b = sumvec + (1.0 / ddt) * (Qmatrix * Cw * h + Qmatrix *(Wxx-Wyy));
	  b = sumvec + (1.0 / ddt) * (Q_Cw_h
				      + prod (Qmat, Theta_previous-Theta));

	  // Force active drains to zero h.
          drain (geo, drain_cell, drain_water_level,
		 h, Theta_previous, Theta, S_vol,
#ifdef TEST_OM_DEN_ER_BRUGT
                 S_macro,
#endif
                 dq, ddt, drain_cell_on, A, b, debug, msg);  
          
          try {
            solver->solve (A, b, h); // Solve Ah=b with regard to h.
          } catch (const char *const error) {
              std::ostringstream tmp;
              tmp << "Could not solve equation system: " << error;
              msg.warning (tmp.str ());
              // Try smaller timestep.
              iterations_used = max_loop_iter + 100;
              break;
          }

	  for (int c=0; c < cell_size; c++) // update Theta 
	    Theta (c) = soil.Theta (c, h (c), h_ice (c)); 

	  if (debug > 1)
	    {
	      std::ostringstream tmp;
	      tmp << "Time left = " << time_left << ", ddt = " << ddt 
		  << ", iteration = " << iterations_used << "\n";
	      tmp << "B = " << B << "\n";
	      tmp << "h = " << h << "\n";
	      tmp << "Theta = " << Theta;
	      msg.message (tmp.str ());
	    }
          
          for (int c=0; c < cell_size; c++)
            {
              if (h (c) < min_pressure_potential || h (c) > max_pressure_potential)
                {
                  std::ostringstream tmp;
                  tmp << "Pressure potential out of realistic range, h[" 
                      << c << "] = " << h (c);
                  msg.debug (tmp.str ());
                  iterations_used = max_loop_iter + 100;
                  break;
                } 
            }
        }

      while (!converges (h_conv, h) && iterations_used <= max_loop_iter);
      

      if (iterations_used > max_loop_iter)
	{
          number_of_time_step_reductions++;
          
	  if (number_of_time_step_reductions > max_time_step_reductions)
            {
              msg.debug ("Could not find solution");
              throw "Could not find solution";
            }

          iterations_with_this_time_step = 0;
	  ddt /= time_step_reduction;
	  h = h_previous;
	  Theta = Theta_previous;
	}
      else
	{
          // Update dq for new h.
	  ublas::banded_matrix<double>  Dm_mat (cell_size, cell_size, 
                                                0, 0); // Dir bc
	  Dm_mat = ublas::zero_matrix<double> (cell_size, cell_size);
	  ublas::vector<double>  Dm_vec (cell_size); // Dir bc
	  Dm_vec = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> Gm (cell_size); // Dir bc
	  Gm = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> B (cell_size); // Neu bc 
	  B = ublas::zero_vector<double> (cell_size);
	  lowerboundary (geo, groundwater, active_lysimeter, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, msg);
	  upperboundary (geo, soil, T, surface, state, remaining_water, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, ddt, debug, msg, dt);
          Darcy (geo, Kedge, h, dq);

#ifdef TEST_OM_DEN_ER_BRUGT
          // update macropore flow components 
          for (int c = 0; c < cell_size; c++)
            {
              S_drain_sum[c] += S_drain[c] * ddt/dt;
              S_matrix_sum[c] += S_matrix[c] * ddt/dt;
            }
#endif

          std::vector<double> h_std_new (cell_size);
          std::copy(h.begin (), h.end (), h_std_new.begin ());

	  // Update remaining_water.
	  for (size_t i = 0; i < edge_above.size (); i++)
	    {
	      const int edge = edge_above[i];
	      const int cell = geo.edge_other (edge, Geometry::cell_above);
	      const double out_sign = (cell == geo.edge_from (edge))
		? 1.0 : -1.0;
	      remaining_water[i] += out_sign * dq (edge) * ddt;
              daisy_assert (std::isfinite (dq (edge)));
	    }

	  if (debug == 5)
	    {
	      std::ostringstream tmp;
	      tmp << "Remaining water at end: " << remaining_water;
	      msg.message (tmp.str ());
	    }

	  // Contribution to large time step.
          daisy_assert (std::isnormal (dt));
          daisy_assert (std::isnormal (ddt));
	  q += dq * ddt / dt;
          for (size_t e = 0; e < edge_size; e++)
            {
              daisy_assert (std::isfinite (dq (e)));
              daisy_assert (std::isfinite (q (e)));
            }
          for (size_t e = 0; e < edge_size; e++)
            {
              daisy_assert (std::isfinite (dq (e)));
              daisy_assert (std::isfinite (q (e)));
            }

	  time_left -= ddt;
	  iterations_with_this_time_step++;

	  if (iterations_with_this_time_step > time_step_reduction)
	    {
	      number_of_time_step_reductions--;
	      iterations_with_this_time_step = 0;
	      ddt *= time_step_reduction;
	    }
	}
      // End of small time step.
    }

  // Mass balance.
  // New = Old - S * dt + q_in * dt - q_out * dt + Error =>
  // 0 = Old - New - S * dt + q_in * dt - q_out * dt + Error
  Theta_error -= Theta;         // Old - New
  Theta_error -= S * dt;
#ifdef TEST_OM_DEN_ER_BRUGT
  for (size_t c = 0; c < cell_size; c++)
    Theta_error (c) -= (S_matrix_sum[c] + S_drain_sum[c]) * dt;
#endif
  
  for (size_t edge = 0; edge != edge_size; ++edge) 
    {
      const int from = geo.edge_from (edge);
      const int to = geo.edge_to (edge);
      const double flux = q (edge) * geo.edge_area (edge) * dt;
      if (geo.cell_is_internal (from))
        Theta_error (from) -= flux / geo.cell_volume (from);
      if (geo.cell_is_internal (to))
        Theta_error (to) += flux / geo.cell_volume (to);
    }

  // Find drain sink from mass balance.
#ifdef TEST_OM_DEN_ER_BRUGT
  std::fill(S_drain.begin (), S_drain.end (), 0.0);
#else
  std::vector<double> S_drain (cell_size);
#endif
  for (size_t i = 0; i < drain_cell.size (); i++)
    {
      const size_t cell = drain_cell[i];
      S_drain[cell] = Theta_error (cell) / dt;
      Theta_error (cell) -= S_drain[cell] * dt;
    }

  if (debug == 2)
    {
      double total_error = 0.0;
      double total_abs_error = 0.0;
      double max_error = 0.0;
      int max_cell = -1;
      for (size_t cell = 0; cell != cell_size; ++cell) 
        {
          const double volume = geo.cell_volume (cell);
          const double error = Theta_error (cell);
          total_error += volume * error;
          total_abs_error += std::fabs (volume * error);
          if (std::fabs (error) > std::fabs (max_error))
            {
              max_error = error;
              max_cell = cell;
            }
        }
      std::ostringstream tmp;
      tmp << "Total error = " << total_error << " [cm^3], abs = " 
	  << total_abs_error << " [cm^3], max = " << max_error << " [] in cell " 
	  << max_cell;
      msg.message (tmp.str ());
    }
  
  // Make it official.
  for (size_t cell = 0; cell != cell_size; ++cell) 
    soil_water.set_content (cell, h (cell), Theta (cell));
  
#ifdef TEST_OM_DEN_ER_BRUGT
  soil_water.add_tertiary_sink (S_matrix_sum);
  soil_water.drain (S_drain_sum, msg);
#endif


  for (size_t edge = 0; edge != edge_size; ++edge) 
    {
      daisy_assert (std::isfinite (q[edge]));
      soil_water.set_flux (edge, q[edge]);
    }

  soil_water.drain (S_drain, msg);

  // End of large time step.
}
Beispiel #6
0
void 
Horizon::initialize_base (const bool top_soil,
                          const int som_size, const double center_z, 
                          const Texture& texture, Treelog& msg)
{ 
  TREELOG_MODEL (msg);
  const double clay_lim = texture_below ( 2.0 /* [um] USDA Clay */);
  fast_clay = texture.mineral () * clay_lim;
  fast_humus = texture.humus;
  impl->initialize (*hydraulic, texture, quartz () * texture.mineral (),
                    som_size, top_soil, center_z, msg); 
  impl->secondary->initialize (msg);

  std::ostringstream tmp;
  const double h_lim = secondary_domain ().h_lim ();
  if (h_lim >= 0.0)
    impl->primary_sorption_fraction = 1.0;
  else
    {
      const double h_sat = 0.0;
      const double Theta_sat = hydraulic->Theta (h_sat);

      // Integrate h over Theta.
      PLF h_int;
      const double h_min = Hydraulic::r2h (impl->r_pore_min);
      const double Theta_min =hydraulic->Theta (h_min);
      h_int.add (Theta_min, 0.0);
      static const int intervals = 100;
      double delta = (Theta_sat - Theta_min) / (intervals + 0.0);
      double sum = 0.0;
      for (double Theta = Theta_min + delta; Theta < Theta_sat; Theta += delta)
        {
          double my_h = hydraulic->h (Theta);
          sum += my_h * delta;
          h_int.add (Theta, sum);
        }

      const double h_wp = -15000.0;
      const double Theta_wp = hydraulic->Theta (h_wp);
      const double Theta_lim =  hydraulic->Theta (h_lim);
      tmp << "A saturated secondary domain contain " 
          << 100.0 * (Theta_sat - Theta_lim) / (Theta_sat - Theta_wp)
          << " % of plant available water\n";
      impl->primary_sorption_fraction = h_int (Theta_lim) / h_int (Theta_sat);
      tmp << "Primary domain contains "
          << 100.0 * impl->primary_sorption_fraction
          << " % of the available sorption sites\n";
    }
  tmp << "h\th\tTheta\tK\n"
      << "cm\tpF\t\tcm/h\n";
  const double h_Sat = 0;
  tmp << h_Sat << "\t" << "\t" << hydraulic->Theta (h_Sat) 
      << "\t" << hydraulic->K (h_Sat) << "\n";
  const double pF_Zero = 0;
  const double h_Zero = pF2h (pF_Zero);
  tmp << h_Zero << "\t" << pF_Zero << "\t" << hydraulic->Theta (h_Zero) 
      << "\t" << hydraulic->K (h_Zero) << "\n";
  const double pF_One = 1;
  const double h_One = pF2h (pF_One);
  tmp << h_One << "\t" << pF_One << "\t" << hydraulic->Theta (h_One) 
      << "\t" << hydraulic->K (h_One) << "\n";
  const double pF_FC = 2.0;
  const double h_FC = pF2h (pF_FC);
  tmp << h_FC << "\t" << pF_FC << "\t" << hydraulic->Theta (h_FC) 
      << "\t" << hydraulic->K (h_FC) << "\n";
  const double pF_Three = 3;
  const double h_Three = pF2h (pF_Three);
  tmp << h_Three << "\t" << pF_Three << "\t" << hydraulic->Theta (h_Three) 
      << "\t" << hydraulic->K (h_Three) << "\n";
  const double pF_WP = 4.2;
  const double h_WP = pF2h (pF_WP);
  tmp << h_WP << "\t" << pF_WP << "\t" << hydraulic->Theta (h_WP) 
      << "\t" << hydraulic->K (h_WP);
  msg.debug (tmp.str ());
}
Beispiel #7
0
void
MovementSolute::solute (const Soil& soil, const SoilWater& soil_water,
                        const double J_above, Chemical& chemical, 
                        const double dt,
                        const Scope& scope, Treelog& msg)
{
  daisy_assert (std::isfinite (J_above));
  const size_t cell_size = geometry ().cell_size ();
  const size_t edge_size = geometry ().edge_size ();

  // Source term transfered from secondary to primary domain.
  std::vector<double> S_extra (cell_size, 0.0);

  // Divide top solute flux according to water.
  std::map<size_t, double> J_tertiary;
  std::map<size_t, double> J_secondary; 
  std::map<size_t, double> J_primary;

  if (J_above > 0.0)
    // Outgoing, divide according to content in primary domain only.
    divide_top_outgoing (geometry (), chemical, J_above, 
                         J_primary, J_secondary, J_tertiary);
  else if (J_above < 0.0)
    // Incomming, divide according to all incomming water.
    divide_top_incomming (geometry (), soil_water, J_above, 
                          J_primary, J_secondary, J_tertiary);
  else
    // No flux.
    zero_top (geometry (), J_primary, J_secondary, J_tertiary);

  // Check result.
  {
    const std::vector<size_t>& edge_above 
      = geometry ().cell_edges (Geometry::cell_above);
    const size_t edge_above_size = edge_above.size ();
    double J_sum = 0.0;
    for (size_t i = 0; i < edge_above_size; i++)
      {
        const size_t edge = edge_above[i];
        const double in_sign 
          = geometry ().cell_is_internal (geometry ().edge_to (edge)) 
          ? 1.0 : -1.0;
        const double area = geometry ().edge_area (edge); // [cm^2 S]
        const double J_edge       // [g/cm^2 S/h]
          = J_tertiary[edge] + J_secondary[edge] + J_primary[edge];
        J_sum += in_sign * J_edge * area; // [g/h]
        if (in_sign * J_tertiary[edge] < 0.0)
          {
            std::ostringstream tmp;
            tmp << "J_tertiary[" << edge << "] = " << J_tertiary[edge]
                << ", in_sign = " << in_sign << ", J_above = " << J_above;
            msg.bug (tmp.str ());
          }
        if (in_sign * J_secondary[edge] < 0.0)
          {
            std::ostringstream tmp;
            tmp << "J_secondary[" << edge << "] = " << J_secondary[edge]
                << ", in_sign = " << in_sign << ", J_above = " << J_above;
            msg.bug (tmp.str ());
          }
      }
    J_sum /= geometry ().surface_area (); // [g/cm^2 S/h]
    daisy_approximate (-J_above, J_sum);
  }

  // We set a fixed concentration below lower boundary, if specified.
  std::map<size_t, double> C_border;

  const double C_below = chemical.C_below ();
  if (C_below >= 0.0)
    {
      const std::vector<size_t>& edge_below 
        = geometry ().cell_edges (Geometry::cell_below);
      const size_t edge_below_size = edge_below.size ();

      for (size_t i = 0; i < edge_below_size; i++)
        {
          const size_t edge = edge_below[i];
          C_border[edge] = C_below;
        }
    }

  // Tertiary transport.
  tertiary->solute (geometry (), soil_water, J_tertiary, dt, chemical, msg);

  // Fully adsorbed.
  if (chemical.adsorption ().full ())
    {
      static const symbol solid_name ("immobile transport");
      Treelog::Open nest (msg, solid_name);
      if (!iszero (J_above))
        {
          std::ostringstream tmp;
          tmp << "J_above = " << J_above << ", expected 0 for full sorbtion";
          msg.error (tmp.str ());
        }

      // Secondary "transport".
      std::vector<double> J2 (edge_size, 0.0); // Flux delivered by flow.
      std::vector<double> Mn (cell_size); // New content.
      for (size_t c = 0; c < cell_size; c++)
        {
          Mn[c] = chemical.M_secondary (c) + chemical.S_secondary (c) * dt;
          if (Mn[c] < 0.0)
            {
              S_extra[c] = Mn[c] / dt;
              Mn[c] = 0.0;
            }
          else
            S_extra[c] = 0.0;
        }
      chemical.set_secondary (soil, soil_water, Mn, J2);

      // Primary "transport".
      primary_transport (geometry (), soil, soil_water,
                         *matrix_solid, sink_sorbed, 0, J_primary, C_border,
                         chemical, S_extra, dt, scope, msg);
      return;
    }

  // Secondary transport activated.
  secondary_transport (geometry (), soil, soil_water, J_secondary, C_border,
                       chemical, S_extra, dt, scope, msg);

  // Solute primary transport.
  for (size_t transport_iteration = 0; 
       transport_iteration < 2; 
       transport_iteration++)
    for (size_t i = 0; i < matrix_solute.size (); i++)
      {
        solute_attempt (i);
        static const symbol solute_name ("solute");
        Treelog::Open nest (msg, solute_name, i, matrix_solute[i]->objid);
        try
          {
            primary_transport (geometry (), soil, soil_water, 
                               *matrix_solute[i], sink_sorbed, 
                               transport_iteration,
                               J_primary, C_border,
                               chemical, S_extra, dt, scope, msg);
            if (i > 0)
              msg.debug ("Succeeded");
            return;
          }
        catch (const char* error)
          {
            msg.debug (std::string ("Solute problem: ") + error);
          }
        catch (const std::string& error)
          {
            msg.debug(std::string ("Solute trouble: ") + error);
          }
        solute_failure (i);
      }
  throw "Matrix solute transport failed";
}
Beispiel #8
0
void
MovementSolute::primary_transport (const Geometry& geo, const Soil& soil,
                                   const SoilWater& soil_water,
                                   const Transport& transport,
                                   const bool sink_sorbed,
                                   const size_t transport_iteration,
                                   const std::map<size_t, double>& J_forced,
                                   const std::map<size_t, double>& C_border,
                                   Chemical& solute, 
                                   const std::vector<double>& S_extra,
                                   const double dt,
                                   const Scope& scope, Treelog& msg)
{ 
  
  // Edges.
  const size_t edge_size = geo.edge_size ();

  std::vector<double> q (edge_size); // Water flux [cm].
  std::vector<double> J (edge_size); // Flux delivered by flow.

  for (size_t e = 0; e < edge_size; e++)
    {
      q[e] = soil_water.q_primary (e);
      daisy_assert (std::isfinite (q[e]));
      J[e] = 0.0;
    }

  // Cells.
  const size_t cell_size = geo.cell_size ();

  std::vector<double> Theta_old (cell_size); // Water content at start...
  std::vector<double> Theta_new (cell_size); // ...and end of timestep.
  std::vector<double> C (cell_size); // Concentration given to flow.
  std::vector<double> A (cell_size); // Sorbed mass not given to flow.
  std::vector<double> S (cell_size); // Source given to flow.

  for (size_t c = 0; c < cell_size; c++)
    {
      Theta_old[c] = soil_water.Theta_primary_old (c);
      daisy_assert (Theta_old[c] > 0.0);
      Theta_new[c] = soil_water.Theta_primary (c);
      daisy_assert (Theta_new[c] > 0.0);
      C[c] = solute.C_primary (c);
      daisy_assert (C[c] >= 0.0);
      const double M = solute.M_primary (c);
      daisy_assert (M >= 0.0);
      A[c] = M - C[c] * Theta_old[c];
      daisy_assert (std::isfinite (A[c]));
      if (A[c] < 0.0)
        {
          daisy_approximate (M,  C[c] * Theta_old[c]);
          A[c] = 0.0;
        }
      daisy_assert (A[c] >= 0.0);
      S[c] = solute.S_primary (c) + S_extra[c];
      if (sink_sorbed && S[c] < 0.0)
        {
          A[c] += S[c] * dt;
          S[c] = 0.0;
          if (A[c] < 0.0)
            {
              S[c] = A[c] / dt;
              A[c] = 0.0;
            }
        }

      daisy_assert (std::isfinite (S[c]));
    }
  
  // Flow.
  transport.flow (geo, soil, Theta_old, Theta_new, q, solute.objid, 
                  S, J_forced, C_border, C, J, 
                  solute.diffusion_coefficient (), 
                  dt, msg);

  // Check fluxes.
  for (size_t e = 0; e < edge_size; e++)
    daisy_assert (std::isfinite (J[e]));


  // Update with new content.
  std::vector<double> M (cell_size);
  for (size_t c = 0; c < cell_size; c++)
    {
      daisy_assert (std::isfinite (C[c]));
      M[c] = A[c] + C[c] * Theta_new[c];

      if (M[c] < 0.0)
        {
          std::ostringstream tmp;
          tmp << "M[" << c << "] = " << M[c] 
              << " @ " << geo.cell_name (c)
              << ", C = " << C[c]
              << ", A = " << A[c]
              << ", M_new = " << M[c]
              << ", M_old = " << solute.M_primary (c) << ", dt " << dt
              << ", S = " << S[c] 
              << ", S_extra = " << S_extra[c];
          solute.debug_cell (tmp, c);
          tmp << ", Theta_old " << Theta_old[c]
              << ", Theta_new " << Theta_new[c]
              << ", root " << soil_water.S_root (c)
              << ", drain " << soil_water.S_drain (c)
              << ", B2M " << soil_water.S_B2M (c)
              << ", M2B " << soil_water.S_M2B (c)
              << ", forward_total " << soil_water.S_forward_total (c)
              << ", forward_sink " << soil_water.S_forward_sink (c)
              << ", sum " << soil_water.S_sum (c)
              << ", v1 " << soil_water.velocity_cell_primary (geo, c)
              << ", v2 " << soil_water.velocity_cell_secondary (geo, c);
          const std::vector<size_t>& edges = geo.cell_edges (c);
          for (size_t i = 0; i < edges.size (); i++)
            {
              const size_t e = edges[i];
              tmp  << "\n" << geo.edge_name (e) 
                   << ": q = " << q[e] << ", J = " << J[e];
            }
          msg.debug (tmp.str ());
          if (transport_iteration == 0)
            throw "Negative concentration";
        }
    }

  solute.set_primary (soil, soil_water, M, J);
}
Beispiel #9
0
double
PhotoFarquhar::assimilate (const Units& units,
                           const double ABA, const double psi_c,
                           const double ec /* Canopy Vapour Pressure [Pa] */, 
                           const double gbw_ms /* Boundary layer [m/s] */,
			   const double CO2_atm, const double O2_atm, 
                           const double Ptot /* [Pa] */,
			   const double, const double Tc, const double Tl,
                           const double cropN,
			   const std::vector<double>& PAR, 
			   const std::vector<double>& PAR_height,
			   const double PAR_LAI,
			   const std::vector<double>& fraction,
                           const double,
			   CanopyStandard& canopy,
			   Phenology& development,
			   Treelog& msg) 
{
  const double h_x = std::fabs (psi_c) * 1.0e-4  /* [MPa/cm] */; // MPa
  // sugar production [gCH2O/m2/h] by canopy photosynthesis.
  const PLF& LAIvsH = canopy.LAIvsH;
  const double DS = development.DS;

  
  // One crop: daisy_assert (approximate (canopy.CAI, bioclimate.CAI ()));
  if (!approximate (LAIvsH (canopy.Height), canopy.CAI))
    {
      std::ostringstream tmp;
      tmp << "Bug: CAI below top: " << LAIvsH (canopy.Height)
	  << " Total CAI: " << canopy.CAI << "\n";
      canopy.CanopyStructure (DS);
      tmp << "Adjusted: CAI below top: " << LAIvsH (canopy.Height)
	  << " Total CAI: " << canopy.CAI;
      msg.error (tmp.str ());
    }
 
  // CAI (total)  below the current leaf layer.
  double prevLA = LAIvsH (PAR_height[0]); 

  // Assimilate produced by canopy photosynthesis
  double Ass_ = 0.0;

  // Accumulated CAI, for testing purposes.
  double accCAI =0.0;

  // Number of computational intervals in the canopy.
  const int No = PAR.size () - 1;
  daisy_assert (No > 0);
  daisy_assert (No == PAR_height.size () - 1);
  
  // N-distribution and photosynthetical capacity 
  std::vector<double> rubisco_Ndist (No, 0.0);
  std::vector<double> crop_Vm_total (No, 0.0);

  // Photosynthetic capacity (for logging)
  while (Vm_vector.size () < No)
    Vm_vector.push_back (0.0);
  // Potential electron transport rate (for logging)
  while (Jm_vector.size () < No)
    Jm_vector.push_back (0.0);
  // Photosynthetic N-leaf distribution (for logging)
  while (Nleaf_vector.size () < No)
    Nleaf_vector.push_back (0.0);
  // Brutto assimilate production (for logging)
  while (Ass_vector.size () < No)
    Ass_vector.push_back (0.0);
  // LAI (for logging)
  while (LAI_vector.size () < No)
    LAI_vector.push_back (0.0);

  rubiscoNdist->rubiscoN_distribution (units,
                                       PAR_height, prevLA, DS,
                                       rubisco_Ndist/*[mol/m²leaf]*/, 
				       cropN /*[g/m²area]*/, msg);
  crop_Vmax_total (rubisco_Ndist, crop_Vm_total);  


  // Net photosynthesis (for logging)
  while (pn_vector.size () < No)
    pn_vector.push_back (0.0);//

  // Stomata CO2 pressure (for logging)
  while (ci_vector.size () < No)
    ci_vector.push_back (0.0);//[Pa]

  // Leaf surface CO2 pressure  (for logging)
  while (cs_vector.size () < No)
    cs_vector.push_back (0.0);//

  // Leaf surface relative humidity (for logging)
  while (hs_vector.size () < No)
    hs_vector.push_back (0.0);//[]

  // Stomata conductance (for logging)
  while (gs_vector.size () < No)
    gs_vector.push_back (0.0);//[m/s]
     
  // Photosynthetic effect of Xylem ABA and crown water potential.
  Gamma = Arrhenius (Gamma25, Ea_Gamma, Tl); // [Pa]
  const double estar = FAO::SaturationVapourPressure (Tl); // [Pa]
  daisy_assert (gbw_ms >= 0.0);
  gbw = Resistance::ms2molly (Tl, Ptot, gbw_ms);
  daisy_assert (gbw >= 0.0);
  // CAI in each interval.
  const double dCAI = PAR_LAI / No;
  
  for (int i = 0; i < No; i++)
    {
      const double height = PAR_height[i+1];
      daisy_assert (height < PAR_height[i]);

      // Leaf Area index for a given leaf layer
      const double LA = prevLA - LAIvsH (height);
      daisy_assert (LA >= 0.0);

      prevLA = LAIvsH (height);
      accCAI += LA;

      if (LA * fraction [i] > 0)
	{  
	  // PAR in mol/m2/s = PAR in W/m2 * 0.0000046
	  const double dPAR = (PAR[i] - PAR[i+1])/dCAI * 0.0000046; //W/m2->mol/m²leaf/s

          if (dPAR < 0)
            {
              std::stringstream tmp;
              tmp << "Negative dPAR (" << dPAR
                  << " [mol/m^2 leaf/h])" << " PAR[" << i << "] = " << PAR[i]
                  << " PAR[" << i+1 << "] = " << PAR[i+1] 
                  << " dCAI = " << dCAI
                  << " LA = " << LA
                  << " fraction[" << i << "] = " << fraction [i];
              msg.debug (tmp.str ());
              continue;
            }

	  // log variable
	  PAR_ += dPAR * dCAI * 3600.0; //mol/m²area/h/fraction

	  // Photosynthetic rubisco capacity 
	  const double vmax25 = crop_Vm_total[i]*fraction[i];//[mol/m²leaf/s/fracti.]
	  daisy_assert (vmax25 >= 0.0);

	  // leaf respiration
	  const double rd = respiration_rate(vmax25, Tl);
	  daisy_assert (rd >= 0.0);

	  //solving photosynthesis and stomatacondctance model for each layer
          double& pn = pn_vector[i];
	  double ci  = 0.5 * CO2_atm;//first guess for ci, [Pa]
          double& hs = hs_vector[i];
          hs = 0.5;              // first guess of hs []
          double& cs = cs_vector[i];
          //first gues for stomatal cond,[mol/s/m²leaf]
	  double gsw = Stomatacon->minimum () * 2.0;
	  // double gsw = 2 * b; // old value
	  const int maxiter = 150;
	  int iter = 0;
	  double lastci;
          double lasths;
          double lastgs;
	  do
	    {
	      lastci = ci; //Stomata CO2 pressure 
              lasths = hs;
              lastgs = gs;

	      //Calculating ci and "net"photosynthesis
	      CxModel(CO2_atm, O2_atm, Ptot, 
                      pn, ci, dPAR /*[mol/m²leaf/s]*/, 
                      gsw, gbw, Tl, vmax25, rd, msg);//[mol/m²leaf/s/fraction]

              // Vapour pressure at leaf surface. [Pa]
              const double es = (gsw * estar + gbw * ec) / (gsw + gbw);
              // Vapour defecit at leaf surface. [Pa]
              const double Ds = bound (0.0, estar - es, estar);
              // Relative humidity at leaf surface. []
              hs = es / estar;
              const double hs_use = bound (0.0, hs, 1.0);

              // Boundary layer resistance. [s*m2 leaf/mol]
              daisy_assert (gbw >0.0);
              const double rbw = 1./gbw;   //[s*m2 leaf/mol]
  
              // leaf surface CO2 [Pa]

              // We really should use CO2_canopy instead of CO2_atm
              // below.  Adding the resitence from canopy point to
              // atmostphere is not a good workaround, as it will
              // ignore sources such as the soil and stored CO2 from
              // night respiration.
              cs = CO2_atm - (1.4 * pn * Ptot * rbw); //[Pa] 
              daisy_assert (cs > 0.0);

              //stomatal conductance
              gsw = Stomatacon->stomata_con (ABA /*g/cm^3*/,
                                             h_x /* MPa */, 
                                             hs_use /*[]*/,
                                             pn /*[mol/m²leaf/s]*/, 
                                             Ptot /*[Pa]*/, 
                                             cs /*[Pa]*/, Gamma /*[Pa]*/, 
                                             Ds/*[Pa]*/,
                                             msg); //[mol/m²leaf/s] 

	      iter++;
	      if(iter > maxiter)
		{
		  std::ostringstream tmp;
		  tmp << "total iterations in assimilation model exceed "
                      << maxiter;
		  msg.warning (tmp.str ());
		  break;
		}
	    }
	  // while (std::fabs (lastci-ci)> 0.01);
          while (std::fabs (lastci-ci)> 0.01
                 || std::fabs (lasths-hs)> 0.01
                 || std::fabs (lastgs-gs)> 0.01);

	  // Leaf brutto photosynthesis [gCO2/m2/h] 
	  /*const*/ double pn_ = (pn+rd) * molWeightCO2 * 3600.0;//mol CO2/m²leaf/s->g CO2/m²leaf/h
	  const double rd_ = (rd) * molWeightCO2 * 3600.0;   //mol CO2/m²/s->g CO2/m²/h
	  const double Vm_ = V_m(vmax25, Tl); //[mol/m² leaf/s/fraction]
	  const double Jm_ = J_m(vmax25, Tl); //[mol/m² leaf/s/fraction]

	  if (pn_ < 0.0)
            {
              std::stringstream tmp;
              tmp << "Negative brutto photosynthesis (" << pn_ 
                  << " [g CO2/m²leaf/h])" << " pn " << pn << " rd " << rd
                  << " CO2_atm " << CO2_atm << "  O2_atm " <<  O2_atm 
                  << "  Ptot " <<  Ptot << "  pn " <<  pn << "  ci " <<  ci 
                  << "  dPAR " <<  dPAR << "  gsw " <<  gsw 
                  << "  gbw " <<  gbw << "  Tl " <<  Tl 
                  << "  vmax25 " <<  vmax25 << "  rd " <<  rd; 
              msg.error (tmp.str ());
              pn_ = 0.0;
            }
	  Ass_ += LA * pn_; // [g/m²area/h] 
	  Res += LA * rd_;  // [g/m²area/h] 
	  daisy_assert (Ass_ >= 0.0);

	  //log variables:
	  Ass_vector[i]+= pn_* (molWeightCH2O / molWeightCO2) * LA;//[g CH2O/m²area/h]
	  Nleaf_vector[i]+= rubisco_Ndist[i] * LA * fraction[i]; //[mol N/m²area]OK
	  gs_vector[i]+= gsw /* * LA * fraction[i] */;     //[mol/m² area/s]
	  ci_vector[i]+= ci /* * fraction[i] */;  //[Pa] OK
	  Vm_vector[i]+= Vm_ * 1000.0 * LA * fraction[i]; //[mmol/m² area/s]OK
	  Jm_vector[i]+= Jm_ * 1000.0 * LA * fraction[i]; //[mmol/m² area/s]OK
	  LAI_vector[i] += LA * fraction[i];//OK
	  
	  ci_middel += ci * fraction[i]/(No + 0.0);// [Pa]   OK
	  gs += LA * gsw * fraction[i]; 
	  Ass += LA * pn_ * (molWeightCH2O / molWeightCO2);//[g CH2O/m2 area/h] OK
	  LAI += LA * fraction[i];//OK
	  Vmax += 1000.0 * LA * fraction[i] * Vm_;   //[mmol/m² area/s]
	  jm += 1000.0 * LA * fraction[i] * Jm_;     //[mmol/m² area/s]
	  leafPhotN += rubisco_Ndist[i] * LA *fraction[i]; //[mol N/m²area]; 
	  fraction_total += fraction[i]/(No + 0.0);
	}
    }
  daisy_assert (approximate (accCAI, canopy.CAI));
  daisy_assert (Ass_ >= 0.0);

  // Omregning af gs(mol/(m2s)) til gs_ms (m/s) foretages ved 
  // gs_ms = gs * (R * T)/P:
  gs_ms = Resistance::molly2ms (Tl, Ptot, gs);
  return (molWeightCH2O / molWeightCO2)* Ass_;    // Assimilate [g CH2O/m2/h]
}
Beispiel #10
0
void 
Movement1D::tick_water (const Geometry1D& geo,
                        const Soil& soil, const SoilHeat& soil_heat, 
                        Surface& surface, Groundwater& groundwater,
                        const std::vector<double>& S,
                        std::vector<double>& h_old,
                        const std::vector<double>& Theta_old,
                        const std::vector<double>& h_ice,
                        std::vector<double>& h,
                        std::vector<double>& Theta,
                        std::vector<double>& q,
                        std::vector<double>& q_p,
                        const double dt, 
                        Treelog& msg)
{
  const size_t top_edge = 0U;
  const size_t bottom_edge = geo.edge_size () - 1U;

  // Limit for groundwater table.
  size_t last  = soil.size () - 1;

  // Limit for ridging.
  const size_t first = (surface.top_type (geo, 0U) == Surface::soil)
    ? surface.last_cell (geo, 0U) 
    : 0U;
  // Calculate matrix flow next.

  for (size_t m = 0; m < matrix_water.size (); m++)
    {
      water_attempt (m);
      Treelog::Open nest (msg, matrix_water[m]->name);
      try
        {
          matrix_water[m]->tick (msg, geo, soil, soil_heat,
                                 first, surface, top_edge, 
                                 last, groundwater, bottom_edge,
                                 S, h_old, Theta_old, h_ice, h, Theta, 0U, q, 
                                 dt);

          for (size_t i = last + 2; i <= soil.size (); i++)
            {
              q[i] = q[i-1];
              q_p[i] = q_p[i-1];
            }

          // Update surface and groundwater reservoirs.
          surface.accept_top (q[0] * dt, geo, 0U, dt, msg);
          surface.update_pond_average (geo);
          const double q_down = q[soil.size ()] + q_p[soil.size ()];
          groundwater.accept_bottom (q_down * dt, geo, soil.size ());
          if (m > 0)
            msg.debug ("Reserve model succeeded");
          return;
        }
      catch (const char* error)
        {
          msg.debug (std::string ("UZ problem: ") + error);
        }
      catch (const std::string& error)
        {
          msg.debug (std::string ("UZ trouble: ") + error);
        }
      
      water_failure (m);
    }
  throw "Water matrix transport failed"; 
}