Beispiel #1
0
int main(int argc, char **argv) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 3) error("Not enough parameters");

	HcurlShapesetLobattoHex shapeset;

	printf("* Loading mesh '%s'\n", argv[1]);
	Mesh mesh;
	Mesh3DReader mesh_loader;
	if (!mesh_loader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]);

	printf("* Setting the space up\n");
	HcurlSpace space(&mesh, &shapeset);
	space.set_bc_types(bc_types);

	int order;
	sscanf(argv[2], "%d", &order);
	int dir_x = order, dir_y = order, dir_z = order;
	order3_t o(dir_x, dir_y, dir_z);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o.x, o.y ,o.z);
	space.set_uniform_order(o);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM);
	wf.add_matrix_form_surf(bilinear_form_surf<double, scalar>, bilinear_form_surf<ord_t, ord_t>);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>);
	wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>);

	LinearProblem lp(&wf, &space);

	// assemble stiffness matrix
	Timer assemble_timer("Assembling stiffness matrix");
	assemble_timer.start();
	lp.assemble(&mat, &rhs);
	assemble_timer.stop();

	// solve the stiffness matrix
	Timer solve_timer("Solving stiffness matrix");
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();

//#ifdef OUTPUT_DIR
	mat.dump(stdout, "a");
	rhs.dump(stdout, "b");
//#endif

	if (solved) {
		scalar *s = solver.get_solution();

		Solution sln(&mesh);
		sln.set_coeff_vector(&space, s);

		printf("* Solution:\n");
		for (int i = 1; i <= ndofs; i++) {
			printf(" x[% 3d] = " SCALAR_FMT "\n", i, SCALAR(s[i]));
		}

		// output the measured values
		printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds());
		printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds());

		// norm
		ExactSolution ex_sln(&mesh, exact_solution);
		double hcurl_sln_norm = hcurl_norm(&sln);
		double hcurl_err_norm = hcurl_error(&sln, &ex_sln);
		printf(" - Hcurl solution norm: % le\n", hcurl_sln_norm);
		printf(" - Hcurl error norm:    % le\n", hcurl_err_norm);

		double l2_sln_norm = l2_norm_hcurl(&sln);
		double l2_err_norm = l2_error_hcurl(&sln, &ex_sln);
		printf(" - L2 solution norm:    % le\n", l2_sln_norm);
		printf(" - L2 error norm:       % le\n", l2_err_norm);

		if (hcurl_err_norm > EPS || l2_err_norm > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}


#if 0 //def OUTPUT_DIR
		// output
		printf("starting output\n");
		const char *of_name = OUTPUT_DIR "/solution.vtk";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			ExactSolution ex_sln(&mesh, exact_solution_0, exact_solution_1, exact_solution_2);

			RealPartFilter real_sln(&mesh, &sln, FN_VAL);
			ImagPartFilter imag_sln(&mesh, &sln, FN_VAL);

			DiffFilter eh(&mesh, &sln, &ex_sln);
			DiffFilter eh_dx(&mesh, &sln, &ex_sln, FN_DX, FN_DX);
//			DiffFilter eh_dy(&mesh, &sln, &ex_sln, FN_DY, FN_DY);
//			DiffFilter eh_dz(&mesh, &sln, &ex_sln, FN_DZ, FN_DZ);

//			GmshOutputEngine output(ofile);
			VtkOutputEngine output(ofile);

			output.out(&real_sln, "real_Uh", FN_VAL);
			output.out(&imag_sln, "imag_Uh", FN_VAL);

			output.out(&real_sln, "real_Uh_0", FN_VAL_0);
			output.out(&real_sln, "real_Uh_1", FN_VAL_1);
			output.out(&real_sln, "real_Uh_2", FN_VAL_2);

			output.out(&imag_sln, "imag_Uh_0", FN_VAL_0);
			output.out(&imag_sln, "imag_Uh_1", FN_VAL_1);
			output.out(&imag_sln, "imag_Uh_2", FN_VAL_2);

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	return res;
}
Beispiel #2
0
int main(int argc, char **argv) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 3) error("Not enough parameters");

	printf("* Loading mesh '%s'\n", argv[1]);
	Mesh mesh;
	H3DReader mesh_loader;
	if (!mesh_loader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]);

	int o;
	sscanf(argv[2], "%d", &o);
	printf("  - Setting uniform order to %d\n", o);

	printf("* Setting the space up\n");
	H1Space space(&mesh, bc_types, NULL, o);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf;
	wf.add_matrix_form(FORM_CB(bilinear_form), SYM);
	wf.add_vector_form(FORM_CB(linear_form));

	DiscreteProblem dp(&wf, &space, true);

	// assemble stiffness matrix
	Timer assemble_timer("Assembling stiffness matrix");
	assemble_timer.start();
	dp.assemble(&mat, &rhs);
	assemble_timer.stop();

	// solve the stiffness matrix
	Timer solve_timer("Solving stiffness matrix");
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();

	// output the measured values
	printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds());
	printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds());

//	mat.dump(stdout, "a");
//	rhs.dump(stdout, "b");

	if (solved) {
		Solution sln(&mesh);
		sln.set_coeff_vector(&space, solver.get_solution() );

		ExactSolution ex_sln(&mesh, exact_solution);
		// norm
//		double h1_sln_norm = h1_norm(&sln);
		double h1_err_norm = h1_error(&sln, &ex_sln);

//		printf(" - H1 solution norm:   % le\n", h1_sln_norm);
		printf(" - H1 error norm:      % le\n", h1_err_norm);

//		double l2_sln_norm = l2_norm(&sln);
//		double l2_err_norm = l2_error(&sln, &ex_sln);
//		printf(" - L2 solution norm:   % le\n", l2_sln_norm);
//		printf(" - L2 error norm:      % le\n", l2_err_norm);

//		if (h1_err_norm > EPS || l2_err_norm > EPS) {
			// calculated solution is not enough precise
//			res = ERR_FAILURE;
//		}

#ifdef AOUTPUT_DIR
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			DiffFilter eh(&sln, &ex_sln);
//			DiffFilter eh_dx(&sln, &ex_sln, FN_DX, FN_DX);
//			DiffFilter eh_dy(&sln, &ex_sln, FN_DY, FN_DY);
//			DiffFilter eh_dz(&sln, &ex_sln, FN_DZ, FN_DZ);

			GmshOutputEngine output(ofile);
			output.out(&sln, "Uh");
//			output.out(&sln, "Uh dx", FN_DX_0);
//			output.out(&sln, "Uh dy", FN_DY_0);
//			output.out(&sln, "Uh dz", FN_DZ_0);
			output.out(&eh, "Eh");
//			output.out(&eh_dx, "Eh dx");
//			output.out(&eh_dy, "Eh dy");
//			output.out(&eh_dz, "Eh dz");
			output.out(&ex_sln, "U");
//			output.out(&ex_sln, "U dx", FN_DX_0);
//			output.out(&ex_sln, "U dy", FN_DY_0);
//			output.out(&ex_sln, "U dz", FN_DZ_0);

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	return res;
}
Beispiel #3
0
int main(int argc, char **args) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 2) error("Not enough parameters");

	H1ShapesetLobattoHex shapeset;

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh;
	Mesh3DReader mesh_loader;
	if (!mesh_loader.load(args[1], &mesh)) error("Loading mesh file '%s'\n", args[1]);

	printf("* Setup space #1\n");
	H1Space space1(&mesh, &shapeset);
	space1.set_bc_types(bc_types);

	order3_t o1(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o1.x, o1.y, o1.z);
	space1.set_uniform_order(o1);

	printf("* Setup space #2\n");
	H1Space space2(&mesh, &shapeset);
	space2.set_bc_types(bc_types);

	order3_t o2(4, 4, 4);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o2.x, o2.y, o2.z);
	space2.set_uniform_order(o2);

	int ndofs = 0;
	ndofs += space1.assign_dofs();
	ndofs += space2.assign_dofs(ndofs);
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf(2);
	wf.add_matrix_form(0, 0, bilinear_form_1<double, scalar>, bilinear_form_1<ord_t, ord_t>, SYM);
	wf.add_vector_form(0, linear_form_1<double, scalar>, linear_form_1<ord_t, ord_t>);

	wf.add_matrix_form(1, 1, bilinear_form_2<double, scalar>, bilinear_form_2<ord_t, ord_t>, SYM);
	wf.add_vector_form(1, linear_form_2<double, scalar>, linear_form_2<ord_t, ord_t>);

	LinearProblem lp(&wf, Tuple<Space *>(&space1, &space2));

	// assemble stiffness matrix
	Timer assemble_timer("Assembling stiffness matrix");
	assemble_timer.start();
	lp.assemble(&mat, &rhs);
	assemble_timer.stop();

	// solve the stiffness matrix
	Timer solve_timer("Solving stiffness matrix");
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();

	// output the measured values
	printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds());
	printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds());

	if (solved) {
		// solution 1
		Solution sln1(&mesh);
		sln1.set_coeff_vector(&space1, solver.get_solution());

		ExactSolution esln1(&mesh, exact_sln_fn_1);
		// norm
		double h1_sln_norm1 = h1_norm(&sln1);
		double h1_err_norm1 = h1_error(&sln1, &esln1);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm1);
		printf(" - H1 error norm:      % le\n", h1_err_norm1);

		double l2_sln_norm1 = l2_norm(&sln1);
		double l2_err_norm1 = l2_error(&sln1, &esln1);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm1);
		printf(" - L2 error norm:      % le\n", l2_err_norm1);

		if (h1_err_norm1 > EPS || l2_err_norm1 > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

		// solution 2
		Solution sln2(&mesh);
		sln2.set_coeff_vector(&space2, solver.get_solution());

		ExactSolution esln2(&mesh, exact_sln_fn_2);
		// norm
		double h1_sln_norm2 = h1_norm(&sln2);
		double h1_err_norm2 = h1_error(&sln2, &esln2);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm2);
		printf(" - H1 error norm:      % le\n", h1_err_norm2);

		double l2_sln_norm2 = l2_norm(&sln2);
		double l2_err_norm2 = l2_error(&sln2, &esln2);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm2);
		printf(" - L2 error norm:      % le\n", l2_err_norm2);

		if (h1_err_norm2 > EPS || l2_err_norm2 > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

#ifdef OUTPUT_DIR
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			GmshOutputEngine output(ofile);
			output.out(&sln1, "Uh_1");
			output.out(&esln1, "U1");
			output.out(&sln2, "Uh_2");
			output.out(&esln2, "U2");

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}
Beispiel #4
0
int main(int argc, char **args) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	TRACE_START("trace.txt");
	DEBUG_OUTPUT_ON;
	SET_VERBOSE_LEVEL(0);

	if (argc < 5) error("Not enough parameters");

	sscanf(args[2], "%d", &m);
	sscanf(args[3], "%d", &n);
	sscanf(args[4], "%d", &o);

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh;
	Mesh3DReader mloader;
	if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'\n", args[1]);

	H1ShapesetLobattoHex shapeset;
	printf("* Setting the space up\n");
	H1Space space(&mesh, &shapeset);
	space.set_bc_types(bc_types);

	int mx = maxn(4, m, n, o, 4);
	order3_t order(mx, mx, mx);
//	order3_t order(1, 1, 1);
//	order3_t order(m, n, o);
	printf("  - Setting uniform order to (%d, %d, %d)\n", mx, mx, mx);
	space.set_uniform_order(order);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>);
	wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>);

	LinearProblem lp(&wf, &space);

	// assemble stiffness matrix
	printf("  - assembling...\n"); fflush(stdout);
	Timer assemble_timer;
	assemble_timer.start();
	lp.assemble(&mat, &rhs);
	assemble_timer.stop();
	printf("%s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds());

	// solve the stiffness matrix
	printf("  - solving... "); fflush(stdout);
	Timer solve_timer;
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();
	printf("%s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds());

//	mat.dump(stdout, "a");
//	rhs.dump(stdout, "b");

	if (solved) {
		Solution sln(&mesh);
		sln.set_coeff_vector(&space, solver.get_solution());

//		printf("* Solution:\n");
//		double *s = solver.get_solution();
//		for (int i = 1; i <= ndofs; i++) {
//			printf(" x[% 3d] = % lf\n", i, s[i]);
//		}

		ExactSolution ex_sln(&mesh, exact_solution);
		// norm
		double h1_sln_norm = h1_norm(&sln);
		double h1_err_norm = h1_error(&sln, &ex_sln);
		printf(" - H1 solution norm:   % le\n", h1_sln_norm);
		printf(" - H1 error norm:      % le\n", h1_err_norm);

		double l2_sln_norm = l2_norm(&sln);
		double l2_err_norm = l2_error(&sln, &ex_sln);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm);
		printf(" - L2 error norm:      % le\n", l2_err_norm);

		if (h1_err_norm > EPS || l2_err_norm > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

#if 0 //def OUTPUT_DIR
		printf("* Output\n");
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			ExactSolution ex_sln(&mesh, exact_solution);
			DiffFilter eh(&sln, &ex_sln);
//			DiffFilter eh_dx(&mesh, &sln, &ex_sln, FN_DX, FN_DX);
//			DiffFilter eh_dy(&mesh, &sln, &ex_sln, FN_DY, FN_DY);
//			DiffFilter eh_dz(&mesh, &sln, &ex_sln, FN_DZ, FN_DZ);

			GmshOutputEngine output(ofile);
			output.out(&sln, "Uh");
//			output.out(&sln, "Uh dx", FN_DX_0);
//			output.out(&sln, "Uh dy", FN_DY_0);
//			output.out(&sln, "Uh dz", FN_DZ_0);
			output.out(&eh, "Eh");
//			output.out(&eh_dx, "Eh dx");
//			output.out(&eh_dy, "Eh dy");
//			output.out(&eh_dz, "Eh dz");
			output.out(&ex_sln, "U");
//			output.out(&ex_sln, "U dx", FN_DX_0);
//			output.out(&ex_sln, "U dy", FN_DY_0);
//			output.out(&ex_sln, "U dz", FN_DZ_0);

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}
	else
		res = ERR_FAILURE;

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}
Beispiel #5
0
/***********************************************************************************
 * main program                                                                    *
 ***********************************************************************************/
int main(int argc, char **argv) {
#ifdef WITH_PETSC
  PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL);
  PetscPushErrorHandler(PetscIgnoreErrorHandler, PETSC_NULL);                   // Disable PETSc error handler.
#endif

  // Load the initial mesh. 
  Mesh mesh;
  Mesh3DReader mloader;
  mloader.load("l-beam.mesh3d", &mesh);

  // Initial uniform mesh refinements. 
  printf("Performing %d initial mesh refinements.\n", INIT_REF_NUM);
  for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);
  Word_t (nelem) = mesh.get_num_elements();
  printf("New number of elements is %d.\n", (int) nelem);

  // Initialize the shapeset and the cache. 
  H1ShapesetLobattoHex shapeset;

#if defined WITH_UMFPACK
  UMFPackMatrix mat;
  UMFPackVector rhs;
  UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
  PardisoMatrix mat;
  PardisoVector rhs;
  PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
  PetscMatrix mat;
  PetscVector rhs;
  PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
  MumpsMatrix mat;
  MumpsVector rhs;
  MumpsSolver solver(&mat, &rhs);
#endif

  // Create H1 spaces x-displacement component. 
  H1Space xdisp(&mesh, &shapeset);
  xdisp.set_bc_types(bc_types_x);
  xdisp.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

  // Create H1 spaces y-displacement component. 
  H1Space ydisp(&mesh, &shapeset);
  ydisp.set_bc_types(bc_types_y);
  ydisp.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

  // Create H1 spaces z-displacement component. 
  H1Space zdisp(&mesh, &shapeset);
  zdisp.set_bc_types(bc_types_z);
  zdisp.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

  // Assign DOF. 
  int ndofs = 0;
  ndofs += xdisp.assign_dofs(ndofs);
  ndofs += ydisp.assign_dofs(ndofs);
  ndofs += zdisp.assign_dofs(ndofs);
  printf("  - Number of DOFs: %d\n", ndofs);

  // Initialized the Weak formulation.
  WeakForm wf(3);
  wf.add_matrix_form(0, 0, bilinear_form_0_0<double, scalar>, bilinear_form_0_0<ord_t, ord_t>, SYM);
  wf.add_matrix_form(0, 1, bilinear_form_0_1<double, scalar>, bilinear_form_0_1<ord_t, ord_t>, SYM);
  wf.add_matrix_form(0, 2, bilinear_form_0_2<double, scalar>, bilinear_form_0_2<ord_t, ord_t>, SYM);
  wf.add_vector_form_surf(0, surf_linear_form_0<double, scalar>, surf_linear_form_0<ord_t, ord_t>);

  wf.add_matrix_form(1, 1, bilinear_form_1_1<double, scalar>, bilinear_form_1_1<ord_t, ord_t>, SYM);
  wf.add_matrix_form(1, 2, bilinear_form_1_2<double, scalar>, bilinear_form_1_2<ord_t, ord_t>, SYM);
  wf.add_vector_form_surf(1, surf_linear_form_1<double, scalar>, surf_linear_form_1<ord_t, ord_t>);

  wf.add_matrix_form(2, 2, bilinear_form_2_2<double, scalar>, bilinear_form_2_2<ord_t, ord_t>, SYM);
  wf.add_vector_form_surf(2, surf_linear_form_2<double, scalar>, surf_linear_form_2<ord_t, ord_t>, 5);

  // Initialize the mesh problem.
  LinearProblem lp(&wf);
  lp.set_spaces(Tuple<Space *>(&xdisp, &ydisp, &zdisp));

  // Assemble stiffness matrix
  printf("  - Assembling... "); fflush(stdout);
  Timer tmr_assemble;
  tmr_assemble.start();
  bool assembled = lp.assemble(&mat, &rhs);
  tmr_assemble.stop();
  if (assembled)
    printf("done in %s (%lf secs)\n", tmr_assemble.get_human_time(), tmr_assemble.get_seconds());
  else
    error("failed!");

  // Solve the stiffness matrix.
  printf("  - Solving... "); fflush(stdout);
  Timer tmr_solve;
  tmr_solve.start();
  bool solved = solver.solve();
  tmr_solve.stop();
  if (solved)
    printf("done in %s (%lf secs)\n", tmr_solve.get_human_time(), tmr_solve.get_seconds());
  else {
    printf("failed\n");
  }

  // Construct a solution. 
  double *s = solver.get_solution();
  Solution xsln(&mesh), ysln(&mesh), zsln(&mesh);
  xsln.set_fe_solution(&xdisp, s);
  ysln.set_fe_solution(&ydisp, s);
  zsln.set_fe_solution(&zdisp, s);

  // Output the solutions. 
  printf("  - Output... "); fflush(stdout);
  out_fn(&xsln, &ysln, &zsln, "disp");
  printf("done\n");

#ifdef WITH_PETSC
  mat.free();
  rhs.free();
  PetscFinalize();
#endif

  return 1;
}
Beispiel #6
0
/***********************************************************************************
 * main program                                                                    *
************************************************************************************/
int main(int argc, char **args)
{

#ifdef WITH_PETSC
    PetscInitialize(NULL, NULL, PETSC_NULL, PETSC_NULL);
    PetscPushErrorHandler(PetscIgnoreErrorHandler, PETSC_NULL);		// Disable PETSc error handler.
#endif

    // Load the inital mesh.
    Mesh mesh;
    Mesh3DReader mesh_loader;
    mesh_loader.load("hexahedron.mesh3d", &mesh);

    // Initial uniform  mesh refinements.
    printf("Performing %d initial mesh refinements.\n", INIT_REF_NUM);
    for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);
    Word_t (nelem) = mesh.get_num_elements();
    printf("New number of elements is %d.\n", nelem);

    //Initialize the shapeset and the cache.
    H1ShapesetLobattoHex shapeset;

    //Matrix solver.
#if defined WITH_UMFPACK
    UMFPackMatrix mat;
    UMFPackVector rhs;
    UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
    PetscMatrix mat;
    PetscVector rhs;
    PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
    MumpsMatrix mat;
    MumpsVector rhs;
    MumpsSolver solver(&mat, &rhs);
#endif

    // Graphs of DOF convergence.
    GnuplotGraph graph;
    graph.set_captions("", "Degrees of Freedom", "Error [%]");
    graph.set_log_y();
    graph.add_row("Total error", "k", "-", "O");

    // Create H1 space to setup the problem.
    H1Space space(&mesh, &shapeset);
    space.set_bc_types(bc_types);
    space.set_essential_bc_values(essential_bc_values);
    space.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

    // Initialize the weak formulation.
    WeakForm wf;
    wf.add_matrix_form(biform<double, double>, biform<ord_t, ord_t>, SYM, ANY);
    wf.add_vector_form(liform<double, double>, liform<ord_t, ord_t>, ANY);

    // Initialize the coarse mesh problem.
    LinProblem lp(&wf);
    lp.set_space(&space);

    // Adaptivity loop.
    int as = 0;
    bool done = false;
    do {
        printf("\n---- Adaptivity step %d:\n", as);

        printf("\nSolving on coarse mesh:\n");

        // Procedures for coarse mesh problem.
        // Assign DOF.
        int ndof = space.assign_dofs();
        printf("  - Number of DOF: %d\n", ndof);

        // Assemble stiffness matrix and rhs.
        printf("  - Assembling... ");
        fflush(stdout);
        if (lp.assemble(&mat, &rhs))
            printf("done in %lf secs.\n", lp.get_time());
        else
            error("failed!");

        // Solve the system.
        printf("  - Solving... ");
        fflush(stdout);
        bool solved = solver.solve();
        if (solved)
            printf("done in %lf secs.\n", solver.get_time());
        else
        {
            printf("Failed.\n");
            break;
        }

        // Construct a solution.
        Solution sln(&mesh);
        sln.set_fe_solution(&space, solver.get_solution());

        // Output the orders and the solution.
        if (do_output)
        {
            out_orders(&space, "order", as);
            out_fn(&sln, "sln", as);
        }

        // Solving fine mesh problem.
        printf("Solving on fine mesh:\n");

        // Matrix solver.
#if defined WITH_UMFPACK
        UMFPackLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_PETSC
        PetscLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_MUMPS
        MumpsSolver rsolver(&mat, &rhs);
#endif

        // Construct the refined mesh for reference(refined) solution.
        Mesh rmesh;
        rmesh.copy(mesh);
        rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);

        // Setup space for the reference (globally refined) solution.
        Space *rspace = space.dup(&rmesh);
        rspace->copy_orders(space, 1);

        // Initialize the mesh problem for reference solution.
        LinProblem rlp(&wf);
        rlp.set_space(rspace);

        // Assign DOF.
        int rndof = rspace->assign_dofs();
        printf("  - Number of DOF: %d\n", rndof);

        // Assemble stiffness matric and rhs.
        printf("  - Assembling... ");
        fflush(stdout);
        if (rlp.assemble(&mat, &rhs))
            printf("done in %lf secs.\n", rlp.get_time());
        else
            error("failed!");

        // Solve the system.
        printf("  - Solving... ");
        fflush(stdout);
        bool rsolved = rsolver.solve();
        if (rsolved)
            printf("done in %lf secs.\n", rsolver.get_time());
        else
        {
            printf("failed.\n");
            break;
        }

        // Construct the reference(refined) solution.
        Solution rsln(&rmesh);
        rsln.set_fe_solution(rspace, rsolver.get_solution());

        // Compare coarse and fine mesh.
        // Calculate the error estimate wrt. refined mesh solution.
        double err = h1_error(&sln, &rsln);
        printf("  - H1 error: % lf\n", err * 100);

        // Save it to the graph.
        graph.add_value(0, ndof, err * 100);
        if (do_output)
            graph.save("conv.gp");

        // Calculate error estimates for adaptivity.
        printf("Adaptivity\n");
        printf("  - calculating error: ");
        fflush(stdout);
        H1Adapt hp(&space);
        double err_est = hp.calc_error(&sln, &rsln) * 100;
        printf("% lf %%\n", err_est);

        // If error is too large, adapt the mesh.
        if (err_est < ERR_STOP)
        {
            printf("\nDone\n");
            break;
        }
        printf("  - adapting... ");
        fflush(stdout);
        hp.adapt(THRESHOLD);
        printf("done in %lf secs (refined %d element(s)).\n", hp.get_adapt_time(), hp.get_num_refined_elements());

        if (rndof >= NDOF_STOP)
        {
            printf("\nDone.\n");
            break;
        }

        // Clean up.
        delete rspace;

        // Next adaptivity step.
        as++;

        mat.free();
        rhs.free();
    } while (!done);

#ifdef WITH_PETSC
    PetscFinalize();
#endif

    return 1;
}