static bool compile(const Options& _options, uint32_t _version, const std::string& _code, bx::WriterI* _writer) { char ch = _options.shaderType; const glslopt_shader_type type = ch == 'f' ? kGlslOptShaderFragment : (ch == 'c' ? kGlslOptShaderCompute : kGlslOptShaderVertex); glslopt_target target = kGlslTargetOpenGL; switch (_version) { case BX_MAKEFOURCC('M', 'T', 'L', 0): target = kGlslTargetMetal; break; case 2: target = kGlslTargetOpenGLES20; break; case 3: target = kGlslTargetOpenGLES30; break; default: target = kGlslTargetOpenGL; break; } glslopt_ctx* ctx = glslopt_initialize(target); glslopt_shader* shader = glslopt_optimize(ctx, type, _code.c_str(), 0); if (!glslopt_get_status(shader) ) { const char* log = glslopt_get_log(shader); int32_t source = 0; int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; bool found = false || 3 == sscanf(log, "%u:%u(%u):", &source, &line, &column) || 2 == sscanf(log, "(%u,%u):", &line, &column) ; if (found && 0 != line) { start = bx::uint32_imax(1, line-10); end = start + 20; } printCode(_code.c_str(), line, start, end, column); fprintf(stderr, "Error: %s\n", log); glslopt_shader_delete(shader); glslopt_cleanup(ctx); return false; } const char* optimizedShader = glslopt_get_output(shader); // Trim all directives. while ('#' == *optimizedShader) { optimizedShader = bx::strnl(optimizedShader); } { char* code = const_cast<char*>(optimizedShader); strReplace(code, "gl_FragDepthEXT", "gl_FragDepth"); strReplace(code, "texture2DLodARB", "texture2DLod"); strReplace(code, "texture2DLodEXT", "texture2DLod"); strReplace(code, "texture2DGradARB", "texture2DGrad"); strReplace(code, "texture2DGradEXT", "texture2DGrad"); strReplace(code, "textureCubeLodARB", "textureCubeLod"); strReplace(code, "textureCubeLodEXT", "textureCubeLod"); strReplace(code, "textureCubeGradARB", "textureCubeGrad"); strReplace(code, "textureCubeGradEXT", "textureCubeGrad"); strReplace(code, "texture2DProjLodARB", "texture2DProjLod"); strReplace(code, "texture2DProjLodEXT", "texture2DProjLod"); strReplace(code, "texture2DProjGradARB", "texture2DProjGrad"); strReplace(code, "texture2DProjGradEXT", "texture2DProjGrad"); strReplace(code, "shadow2DARB", "shadow2D"); strReplace(code, "shadow2DEXT", "shadow2D"); strReplace(code, "shadow2DProjARB", "shadow2DProj"); strReplace(code, "shadow2DProjEXT", "shadow2DProj"); } UniformArray uniforms; if (target != kGlslTargetMetal) { const char* parse = optimizedShader; while (NULL != parse && *parse != '\0') { parse = bx::strws(parse); const char* eol = bx::strFind(parse, ';'); if (NULL != eol) { const char* qualifier = parse; parse = bx::strws(bx::strSkipWord(parse) ); if (0 == bx::strCmp(qualifier, "attribute", 9) || 0 == bx::strCmp(qualifier, "varying", 7) || 0 == bx::strCmp(qualifier, "in", 2) || 0 == bx::strCmp(qualifier, "out", 3) ) { // skip attributes and varyings. parse = eol + 1; continue; } if (0 == bx::strCmp(parse, "tmpvar", 6) ) { // skip temporaries parse = eol + 1; continue; } if (0 != bx::strCmp(qualifier, "uniform", 7) ) { // end if there is no uniform keyword. parse = NULL; continue; } const char* precision = NULL; const char* typen = parse; if (0 == bx::strCmp(typen, "lowp", 4) || 0 == bx::strCmp(typen, "mediump", 7) || 0 == bx::strCmp(typen, "highp", 5) ) { precision = typen; typen = parse = bx::strws(bx::strSkipWord(parse) ); } BX_UNUSED(precision); char uniformType[256]; parse = bx::strSkipWord(parse); if (0 == bx::strCmp(typen, "sampler", 7) ) { bx::strCopy(uniformType, BX_COUNTOF(uniformType), "int"); } else { bx::strCopy(uniformType, int32_t(parse-typen+1), typen); } const char* name = parse = bx::strws(parse); char uniformName[256]; uint8_t num = 1; const char* array = bx::strFind(bx::StringView(name, int32_t(eol-parse) ), "["); if (NULL != array) { bx::strCopy(uniformName, int32_t(array-name+1), name); char arraySize[32]; const char* end = bx::strFind(bx::StringView(array, int32_t(eol-array) ), "]"); bx::strCopy(arraySize, int32_t(end-array), array+1); num = uint8_t(atoi(arraySize) ); } else { bx::strCopy(uniformName, int32_t(eol-name+1), name); } Uniform un; un.type = nameToUniformTypeEnum(uniformType); if (UniformType::Count != un.type) { BX_TRACE("name: %s (type %d, num %d)", uniformName, un.type, num); un.name = uniformName; un.num = num; un.regIndex = 0; un.regCount = num; uniforms.push_back(un); } parse = eol + 1; } } } else { const char* parse = bx::strFind(optimizedShader, "struct xlatMtlShaderUniform {"); const char* end = parse; if (NULL != parse) { parse += bx::strLen("struct xlatMtlShaderUniform {"); end = bx::strFind(parse, "};"); } while ( parse < end && *parse != '\0') { parse = bx::strws(parse); const char* eol = bx::strFind(parse, ';'); if (NULL != eol) { const char* typen = parse; char uniformType[256]; parse = bx::strSkipWord(parse); bx::strCopy(uniformType, int32_t(parse-typen+1), typen); const char* name = parse = bx::strws(parse); char uniformName[256]; uint8_t num = 1; const char* array = bx::strFind(bx::StringView(name, int32_t(eol-parse) ), "["); if (NULL != array) { bx::strCopy(uniformName, int32_t(array-name+1), name); char arraySize[32]; const char* arrayEnd = bx::strFind(bx::StringView(array, int32_t(eol-array) ), "]"); bx::strCopy(arraySize, int32_t(arrayEnd-array), array+1); num = uint8_t(atoi(arraySize) ); } else { bx::strCopy(uniformName, int32_t(eol-name+1), name); } Uniform un; un.type = nameToUniformTypeEnum(uniformType); if (UniformType::Count != un.type) { BX_TRACE("name: %s (type %d, num %d)", uniformName, un.type, num); un.name = uniformName; un.num = num; un.regIndex = 0; un.regCount = num; uniforms.push_back(un); } parse = eol + 1; } } } uint16_t count = (uint16_t)uniforms.size(); bx::write(_writer, count); for (UniformArray::const_iterator it = uniforms.begin(); it != uniforms.end(); ++it) { const Uniform& un = *it; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); uint8_t uniformType = uint8_t(un.type); bx::write(_writer, uniformType); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } uint32_t shaderSize = (uint32_t)bx::strLen(optimizedShader); bx::write(_writer, shaderSize); bx::write(_writer, optimizedShader, shaderSize); uint8_t nul = 0; bx::write(_writer, nul); if (_options.disasm ) { std::string disasmfp = _options.outputFilePath + ".disasm"; writeFile(disasmfp.c_str(), optimizedShader, shaderSize); } glslopt_shader_delete(shader); glslopt_cleanup(ctx); return true; }
bool compileGLSLShader(bx::CommandLine& _cmdLine, uint32_t _gles, const std::string& _code, bx::WriterI* _writer) { char ch = tolower(_cmdLine.findOption('\0', "type")[0]); const glslopt_shader_type type = ch == 'f' ? kGlslOptShaderFragment : (ch == 'c' ? kGlslOptShaderCompute : kGlslOptShaderVertex); glslopt_target target = kGlslTargetOpenGL; switch (_gles) { case BX_MAKEFOURCC('M', 'T', 'L', 0): target = kGlslTargetMetal; break; case 2: target = kGlslTargetOpenGLES20; break; case 3: target = kGlslTargetOpenGLES30; break; default: target = kGlslTargetOpenGL; break; } glslopt_ctx* ctx = glslopt_initialize(target); glslopt_shader* shader = glslopt_optimize(ctx, type, _code.c_str(), 0); if (!glslopt_get_status(shader) ) { const char* log = glslopt_get_log(shader); int32_t source = 0; int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; if (3 == sscanf(log, "%u:%u(%u):", &source, &line, &column) && 0 != line) { start = bx::uint32_imax(1, line-10); end = start + 20; } printCode(_code.c_str(), line, start, end); fprintf(stderr, "Error: %s\n", log); glslopt_cleanup(ctx); return false; } const char* optimizedShader = glslopt_get_output(shader); // Trim all directives. while ('#' == *optimizedShader) { optimizedShader = bx::strnl(optimizedShader); } if (0 != _gles) { char* code = const_cast<char*>(optimizedShader); strreplace(code, "gl_FragDepthEXT", "gl_FragDepth"); strreplace(code, "texture2DLodEXT", "texture2DLod"); strreplace(code, "texture2DProjLodEXT", "texture2DProjLod"); strreplace(code, "textureCubeLodEXT", "textureCubeLod"); strreplace(code, "texture2DGradEXT", "texture2DGrad"); strreplace(code, "texture2DProjGradEXT", "texture2DProjGrad"); strreplace(code, "textureCubeGradEXT", "textureCubeGrad"); strreplace(code, "shadow2DEXT", "shadow2D"); strreplace(code, "shadow2DProjEXT", "shadow2DProj"); } UniformArray uniforms; { const char* parse = optimizedShader; while (NULL != parse && *parse != '\0') { parse = bx::strws(parse); const char* eol = strchr(parse, ';'); if (NULL != eol) { const char* qualifier = parse; parse = bx::strws(bx::strword(parse) ); if (0 == strncmp(qualifier, "attribute", 9) || 0 == strncmp(qualifier, "varying", 7) ) { // skip attributes and varyings. parse = eol + 1; continue; } if (0 != strncmp(qualifier, "uniform", 7) ) { // end if there is no uniform keyword. parse = NULL; continue; } const char* precision = NULL; const char* typen = parse; if (0 == strncmp(typen, "lowp", 4) || 0 == strncmp(typen, "mediump", 7) || 0 == strncmp(typen, "highp", 5) ) { precision = typen; typen = parse = bx::strws(bx::strword(parse) ); } BX_UNUSED(precision); char uniformType[256]; parse = bx::strword(parse); if (0 == strncmp(typen, "sampler", 7) ) { strcpy(uniformType, "int"); } else { bx::strlcpy(uniformType, typen, parse-typen+1); } const char* name = parse = bx::strws(parse); char uniformName[256]; uint8_t num = 1; const char* array = bx::strnstr(name, "[", eol-parse); if (NULL != array) { bx::strlcpy(uniformName, name, array-name+1); char arraySize[32]; const char* end = bx::strnstr(array, "]", eol-array); bx::strlcpy(arraySize, array+1, end-array); num = atoi(arraySize); } else { bx::strlcpy(uniformName, name, eol-name+1); } Uniform un; un.type = nameToUniformTypeEnum(uniformType); if (UniformType::Count != un.type) { BX_TRACE("name: %s (type %d, num %d)", uniformName, un.type, num); un.name = uniformName; un.num = num; un.regIndex = 0; un.regCount = num; uniforms.push_back(un); } parse = eol + 1; } } } uint16_t count = (uint16_t)uniforms.size(); bx::write(_writer, count); for (UniformArray::const_iterator it = uniforms.begin(); it != uniforms.end(); ++it) { const Uniform& un = *it; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); uint8_t uniformType = un.type; bx::write(_writer, uniformType); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } uint32_t shaderSize = (uint32_t)strlen(optimizedShader); bx::write(_writer, shaderSize); bx::write(_writer, optimizedShader, shaderSize); uint8_t nul = 0; bx::write(_writer, nul); glslopt_cleanup(ctx); return true; }
static bool compile(bx::CommandLine& _cmdLine, uint32_t _version, const std::string& _code, bx::WriterI* _writer, bool _firstPass) { const char* profile = _cmdLine.findOption('p', "profile"); if (NULL == profile) { fprintf(stderr, "Error: Shader profile must be specified.\n"); return false; } s_compiler = load(); bool result = false; bool debug = _cmdLine.hasArg('\0', "debug"); uint32_t flags = D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY; flags |= debug ? D3DCOMPILE_DEBUG : 0; flags |= _cmdLine.hasArg('\0', "avoid-flow-control") ? D3DCOMPILE_AVOID_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "no-preshader") ? D3DCOMPILE_NO_PRESHADER : 0; flags |= _cmdLine.hasArg('\0', "partial-precision") ? D3DCOMPILE_PARTIAL_PRECISION : 0; flags |= _cmdLine.hasArg('\0', "prefer-flow-control") ? D3DCOMPILE_PREFER_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "backwards-compatibility") ? D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY : 0; bool werror = _cmdLine.hasArg('\0', "Werror"); if (werror) { flags |= D3DCOMPILE_WARNINGS_ARE_ERRORS; } uint32_t optimization = 3; if (_cmdLine.hasArg(optimization, 'O') ) { optimization = bx::uint32_min(optimization, BX_COUNTOF(s_optimizationLevelD3D11) - 1); flags |= s_optimizationLevelD3D11[optimization]; } else { flags |= D3DCOMPILE_SKIP_OPTIMIZATION; } BX_TRACE("Profile: %s", profile); BX_TRACE("Flags: 0x%08x", flags); ID3DBlob* code; ID3DBlob* errorMsg; // Output preprocessed shader so that HLSL can be debugged via GPA // or PIX. Compiling through memory won't embed preprocessed shader // file path. std::string hlslfp; if (debug) { hlslfp = _cmdLine.findOption('o'); hlslfp += ".hlsl"; writeFile(hlslfp.c_str(), _code.c_str(), (int32_t)_code.size() ); } HRESULT hr = D3DCompile(_code.c_str() , _code.size() , hlslfp.c_str() , NULL , NULL , "main" , profile , flags , 0 , &code , &errorMsg ); if (FAILED(hr) || (werror && NULL != errorMsg) ) { const char* log = (char*)errorMsg->GetBufferPointer(); int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; bool found = false || 2 == sscanf(log, "(%u,%u):", &line, &column) || 2 == sscanf(log, " :%u:%u: ", &line, &column) ; if (found && 0 != line) { start = bx::uint32_imax(1, line - 10); end = start + 20; } printCode(_code.c_str(), line, start, end, column); fprintf(stderr, "Error: D3DCompile failed 0x%08x %s\n", (uint32_t)hr, log); errorMsg->Release(); return false; } UniformArray uniforms; uint8_t numAttrs = 0; uint16_t attrs[bgfx::Attrib::Count]; uint16_t size = 0; if (_version == 9) { if (!getReflectionDataD3D9(code, uniforms) ) { fprintf(stderr, "Error: Unable to get D3D9 reflection data.\n"); goto error; } } else { UniformNameList unusedUniforms; if (!getReflectionDataD3D11(code, profile[0] == 'v', uniforms, numAttrs, attrs, size, unusedUniforms) ) { fprintf(stderr, "Error: Unable to get D3D11 reflection data.\n"); goto error; } if (_firstPass && unusedUniforms.size() > 0) { const size_t strLength = strlen("uniform"); // first time through, we just find unused uniforms and get rid of them std::string output; LineReader reader(_code.c_str() ); while (!reader.isEof() ) { std::string line = reader.getLine(); for (UniformNameList::iterator it = unusedUniforms.begin(), itEnd = unusedUniforms.end(); it != itEnd; ++it) { size_t index = line.find("uniform "); if (index == std::string::npos) { continue; } // matching lines like: uniform u_name; // we want to replace "uniform" with "static" so that it's no longer // included in the uniform blob that the application must upload // we can't just remove them, because unused functions might still reference // them and cause a compile error when they're gone if (!!bx::findIdentifierMatch(line.c_str(), it->c_str() ) ) { line = line.replace(index, strLength, "static"); unusedUniforms.erase(it); break; } } output += line; } // recompile with the unused uniforms converted to statics return compile(_cmdLine, _version, output.c_str(), _writer, false); } } { uint16_t count = (uint16_t)uniforms.size(); bx::write(_writer, count); uint32_t fragmentBit = profile[0] == 'p' ? BGFX_UNIFORM_FRAGMENTBIT : 0; for (UniformArray::const_iterator it = uniforms.begin(); it != uniforms.end(); ++it) { const Uniform& un = *it; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); uint8_t type = uint8_t(un.type | fragmentBit); bx::write(_writer, type); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } } { ID3DBlob* stripped; hr = D3DStripShader(code->GetBufferPointer() , code->GetBufferSize() , D3DCOMPILER_STRIP_REFLECTION_DATA | D3DCOMPILER_STRIP_TEST_BLOBS , &stripped ); if (SUCCEEDED(hr) ) { code->Release(); code = stripped; } } { uint16_t shaderSize = (uint16_t)code->GetBufferSize(); bx::write(_writer, shaderSize); bx::write(_writer, code->GetBufferPointer(), shaderSize); uint8_t nul = 0; bx::write(_writer, nul); } if (_version > 9) { bx::write(_writer, numAttrs); bx::write(_writer, attrs, numAttrs*sizeof(uint16_t) ); bx::write(_writer, size); } if (_cmdLine.hasArg('\0', "disasm") ) { ID3DBlob* disasm; D3DDisassemble(code->GetBufferPointer() , code->GetBufferSize() , 0 , NULL , &disasm ); if (NULL != disasm) { std::string disasmfp = _cmdLine.findOption('o'); disasmfp += ".disasm"; writeFile(disasmfp.c_str(), disasm->GetBufferPointer(), (uint32_t)disasm->GetBufferSize() ); disasm->Release(); } } if (NULL != errorMsg) { errorMsg->Release(); } result = true; error: code->Release(); unload(); return result; }
bool compileHLSLShaderDx11(bx::CommandLine& _cmdLine, const std::string& _code, bx::WriterI* _writer) { BX_TRACE("DX11"); const char* profile = _cmdLine.findOption('p', "profile"); if (NULL == profile) { fprintf(stderr, "Shader profile must be specified.\n"); return false; } bool debug = _cmdLine.hasArg('\0', "debug"); uint32_t flags = D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY; flags |= debug ? D3DCOMPILE_DEBUG : 0; flags |= _cmdLine.hasArg('\0', "avoid-flow-control") ? D3DCOMPILE_AVOID_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "no-preshader") ? D3DCOMPILE_NO_PRESHADER : 0; flags |= _cmdLine.hasArg('\0', "partial-precision") ? D3DCOMPILE_PARTIAL_PRECISION : 0; flags |= _cmdLine.hasArg('\0', "prefer-flow-control") ? D3DCOMPILE_PREFER_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "backwards-compatibility") ? D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY : 0; bool werror = _cmdLine.hasArg('\0', "Werror"); if (werror) { flags |= D3DCOMPILE_WARNINGS_ARE_ERRORS; } uint32_t optimization = 3; if (_cmdLine.hasArg(optimization, 'O') ) { optimization = bx::uint32_min(optimization, BX_COUNTOF(s_optimizationLevelDx11)-1); flags |= s_optimizationLevelDx11[optimization]; } else { flags |= D3DCOMPILE_SKIP_OPTIMIZATION; } BX_TRACE("Profile: %s", profile); BX_TRACE("Flags: 0x%08x", flags); ID3DBlob* code; ID3DBlob* errorMsg; // Output preprocessed shader so that HLSL can be debugged via GPA // or PIX. Compiling through memory won't embed preprocessed shader // file path. std::string hlslfp; if (debug) { hlslfp = _cmdLine.findOption('o'); hlslfp += ".hlsl"; writeFile(hlslfp.c_str(), _code.c_str(), (int32_t)_code.size() ); } HRESULT hr = D3DCompile(_code.c_str() , _code.size() , hlslfp.c_str() , NULL , NULL , "main" , profile , flags , 0 , &code , &errorMsg ); if (FAILED(hr) || (werror && NULL != errorMsg) ) { const char* log = (char*)errorMsg->GetBufferPointer(); int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; if (2 == sscanf(log, "(%u,%u):", &line, &column) && 0 != line) { start = bx::uint32_imax(1, line-10); end = start + 20; } printCode(_code.c_str(), line, start, end); fprintf(stderr, "Error: 0x%08x %s\n", (uint32_t)hr, log); errorMsg->Release(); return false; } UniformArray uniforms; ID3D11ShaderReflection* reflect = NULL; hr = D3DReflect(code->GetBufferPointer() , code->GetBufferSize() , IID_ID3D11ShaderReflection , (void**)&reflect ); if (FAILED(hr) ) { fprintf(stderr, "Error: 0x%08x\n", (uint32_t)hr); return false; } D3D11_SHADER_DESC desc; hr = reflect->GetDesc(&desc); if (FAILED(hr) ) { fprintf(stderr, BX_FILE_LINE_LITERAL "Error: 0x%08x\n", (uint32_t)hr); return false; } BX_TRACE("Creator: %s 0x%08x", desc.Creator, desc.Version); BX_TRACE("Num constant buffers: %d", desc.ConstantBuffers); BX_TRACE("Input:"); uint8_t numAttrs = 0; uint16_t attrs[bgfx::Attrib::Count]; if (profile[0] == 'v') // Only care about input semantic on vertex shaders { for (uint32_t ii = 0; ii < desc.InputParameters; ++ii) { D3D11_SIGNATURE_PARAMETER_DESC spd; reflect->GetInputParameterDesc(ii, &spd); BX_TRACE("\t%2d: %s%d, vt %d, ct %d, mask %x, reg %d" , ii , spd.SemanticName , spd.SemanticIndex , spd.SystemValueType , spd.ComponentType , spd.Mask , spd.Register ); const RemapInputSemantic& ris = findInputSemantic(spd.SemanticName, spd.SemanticIndex); if (ris.m_attr != bgfx::Attrib::Count) { attrs[numAttrs] = bgfx::attribToId(ris.m_attr); ++numAttrs; } } } BX_TRACE("Output:"); for (uint32_t ii = 0; ii < desc.OutputParameters; ++ii) { D3D11_SIGNATURE_PARAMETER_DESC spd; reflect->GetOutputParameterDesc(ii, &spd); BX_TRACE("\t%2d: %s%d, %d, %d", ii, spd.SemanticName, spd.SemanticIndex, spd.SystemValueType, spd.ComponentType); } uint16_t size = 0; for (uint32_t ii = 0; ii < bx::uint32_min(1, desc.ConstantBuffers); ++ii) { ID3D11ShaderReflectionConstantBuffer* cbuffer = reflect->GetConstantBufferByIndex(ii); D3D11_SHADER_BUFFER_DESC bufferDesc; hr = cbuffer->GetDesc(&bufferDesc); size = (uint16_t)bufferDesc.Size; if (SUCCEEDED(hr) ) { BX_TRACE("%s, %d, vars %d, size %d" , bufferDesc.Name , bufferDesc.Type , bufferDesc.Variables , bufferDesc.Size ); for (uint32_t jj = 0; jj < bufferDesc.Variables; ++jj) { ID3D11ShaderReflectionVariable* var = cbuffer->GetVariableByIndex(jj); ID3D11ShaderReflectionType* type = var->GetType(); D3D11_SHADER_VARIABLE_DESC varDesc; hr = var->GetDesc(&varDesc); if (SUCCEEDED(hr) ) { D3D11_SHADER_TYPE_DESC constDesc; hr = type->GetDesc(&constDesc); if (SUCCEEDED(hr) ) { UniformType::Enum uniformType = findUniformTypeDx11(constDesc); if (UniformType::Count != uniformType && 0 != (varDesc.uFlags & D3D_SVF_USED) ) { Uniform un; un.name = varDesc.Name; un.type = uniformType; un.num = constDesc.Elements; un.regIndex = varDesc.StartOffset; un.regCount = BX_ALIGN_16(varDesc.Size)/16; uniforms.push_back(un); BX_TRACE("\t%s, %d, size %d, flags 0x%08x, %d" , varDesc.Name , varDesc.StartOffset , varDesc.Size , varDesc.uFlags , uniformType ); } else { BX_TRACE("\t%s, unknown type", varDesc.Name); } } } } } } BX_TRACE("Bound:"); for (uint32_t ii = 0; ii < desc.BoundResources; ++ii) { D3D11_SHADER_INPUT_BIND_DESC bindDesc; hr = reflect->GetResourceBindingDesc(ii, &bindDesc); if (SUCCEEDED(hr) ) { // if (bindDesc.Type == D3D_SIT_SAMPLER) { BX_TRACE("\t%s, %d, %d, %d" , bindDesc.Name , bindDesc.Type , bindDesc.BindPoint , bindDesc.BindCount ); } } } uint16_t count = (uint16_t)uniforms.size(); bx::write(_writer, count); uint32_t fragmentBit = profile[0] == 'p' ? BGFX_UNIFORM_FRAGMENTBIT : 0; for (UniformArray::const_iterator it = uniforms.begin(); it != uniforms.end(); ++it) { const Uniform& un = *it; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); uint8_t type = un.type|fragmentBit; bx::write(_writer, type); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } { ID3DBlob* stripped; hr = D3DStripShader(code->GetBufferPointer() , code->GetBufferSize() , D3DCOMPILER_STRIP_REFLECTION_DATA | D3DCOMPILER_STRIP_TEST_BLOBS , &stripped ); if (SUCCEEDED(hr) ) { code->Release(); code = stripped; } } uint16_t shaderSize = (uint16_t)code->GetBufferSize(); bx::write(_writer, shaderSize); bx::write(_writer, code->GetBufferPointer(), shaderSize); uint8_t nul = 0; bx::write(_writer, nul); bx::write(_writer, numAttrs); bx::write(_writer, attrs, numAttrs*sizeof(uint16_t) ); bx::write(_writer, size); if (_cmdLine.hasArg('\0', "disasm") ) { ID3DBlob* disasm; D3DDisassemble(code->GetBufferPointer() , code->GetBufferSize() , 0 , NULL , &disasm ); if (NULL != disasm) { std::string disasmfp = _cmdLine.findOption('o'); disasmfp += ".disasm"; writeFile(disasmfp.c_str(), disasm->GetBufferPointer(), (uint32_t)disasm->GetBufferSize() ); disasm->Release(); } } if (NULL != reflect) { reflect->Release(); } if (NULL != errorMsg) { errorMsg->Release(); } code->Release(); return true; }
bool getReflectionDataD3D11(ID3DBlob* _code, bool _vshader, UniformArray& _uniforms, uint8_t& _numAttrs, uint16_t* _attrs, uint16_t& _size, UniformNameList& unusedUniforms) { ID3D11ShaderReflection* reflect = NULL; HRESULT hr = D3DReflect(_code->GetBufferPointer() , _code->GetBufferSize() , s_compiler->IID_ID3D11ShaderReflection , (void**)&reflect ); if (FAILED(hr) ) { fprintf(stderr, "Error: D3DReflect failed 0x%08x\n", (uint32_t)hr); return false; } D3D11_SHADER_DESC desc; hr = reflect->GetDesc(&desc); if (FAILED(hr) ) { fprintf(stderr, "Error: ID3D11ShaderReflection::GetDesc failed 0x%08x\n", (uint32_t)hr); return false; } BX_TRACE("Creator: %s 0x%08x", desc.Creator, desc.Version); BX_TRACE("Num constant buffers: %d", desc.ConstantBuffers); BX_TRACE("Input:"); if (_vshader) // Only care about input semantic on vertex shaders { for (uint32_t ii = 0; ii < desc.InputParameters; ++ii) { D3D11_SIGNATURE_PARAMETER_DESC spd; reflect->GetInputParameterDesc(ii, &spd); BX_TRACE("\t%2d: %s%d, vt %d, ct %d, mask %x, reg %d" , ii , spd.SemanticName , spd.SemanticIndex , spd.SystemValueType , spd.ComponentType , spd.Mask , spd.Register ); const RemapInputSemantic& ris = findInputSemantic(spd.SemanticName, spd.SemanticIndex); if (ris.m_attr != bgfx::Attrib::Count) { _attrs[_numAttrs] = bgfx::attribToId(ris.m_attr); ++_numAttrs; } } } BX_TRACE("Output:"); for (uint32_t ii = 0; ii < desc.OutputParameters; ++ii) { D3D11_SIGNATURE_PARAMETER_DESC spd; reflect->GetOutputParameterDesc(ii, &spd); BX_TRACE("\t%2d: %s%d, %d, %d", ii, spd.SemanticName, spd.SemanticIndex, spd.SystemValueType, spd.ComponentType); } for (uint32_t ii = 0, num = bx::uint32_min(1, desc.ConstantBuffers); ii < num; ++ii) { ID3D11ShaderReflectionConstantBuffer* cbuffer = reflect->GetConstantBufferByIndex(ii); D3D11_SHADER_BUFFER_DESC bufferDesc; hr = cbuffer->GetDesc(&bufferDesc); _size = (uint16_t)bufferDesc.Size; if (SUCCEEDED(hr) ) { BX_TRACE("%s, %d, vars %d, size %d" , bufferDesc.Name , bufferDesc.Type , bufferDesc.Variables , bufferDesc.Size ); for (uint32_t jj = 0; jj < bufferDesc.Variables; ++jj) { ID3D11ShaderReflectionVariable* var = cbuffer->GetVariableByIndex(jj); ID3D11ShaderReflectionType* type = var->GetType(); D3D11_SHADER_VARIABLE_DESC varDesc; hr = var->GetDesc(&varDesc); if (SUCCEEDED(hr) ) { D3D11_SHADER_TYPE_DESC constDesc; hr = type->GetDesc(&constDesc); if (SUCCEEDED(hr) ) { UniformType::Enum uniformType = findUniformType(constDesc); if (UniformType::Count != uniformType && 0 != (varDesc.uFlags & D3D_SVF_USED) ) { Uniform un; un.name = varDesc.Name; un.type = uniformType; un.num = constDesc.Elements; un.regIndex = varDesc.StartOffset; un.regCount = BX_ALIGN_16(varDesc.Size) / 16; _uniforms.push_back(un); BX_TRACE("\t%s, %d, size %d, flags 0x%08x, %d (used)" , varDesc.Name , varDesc.StartOffset , varDesc.Size , varDesc.uFlags , uniformType ); } else { if (0 == (varDesc.uFlags & D3D_SVF_USED) ) { unusedUniforms.push_back(varDesc.Name); } BX_TRACE("\t%s, unknown type", varDesc.Name); } } } } } } BX_TRACE("Bound:"); for (uint32_t ii = 0; ii < desc.BoundResources; ++ii) { D3D11_SHADER_INPUT_BIND_DESC bindDesc; hr = reflect->GetResourceBindingDesc(ii, &bindDesc); if (SUCCEEDED(hr) ) { if (D3D_SIT_SAMPLER == bindDesc.Type) { BX_TRACE("\t%s, %d, %d, %d" , bindDesc.Name , bindDesc.Type , bindDesc.BindPoint , bindDesc.BindCount ); const char * end = strstr(bindDesc.Name, "Sampler"); if (NULL != end) { Uniform un; un.name.assign(bindDesc.Name, (end - bindDesc.Name) ); un.type = UniformType::Enum(BGFX_UNIFORM_SAMPLERBIT | UniformType::Int1); un.num = 1; un.regIndex = bindDesc.BindPoint; un.regCount = bindDesc.BindCount; _uniforms.push_back(un); } } } } if (NULL != reflect) { reflect->Release(); } return true; }
bool getReflectionDataD3D9(ID3DBlob* _code, UniformArray& _uniforms) { // see reference for magic values: https://msdn.microsoft.com/en-us/library/ff552891(VS.85).aspx const uint32_t D3DSIO_COMMENT = 0x0000FFFE; const uint32_t D3DSIO_END = 0x0000FFFF; const uint32_t D3DSI_OPCODE_MASK = 0x0000FFFF; const uint32_t D3DSI_COMMENTSIZE_MASK = 0x7FFF0000; const uint32_t CTAB_CONSTANT = MAKEFOURCC('C', 'T', 'A', 'B'); // parse the shader blob for the constant table const size_t codeSize = _code->GetBufferSize(); const uint32_t* ptr = (const uint32_t*)_code->GetBufferPointer(); const uint32_t* end = (const uint32_t*)( (const uint8_t*)ptr + codeSize); const CTHeader* header = NULL; ptr++; // first byte is shader type / version; skip it since we already know while (ptr < end && *ptr != D3DSIO_END) { uint32_t cur = *ptr++; if ( (cur & D3DSI_OPCODE_MASK) != D3DSIO_COMMENT) { continue; } // try to find CTAB comment block uint32_t commentSize = (cur & D3DSI_COMMENTSIZE_MASK) >> 16; uint32_t fourcc = *ptr; if (fourcc == CTAB_CONSTANT) { // found the constant table data header = (const CTHeader*)(ptr + 1); uint32_t tableSize = (commentSize - 1) * 4; if (tableSize < sizeof(CTHeader) || header->Size != sizeof(CTHeader) ) { fprintf(stderr, "Error: Invalid constant table data\n"); return false; } break; } // this is a different kind of comment section, so skip over it ptr += commentSize - 1; } if (!header) { fprintf(stderr, "Error: Could not find constant table data\n"); return false; } const uint8_t* headerBytePtr = (const uint8_t*)header; const char* creator = (const char*)(headerBytePtr + header->Creator); BX_TRACE("Creator: %s 0x%08x", creator, header->Version); BX_TRACE("Num constants: %d", header->Constants); BX_TRACE("# cl ty RxC S By Name"); const CTInfo* ctInfoArray = (const CTInfo*)(headerBytePtr + header->ConstantInfo); for (uint32_t ii = 0; ii < header->Constants; ++ii) { const CTInfo& ctInfo = ctInfoArray[ii]; const CTType& ctType = *(const CTType*)(headerBytePtr + ctInfo.TypeInfo); const char* name = (const char*)(headerBytePtr + ctInfo.Name); BX_TRACE("%3d %2d %2d [%dx%d] %d %s[%d] c%d (%d)" , ii , ctType.Class , ctType.Type , ctType.Rows , ctType.Columns , ctType.StructMembers , name , ctType.Elements , ctInfo.RegisterIndex , ctInfo.RegisterCount ); D3D11_SHADER_TYPE_DESC desc; desc.Class = (D3D_SHADER_VARIABLE_CLASS)ctType.Class; desc.Type = (D3D_SHADER_VARIABLE_TYPE)ctType.Type; desc.Rows = ctType.Rows; desc.Columns = ctType.Columns; UniformType::Enum type = findUniformType(desc); if (UniformType::Count != type) { Uniform un; un.name = '$' == name[0] ? name + 1 : name; un.type = isSampler(desc.Type) ? UniformType::Enum(BGFX_UNIFORM_SAMPLERBIT | type) : type ; un.num = (uint8_t)ctType.Elements; un.regIndex = ctInfo.RegisterIndex; un.regCount = ctInfo.RegisterCount; _uniforms.push_back(un); } } return true; }
bool compileHLSLShaderDx9(bx::CommandLine& _cmdLine, const std::string& _code, bx::WriterI* _writer) { BX_TRACE("DX9"); const char* profile = _cmdLine.findOption('p', "profile"); if (NULL == profile) { fprintf(stderr, "Shader profile must be specified.\n"); return false; } bool debug = _cmdLine.hasArg('\0', "debug"); uint32_t flags = 0; flags |= debug ? D3DXSHADER_DEBUG : 0; flags |= _cmdLine.hasArg('\0', "avoid-flow-control") ? D3DXSHADER_AVOID_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "no-preshader") ? D3DXSHADER_NO_PRESHADER : 0; flags |= _cmdLine.hasArg('\0', "partial-precision") ? D3DXSHADER_PARTIALPRECISION : 0; flags |= _cmdLine.hasArg('\0', "prefer-flow-control") ? D3DXSHADER_PREFER_FLOW_CONTROL : 0; flags |= _cmdLine.hasArg('\0', "backwards-compatibility") ? D3DXSHADER_ENABLE_BACKWARDS_COMPATIBILITY : 0; bool werror = _cmdLine.hasArg('\0', "Werror"); uint32_t optimization = 3; if (_cmdLine.hasArg(optimization, 'O') ) { optimization = bx::uint32_min(optimization, BX_COUNTOF(s_optimizationLevelDx9)-1); flags |= s_optimizationLevelDx9[optimization]; } else { flags |= D3DXSHADER_SKIPOPTIMIZATION; } BX_TRACE("Profile: %s", profile); BX_TRACE("Flags: 0x%08x", flags); LPD3DXBUFFER code; LPD3DXBUFFER errorMsg; LPD3DXCONSTANTTABLE constantTable; HRESULT hr; // Output preprocessed shader so that HLSL can be debugged via GPA // or PIX. Compiling through memory won't embed preprocessed shader // file path. if (debug) { std::string hlslfp = _cmdLine.findOption('o'); hlslfp += ".hlsl"; writeFile(hlslfp.c_str(), _code.c_str(), (int32_t)_code.size() ); hr = D3DXCompileShaderFromFileA(hlslfp.c_str() , NULL , NULL , "main" , profile , flags , &code , &errorMsg , &constantTable ); } else { hr = D3DXCompileShader(_code.c_str() , (uint32_t)_code.size() , NULL , NULL , "main" , profile , flags , &code , &errorMsg , &constantTable ); } if (FAILED(hr) || (werror && NULL != errorMsg) ) { const char* log = (const char*)errorMsg->GetBufferPointer(); char source[1024]; int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; if (3 == sscanf(log, "%[^(](%u,%u):", source, &line, &column) && 0 != line) { start = bx::uint32_imax(1, line-10); end = start + 20; } printCode(_code.c_str(), line, start, end); fprintf(stderr, "Error: 0x%08x %s\n", (uint32_t)hr, log); errorMsg->Release(); return false; } UniformArray uniforms; if (NULL != constantTable) { D3DXCONSTANTTABLE_DESC desc; hr = constantTable->GetDesc(&desc); if (FAILED(hr) ) { fprintf(stderr, "Error 0x%08x\n", (uint32_t)hr); return false; } BX_TRACE("Creator: %s 0x%08x", desc.Creator, (uint32_t /*mingw warning*/)desc.Version); BX_TRACE("Num constants: %d", desc.Constants); BX_TRACE("# cl ty RxC S By Name"); for (uint32_t ii = 0; ii < desc.Constants; ++ii) { D3DXHANDLE handle = constantTable->GetConstant(NULL, ii); D3DXCONSTANT_DESC constDesc; uint32_t count; constantTable->GetConstantDesc(handle, &constDesc, &count); BX_TRACE("%3d %2d %2d [%dx%d] %d %3d %s[%d] c%d (%d)" , ii , constDesc.Class , constDesc.Type , constDesc.Rows , constDesc.Columns , constDesc.StructMembers , constDesc.Bytes , constDesc.Name , constDesc.Elements , constDesc.RegisterIndex , constDesc.RegisterCount ); UniformType::Enum type = findUniformTypeDx9(constDesc); if (UniformType::Count != type) { Uniform un; un.name = '$' == constDesc.Name[0] ? constDesc.Name+1 : constDesc.Name; un.type = type; un.num = constDesc.Elements; un.regIndex = constDesc.RegisterIndex; un.regCount = constDesc.RegisterCount; uniforms.push_back(un); } } } uint16_t count = (uint16_t)uniforms.size(); bx::write(_writer, count); uint32_t fragmentBit = profile[0] == 'p' ? BGFX_UNIFORM_FRAGMENTBIT : 0; for (UniformArray::const_iterator it = uniforms.begin(); it != uniforms.end(); ++it) { const Uniform& un = *it; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); uint8_t type = un.type|fragmentBit; bx::write(_writer, type); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } uint16_t shaderSize = (uint16_t)code->GetBufferSize(); bx::write(_writer, shaderSize); bx::write(_writer, code->GetBufferPointer(), shaderSize); uint8_t nul = 0; bx::write(_writer, nul); if (_cmdLine.hasArg('\0', "disasm") ) { LPD3DXBUFFER disasm; D3DXDisassembleShader( (const DWORD*)code->GetBufferPointer() , false , NULL , &disasm ); if (NULL != disasm) { std::string disasmfp = _cmdLine.findOption('o'); disasmfp += ".disasm"; writeFile(disasmfp.c_str(), disasm->GetBufferPointer(), disasm->GetBufferSize() ); disasm->Release(); } } if (NULL != code) { code->Release(); } if (NULL != errorMsg) { errorMsg->Release(); } if (NULL != constantTable) { constantTable->Release(); } return true; }