Beispiel #1
0
int main()
try
{
    typedef Opm::AutoDiffBlock<double> ADB;
    typedef ADB::V V;
    typedef Eigen::SparseMatrix<double> S;

    Opm::time::StopWatch clock;
    clock.start();
    const Opm::GridManager gm(3,3);//(50, 50, 10);
    const UnstructuredGrid& grid = *gm.c_grid();
    using namespace Opm::unit;
    using namespace Opm::prefix;
    // const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
    //                                        { 1000.0, 800.0 },
    //                                        { 1.0*centi*Poise, 5.0*centi*Poise },
    //                                        0.2, 100*milli*darcy,
    //                                        grid.dimensions, grid.number_of_cells);
    // const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
    //                                        { 1000.0, 1000.0 },
    //                                        { 1.0, 1.0 },
    //                                        1.0, 1.0,
    //                                        grid.dimensions, grid.number_of_cells);
    const Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
                                           { 1000.0, 1000.0 },
                                           { 1.0, 30.0 },
                                           1.0, 1.0,
                                           grid.dimensions, grid.number_of_cells);
    V htrans(grid.cell_facepos[grid.number_of_cells]);
    tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid), props.permeability(), htrans.data());
    V trans_all(grid.number_of_faces);
    // tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid), htrans.data(), trans_all.data());
    const int nc = grid.number_of_cells;
    std::vector<int> allcells(nc);
    for (int i = 0; i < nc; ++i) {
        allcells[i] = i;
    }
    std::cerr << "Opm core " << clock.secsSinceLast() << std::endl;

    // Define neighbourhood-derived operator matrices.
    const Opm::HelperOps ops(grid);
    const int num_internal = ops.internal_faces.size();
    std::cerr << "Topology matrices " << clock.secsSinceLast() << std::endl;

    typedef Opm::AutoDiffBlock<double> ADB;
    typedef ADB::V V;

    // q
    V q(nc);
    q.setZero();
    q[0] = 1.0;
    q[nc-1] = -1.0;

    // s0 - this is explicit now
    typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
    TwoCol s0(nc, 2);
    s0.leftCols<1>().setZero();
    s0.rightCols<1>().setOnes();

    // totmob - explicit as well
    TwoCol kr(nc, 2);
    props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0);
    const V krw = kr.leftCols<1>();
    const V kro = kr.rightCols<1>();
    const double* mu = props.viscosity();
    const V totmob = krw/mu[0] + kro/mu[1];

    // Moved down here because we need total mobility.
    tpfa_eff_trans_compute(const_cast<UnstructuredGrid*>(&grid), totmob.data(),
                           htrans.data(), trans_all.data());
    // Still explicit, and no upwinding!
    V mobtransf(num_internal);
    for (int fi = 0; fi < num_internal; ++fi) {
        mobtransf[fi] = trans_all[ops.internal_faces[fi]];
    }
    std::cerr << "Property arrays " << clock.secsSinceLast() << std::endl;

    // Initial pressure.
    V p0(nc,1);
    p0.fill(200*Opm::unit::barsa);

    // First actual AD usage: defining pressure variable.
    const std::vector<int> bpat = { nc };
    // Could actually write { nc } instead of bpat below,
    // but we prefer a named variable since we will repeat it.
    const ADB p = ADB::variable(0, p0, bpat);
    const ADB ngradp = ops.ngrad*p;
    // We want flux = totmob*trans*(p_i - p_j) for the ij-face.
    const ADB flux = mobtransf*ngradp;
    const ADB residual = ops.div*flux - q;
    std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;

    // It's the residual we want to be zero. We know it's linear in p,
    // so we just need a single linear solve. Since we have formulated
    // ourselves with a residual and jacobian we do this with a single
    // Newton step (hopefully easy to extend later):
    //   p = p0 - J(p0) \ R(p0)
    // Where R(p0) and J(p0) are contained in residual.value() and
    // residual.derived()[0].

#if HAVE_SUITESPARSE_UMFPACK_H
    typedef Eigen::UmfPackLU<S> LinSolver;
#else
    typedef Eigen::BiCGSTAB<S>  LinSolver;
#endif  // HAVE_SUITESPARSE_UMFPACK_H

    LinSolver solver;
    S pmatr;
    residual.derivative()[0].toSparse(pmatr);
    pmatr.coeffRef(0,0) *= 2.0;
    pmatr.makeCompressed();
    solver.compute(pmatr);
    if (solver.info() != Eigen::Success) {
        std::cerr << "Pressure/flow Jacobian decomposition error\n";
        return EXIT_FAILURE;
    }
    // const Eigen::VectorXd dp = solver.solve(residual.value().matrix());
    ADB::V residual_v = residual.value();
    const V dp = solver.solve(residual_v.matrix()).array();
    if (solver.info() != Eigen::Success) {
        std::cerr << "Pressure/flow solve failure\n";
        return EXIT_FAILURE;
    }
    const V p1 = p0 - dp;
    std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
    // std::cout << p1 << std::endl;

    // ------ Transport solve ------

    // Now we'll try to do a transport step as well.
    // Residual formula is
    //   R_w = s_w - s_w^0 + dt/pv * (div v_w)
    // where
    //   v_w = f_w v
    // and f_w is (for now) based on averaged mobilities, not upwind.

    double res_norm = 1e100;
    const V sw0 = s0.leftCols<1>();
    // V sw1 = sw0;
    V sw1 = 0.5*V::Ones(nc,1);
    const V ndp = (ops.ngrad * p1.matrix()).array();
    const V dflux = mobtransf * ndp;
    const Opm::UpwindSelector<double> upwind(grid, ops, dflux);
    const V pv = Eigen::Map<const V>(props.porosity(), nc, 1)
        * Eigen::Map<const V>(grid.cell_volumes, nc, 1);
    const double dt = 0.0005;
    const V dtpv = dt/pv;
    const V qneg = q.min(V::Zero(nc,1));
    const V qpos = q.max(V::Zero(nc,1));

    std::cout.setf(std::ios::scientific);
    std::cout.precision(16);

    int it = 0;
    do {
        const ADB sw = ADB::variable(0, sw1, bpat);
        const std::vector<ADB> pmobc = phaseMobility<ADB>(props, allcells, sw.value());
        const std::vector<ADB> pmobf = upwind.select(pmobc);
        const ADB fw_cell = fluxFunc(pmobc);
        const ADB fw_face = fluxFunc(pmobf);
        const ADB flux1 = fw_face * dflux;
        const ADB qtr_ad = qpos + fw_cell*qneg;
        const ADB transport_residual = sw - sw0 + dtpv*(ops.div*flux1 - qtr_ad);
        res_norm = transport_residual.value().matrix().norm();
        std::cout << "res_norm[" << it << "] = "
                  << res_norm << std::endl;

        S smatr;
        transport_residual.derivative()[0].toSparse(smatr);
        smatr.makeCompressed();
        solver.compute(smatr);
        if (solver.info() != Eigen::Success) {
            std::cerr << "Transport Jacobian decomposition error\n";
            return EXIT_FAILURE;
        }
        ADB::V transport_residual_v = transport_residual.value();
        const V ds = solver.solve(transport_residual_v.matrix()).array();
        if (solver.info() != Eigen::Success) {
            std::cerr << "Transport solve failure\n";
            return EXIT_FAILURE;
        }
        sw1 = sw.value() - ds;
        std::cerr << "Solve for s[" << it << "]: "
                  << clock.secsSinceLast() << '\n';
        sw1 = sw1.min(V::Ones(nc,1)).max(V::Zero(nc,1));

        it += 1;
    } while (res_norm > 1e-7);

    std::cout << "Saturation solution:\n"
              << "function s1 = solution\n"
              << "s1 = [\n" << sw1 << "\n];\n";
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
Beispiel #2
0
    /// @brief Computes injected and produced volumes of all phases,
    ///        and injected and produced polymer mass - in the compressible case.
    /// Note 1: assumes that only the first phase is injected.
    /// Note 2: assumes that transport has been done with an
    ///         implicit method, i.e. that the current state
    ///         gives the mobilities used for the preceding timestep.
    /// @param[in]  props     fluid and rock properties.
    /// @param[in]  polyprops polymer properties
    /// @param[in]  state     state variables (pressure, fluxes etc.)
    /// @param[in]  transport_src  if < 0: total reservoir volume outflow,
    ///                       if > 0: first phase *surface volume* inflow.
    /// @param[in]  inj_c     injected concentration by cell
    /// @param[in]  dt        timestep used
    /// @param[out] injected  must point to a valid array with P elements,
    ///                       where P = s.size()/transport_src.size().
    /// @param[out] produced  must also point to a valid array with P elements.
    /// @param[out] polyinj   injected mass of polymer
    /// @param[out] polyprod  produced mass of polymer
    void computeInjectedProduced(const BlackoilPropsAdInterface& props,
                                 const Opm::PolymerPropsAd& polymer_props,
                                 const PolymerBlackoilState& state,
                                 const std::vector<double>& transport_src,
                                 const std::vector<double>& inj_c,
                                 const double dt,
                                 double* injected,
                                 double* produced,
                                 double& polyinj,
                                 double& polyprod)
    {
        const int num_cells = transport_src.size();
        if (props.numCells() != num_cells) {
            OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
        }
        const int np = props.numPhases();
        if (int(state.saturation().size()) != num_cells*np) {
            OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
        }
		std::vector<int> cells(num_cells);
		const V p = Eigen::Map<const V>(&state.pressure()[0], num_cells, 1);
        const DataBlock s = Eigen::Map<const DataBlock>(&state.saturation()[0], num_cells, np);
		const V sw = s.col(0);
		const V so = s.col(1);
		const V c = Eigen::Map<const V>(&state.concentration()[0], num_cells, 1);
		const V cmax = Eigen::Map<const V>(&state.maxconcentration()[0], num_cells, 1);
		const V trans_src = Eigen::Map<const V>(&transport_src[0], num_cells, 1);
		V src = V::Constant(num_cells, -1.0); // negative is injec, positive is producer.
		for (int cell = 0; cell < num_cells; ++cell) {
			cells[cell] = cell;
			if(transport_src[cell] > 0.0) {
				src[cell] = 1.0;
			}
		}
        //Add PhasePresence make muOil() happy.
        std::vector<PhasePresence> phaseCondition(num_cells);
        for (int c = 0; c < num_cells; ++c) {
            phaseCondition[c] = PhasePresence();
            phaseCondition[c].setFreeWater();
            phaseCondition[c].setFreeOil();
        }
		const Selector<double> src_selector(src);
		const V one = V::Constant(num_cells, 1.0);
		const V zero = V::Zero(num_cells);
		const std::vector<V> kr = props.relperm(sw, so, zero, cells);
		const V muw = props.muWat(p, cells);
		const V muo = props.muOil(p, zero, phaseCondition, cells);
        const V krw_eff = polymer_props.effectiveRelPerm(c, cmax, kr[0]);
		const V inv_muw_eff = polymer_props.effectiveInvWaterVisc(c, muw.data());
		std::vector<V> mob(np);
		mob[0] = krw_eff * inv_muw_eff;
		mob[1] = kr[1] / muo;
		
		const V watmob_c = src_selector.select(mob[0], one);
		const V oilmob_c = src_selector.select(mob[1], zero);
		const V flux = trans_src * dt;
	    const V totmob_c = watmob_c + oilmob_c;
		const V wat_src = flux * (watmob_c / totmob_c);
		const V oil_src = flux * (oilmob_c / totmob_c);
		const V mc = polymer_props.polymerWaterVelocityRatio(c);
		
        polyinj = 0.0;
        polyprod = 0.0;
		std::fill(injected, injected + np , 0.0);
		std::fill(produced, produced + np , 0.0);
		for (int cell = 0; cell < num_cells; ++cell) {
			if (wat_src[cell] < 0) {
				injected[0] += wat_src[cell];
				polyinj += injected[0] * inj_c[cell];
			} else {
				produced[0] += wat_src[cell];
				produced[1] += oil_src[cell];
				polyprod += produced[0] * mc[cell];
			}
		}
    }