// getHistoryAttributes
//
// Helper function that traverses the set of root sequence functions
// supplied by the compiler and constructs the set of all of the
// attributes that must be materialized in the history row.
// 
void PhysSequence::getHistoryAttributes(const ValueIdSet &sequenceFunctions,
                                        const ValueIdSet &outputFromChild,
                                        ValueIdSet &historyAttributes,
                                        NABoolean addConvNodes,
                                        CollHeap *wHeap,
                                        ValueIdMap *origAttributes) const
{
  if(addConvNodes && !origAttributes) {
    origAttributes = new (wHeap) ValueIdMap();
  }

  ValueIdSet children;
  for(ValueId valId = sequenceFunctions.init();
      sequenceFunctions.next(valId);
      sequenceFunctions.advance(valId)) {

    if(valId.getItemExpr()->isASequenceFunction()) {
      ItemExpr *itmExpr = valId.getItemExpr();

      switch(itmExpr->getOperatorType())
        {
          // The child needs to be in the history row.
          //
        case ITM_OFFSET:
        case ITM_ROWS_SINCE:
        case ITM_THIS:
        case ITM_NOT_THIS:

          // If the child needs to be in the history buffer, then
          // add a Convert node to force the value to be moved to the
          // history buffer.
          if (addConvNodes)
            {
              itmExpr->child(0) = 
                addConvNode(itmExpr->child(0), origAttributes, wHeap);
            }
          historyAttributes += itmExpr->child(0)->getValueId();
          break;

          // The sequence function needs to be in the history row.
          //
        case ITM_RUNNING_SUM:
        case ITM_RUNNING_COUNT:
        case ITM_RUNNING_MIN:
        case ITM_RUNNING_MAX:
        case ITM_LAST_NOT_NULL:
          historyAttributes += itmExpr->getValueId();
          break;
/*
        // after PhysSequence precode gen OLAP sum and count are already transform,ed into running
        // this is used during optimization phase-- 
        case ITM_OLAP_SUM:
        case ITM_OLAP_COUNT:
        case ITM_OLAP_RANK:
        case ITM_OLAP_DRANK:
          if (addConvNodes)
            {
              itmExpr->child(0) = 
                addConvNode(itmExpr->child(0), origAttributes, wHeap);
            }

          historyAttributes += itmExpr->child(0)->getValueId();
          //historyAttributes += itmExpr->getValueId();	  
          break;
*/
          // The child and sequence function need to be in the history row.
          //
        case ITM_OLAP_MIN:
        case ITM_OLAP_MAX:
        case ITM_MOVING_MIN:
        case ITM_MOVING_MAX:

          // If the child needs to be in the history buffer, then
          // add a Convert node to force the value to be moved to the
          // history buffer.
          if (addConvNodes)
            {
              itmExpr->child(0) = 
                addConvNode(itmExpr->child(0), origAttributes, wHeap);
            }

          historyAttributes += itmExpr->child(0)->getValueId();
          historyAttributes += itmExpr->getValueId();	  
          break;

        case ITM_RUNNING_CHANGE:
          if (itmExpr->child(0)->getOperatorType() == ITM_ITEM_LIST)
            {
              // child is a multi-valued expression
              // 
              ExprValueId treePtr = itmExpr->child(0);

              ItemExprTreeAsList changeValues(&treePtr,
                                              ITM_ITEM_LIST,
                                              RIGHT_LINEAR_TREE);

              CollIndex nc = changeValues.entries();
              
              ItemExpr *newChild = NULL;
              if(addConvNodes) {
                newChild = addConvNode(changeValues[nc-1], origAttributes, wHeap);
                historyAttributes += newChild->getValueId();
              } else {
                historyAttributes += changeValues[nc-1]->getValueId();
              }

              // add each item in the list
              // 
              for (CollIndex i = nc; i > 0; i--)
                {
                  if(addConvNodes) {
                    ItemExpr *conv
                      = addConvNode(changeValues[i-1], origAttributes, wHeap);

                    newChild = new(wHeap) ItemList(conv, newChild);
                    newChild->synthTypeAndValueId(TRUE);
                    historyAttributes += conv->getValueId();
                  } else {
                    historyAttributes += changeValues[i-1]->getValueId();
                  }
                }

              if(addConvNodes) {
                itmExpr->child(0) = newChild;
              }
            }
          else
            {

              // If the child needs to be in the history buffer, then
              // add a Convert node to force the value to be moved to the
              // history buffer.
              if (addConvNodes)
                {
                  itmExpr->child(0) = 
                    addConvNode(itmExpr->child(0), origAttributes, wHeap);
                }

              historyAttributes += itmExpr->child(0)->getValueId();
            }

          historyAttributes += itmExpr->getValueId();  
          break;

        default:
          CMPASSERT(0);
        }
    }

    // Gather all the children, and if not empty, recurse down to the
    // next level of the tree.
    //
    for(Lng32 i = 0; i < valId.getItemExpr()->getArity(); i++) 
    {
      if (!outputFromChild.contains(valId.getItemExpr()->child(i)->getValueId()))
        //!valId.getItemExpr()->child(i)->nodeIsPreCodeGenned()) 
      {
        children += valId.getItemExpr()->child(i)->getValueId();
      }
    }
  }
  
  if (NOT children.isEmpty())
  {
    getHistoryAttributes( children,
                          outputFromChild,
                          historyAttributes, 
                          addConvNodes, 
                          wHeap, 
                          origAttributes);
  }

} // PhysSequence::getHistoryAttributes
void PhysSequence::computeReadNReturnItems( ValueId topSeqVid,
                                            ValueId vid,
                                            const ValueIdSet &outputFromChild,
                                            CollHeap *wHeap)
{
  ItemExpr * itmExpr = vid.getItemExpr();


  if (outputFromChild.contains(vid)) 
  {
    return;
  }
  //test if itm_minus and then if negative offset ....
  if ( itmExpr->getOperatorType() == ITM_OFFSET &&
      ((ItmSeqOffset *)itmExpr)->getOffsetConstantValue() < 0)
  {
    readSeqFunctions() -= topSeqVid;
    returnSeqFunctions() += topSeqVid;

    readSeqFunctions() += itmExpr->child(0)->castToItemExpr()->getValueId();
    return;
  }
  
  if (itmExpr->getOperatorType() == ITM_MINUS)
  {
    ItemExpr * chld0  = itmExpr->child(0)->castToItemExpr();
    if ( chld0->getOperatorType() == ITM_OFFSET &&
        ((ItmSeqOffset *)chld0)->getOffsetConstantValue() <0)
    {
      readSeqFunctions() -= topSeqVid;
      returnSeqFunctions() += topSeqVid;

      readSeqFunctions() += chld0->child(0)->castToItemExpr()->getValueId();

      ItemExpr * chld1  = itmExpr->child(1)->castToItemExpr();
      if (chld1->getOperatorType() == ITM_OFFSET &&
          ((ItmSeqOffset *)chld1)->getOffsetConstantValue() < 0)
      {
        readSeqFunctions() += chld1->child(0)->castToItemExpr()->getValueId();
      }
      else
      {
        readSeqFunctions() += chld1->getValueId();
      }
      return;
    }
    
  }
  
  
  if (itmExpr->getOperatorType() == ITM_OLAP_MIN || 
           itmExpr->getOperatorType() == ITM_OLAP_MAX) 
  { 
    ItmSeqOlapFunction * olap = (ItmSeqOlapFunction *)itmExpr;
    if (olap->getframeEnd()>0)
    {
      readSeqFunctions() -= topSeqVid;
      returnSeqFunctions() += topSeqVid;

      ItemExpr *newChild = new(wHeap) Convert (itmExpr->child(0)->castToItemExpr());
      newChild->synthTypeAndValueId(TRUE);

      itmExpr->child(0) = newChild;

      readSeqFunctions() += newChild->getValueId();
      return;
    }
  }
  
  if (itmExpr->getOperatorType() == ITM_SCALAR_MIN || 
           itmExpr->getOperatorType() == ITM_SCALAR_MAX) 
  {
    ItemExpr * chld0  = itmExpr->child(0)->castToItemExpr();
    ItemExpr * chld1  = itmExpr->child(1)->castToItemExpr();
    if ((chld0->getOperatorType() == ITM_OLAP_MIN && chld1->getOperatorType() == ITM_OLAP_MIN )|| 
        (chld0->getOperatorType() == ITM_OLAP_MAX && chld1->getOperatorType() == ITM_OLAP_MAX ))
    {
      ItmSeqOlapFunction * olap0 = (ItmSeqOlapFunction *)chld0;
      ItmSeqOlapFunction * olap1 = (ItmSeqOlapFunction *)chld1;
      if ( olap1->getframeEnd()>0)
      { 
        CMPASSERT(olap0->getframeEnd()==0);

        readSeqFunctions() -= topSeqVid;
        returnSeqFunctions() += topSeqVid;
        readSeqFunctions() += olap0->getValueId();
        
        ItemExpr *newChild = new(wHeap) Convert (olap1->child(0)->castToItemExpr());
        newChild->synthTypeAndValueId(TRUE);

        olap1->child(0) = newChild;

        readSeqFunctions() += newChild->getValueId();
      }
      else
      {
        CMPASSERT(olap1->getframeEnd()==0);

        readSeqFunctions() -= topSeqVid;
        returnSeqFunctions() += topSeqVid;
        readSeqFunctions() += olap1->getValueId();

        ItemExpr *newChild = new(wHeap) Convert (olap0->child(0)->castToItemExpr());
        newChild->synthTypeAndValueId(TRUE);

        olap0->child(0) = newChild;

        readSeqFunctions() += newChild->getValueId();
      }
      return;
    }
  }

  for (Int32 i= 0 ; i < itmExpr->getArity(); i++)
  {
    ItemExpr * chld= itmExpr->child(i);
    computeReadNReturnItems(topSeqVid,
                            chld->getValueId(),
                            outputFromChild,
                            wHeap);
  }
}//void PhysSequence::computeReadNReturnItems(ItemExpr * other)
// computeHistoryBuffer
//
// Helper function that traverses the set of root sequence functions
// supplied by the compiler and dynamically determines the size
// of the history buffer.
// 
void PhysSequence::computeHistoryRows(const ValueIdSet &sequenceFunctions,//historyIds
                                      Lng32 &computedHistoryRows,
                                      Lng32 &unableToCalculate,
                                      NABoolean &unboundedFollowing, 
                                      Lng32 &minFollowingRows,
                                      const ValueIdSet &outputFromChild) 
{
  ValueIdSet children;
  ValueIdSet historyAttributes;
  Lng32 value = 0;

  for(ValueId valId = sequenceFunctions.init();
      sequenceFunctions.next(valId);
      sequenceFunctions.advance(valId)) 
  {
    if(valId.getItemExpr()->isASequenceFunction()) 
    {
      ItemExpr *itmExpr = valId.getItemExpr();

      switch(itmExpr->getOperatorType())
        {

        // THIS and NOT THIS are not dynamically computed
        //
        case ITM_THIS:
        case ITM_NOT_THIS:
          break;

        // The RUNNING functions and LastNotNull all need to go back just one row.
        //
        case ITM_RUNNING_SUM:
        case ITM_RUNNING_COUNT:
        case ITM_RUNNING_MIN:
        case ITM_RUNNING_MAX:
        case ITM_RUNNING_CHANGE:   
        case ITM_LAST_NOT_NULL:
          computedHistoryRows = MAXOF(computedHistoryRows, 2);
          break;
        ///set to unable to compute for now-- will change later to compte values from frameStart_ and frameEnd_
        case ITM_OLAP_SUM:
        case ITM_OLAP_COUNT:
        case ITM_OLAP_MIN:
        case ITM_OLAP_MAX:
        case ITM_OLAP_RANK:
        case ITM_OLAP_DRANK:
        {
          if ( !outputFromChild.contains(itmExpr->getValueId()))
          {
            ItmSeqOlapFunction * olap = (ItmSeqOlapFunction*)itmExpr;

            if (olap->isFrameStartUnboundedPreceding()) //(olap->getframeStart() == - INT_MAX)
            {
              computedHistoryRows = MAXOF(computedHistoryRows, 2);
            }
            else
            {
              computedHistoryRows = MAXOF(computedHistoryRows, ABS(olap->getframeStart()) + 2);
            }
            if (!olap->isFrameEndUnboundedFollowing()) //(olap->getframeEnd() != INT_MAX)
            {
              computedHistoryRows = MAXOF(computedHistoryRows, ABS(olap->getframeEnd()) + 1);
            }

            if (olap->isFrameEndUnboundedFollowing()) //(olap->getframeEnd() == INT_MAX)
            {
              unboundedFollowing = TRUE;
              if (olap->getframeStart() > 0) 
              {
                minFollowingRows = ((minFollowingRows > olap->getframeStart()) ?  
                                    minFollowingRows : olap->getframeStart());
              }
            } else  if (olap->getframeEnd() > 0)
            {
              minFollowingRows = ((minFollowingRows > olap->getframeEnd()) ?  
                                  minFollowingRows : olap->getframeEnd());
            }
          }
        }

        break;

        // If 'rows since', we cannot determine how much history is needed.  
        case ITM_ROWS_SINCE:
          unableToCalculate = 1;
          break;

        // The MOVING and OFFSET functions need to go back as far as the value
        // of their second child.
        //
        //  The second argument can be:
        //    Constant: for these, we can use the constant value to set the upper bound
        //              for the history buffer.
        //    ItmScalarMinMax(child0, child1) (with operType = ITM_SCALAR_MIN)  
        //      - if child0 or child1 is a constant, then we can use either one
        //        to set the upper bound.
        
        case ITM_MOVING_MIN:
        case ITM_MOVING_MAX:
        case ITM_OFFSET:
         
          for(Lng32 i = 1; i < itmExpr->getArity(); i++)
          {
            if (itmExpr->child(i)->getOperatorType() != ITM_NOTCOVERED)
            {
              ItemExpr * exprPtr = itmExpr->child(i);
              NABoolean negate;
              ConstValue *cv = exprPtr->castToConstValue(negate);
              if (cv AND cv->canGetExactNumericValue())
                {
                  Lng32 scale;
                  Int64 value64 = cv->getExactNumericValue(scale);

                  if(scale == 0 && value64 >= 0 && value64 < INT_MAX) 
                    {
                      value64 = (negate ? -value64 : value64);
                      value = MAXOF((Lng32)value64, value);
                    }
                 }
              else
                {
                  if (exprPtr->getOperatorType() == ITM_SCALAR_MIN)
                    {
                      for(Lng32 j = 0; j < exprPtr->getArity(); j++)
                        {
                          if (exprPtr->child(j)->getOperatorType()
                            != ITM_NOTCOVERED)
                            {
                               ItemExpr * exprPtr1 = exprPtr->child(j);
                               NABoolean negate1;
                               ConstValue *cv1 = exprPtr1->castToConstValue(negate1);
                               if (cv1 AND cv1->canGetExactNumericValue())
                                 {
                                   Lng32 scale1;
                                   Int64 value64_1 = cv1->getExactNumericValue(scale1);

                                   if(scale1 == 0 && value64_1 >= 0 && value64_1 < INT_MAX) 
                                     {
                                       value64_1 = (negate1 ? -value64_1 : value64_1);
                                       value = MAXOF((Lng32)value64_1, value);
                                     }
                                  }
                              }
                          }   
                     }   
                }  // end of inner else
            }// end of if

          }// end of for

          // Check if the value is greater than zero.
          // If it is, then save the value, but first
          // increment the returned ConstValue by one.
          // Otherwise, the offset or moving value was unable
          // to be calculated.

          if (value > 0)
          {
            value++;
            computedHistoryRows = MAXOF(computedHistoryRows, value);
            value = 0;
          }
          else
            unableToCalculate = 1;

          break;

        default:
          CMPASSERT(0);
        }
    }
   
    // Gather all the children, and if not empty, recurse down to the
    // next level of the tree.
    //

    for(Lng32 i = 0; i < valId.getItemExpr()->getArity(); i++) {
      if (//valId.getItemExpr()->child(i)->getOperatorType() != ITM_NOTCOVERED //old stuff
          !outputFromChild.contains(valId.getItemExpr()->child(i)->getValueId()))
      {
        children += valId.getItemExpr()->child(i)->getValueId();
      }
    }
  }
  
  if (NOT children.isEmpty())
  {
    computeHistoryRows(children, 
                       computedHistoryRows, 
                       unableToCalculate, 
                       unboundedFollowing, 
                       minFollowingRows,
                       outputFromChild);  
  }
} // PhysSequence::computeHistoryRows
// ---------------------------------------------------------------------
// Utility Routine: pickOutputs
//
// From the given ColStatDescList, populate columnStats_ with column
// descriptors that are useful based on the characteristic outputs for
// the group.
//
// Always include in the output the current histograms of the input data,
// and, if the histogram is contained in the required output list, then
// this is a useful histogram and will also be output.
//
// ---------------------------------------------------------------------
void EstLogProp::pickOutputs( ColStatDescList & columnStats,
			      const EstLogPropSharedPtr& inputEstLogProp,
			      const ValueIdSet specifiedOutputs,
			      const ValueIdSet predSet)
{

  const ColStatDescList & outerColStatsList = inputEstLogProp->getColStats();

  ValueIdSet colsRequiringHistograms = specifiedOutputs;
  
  // (i) see if the selection predicates contain any constant value or a 
  // constant expression

  // (ii) check if there are any columns of this table being joined to some other
  // columns, which do not appear as characteristics outputs. There should be
  // histograms available for these columns, as these might be needed later.
  // This problem was seen for temporary tables created as normal_tables by the
  // triggers.


  colsRequiringHistograms.addSet(predSet.getColumnsForHistogram());
  colStats().setMCSkewedValueLists(columnStats.getMCSkewedValueLists()) ;

  NABoolean colStatDescAdded = FALSE;

  for (CollIndex i=0; i < columnStats.entries(); i++)
    {
      // we probably don't need 'em all, but this is the easiest way to
      // grab all of the multi-column uec information we'll need later
      colStats().insertIntoUecList (columnStats.getUecList()) ;
      colStats().setScanRowCountWithoutHint(columnStats.getScanRowCountWithoutHint());
      NABoolean found = FALSE;

      // Note: The following inserts into a ColStatDescList should not
      // have to be deep copies.  From this point on, ColStatDescs that
      // describe the output of the calling operator are read-only.

      ColStatDescSharedPtr colStatDesc = columnStats[i];

      // the value-id we're looking for
      const ValueId columnId = colStatDesc->getVEGColumn() ;

      for (CollIndex j=0 ; j < outerColStatsList.entries() ; j++)
	{
	  if (columnId == outerColStatsList[j]->getVEGColumn() OR
              (CmpCommon::context()->showQueryStats()))
            {
              colStats().insert(colStatDesc) ;
              found = TRUE;
              if(!colStatDescAdded)
                colStatDescAdded = TRUE;
              break ; // jump to next ColStatDesc
            }
	}

    // OK, the valueid doesn't match directly -- but there are still a
    // couple of things to check in order to verify whether or not we're
    // interested in keeping the i'th ColStatDesc ...

	ValueId throwaway ; // used by the second clause below

    if ( NOT found  AND
	 (columnId != NULL_VALUE_ID) AND
         (colsRequiringHistograms.contains (columnId) OR
          colsRequiringHistograms.referencesTheGivenValue (columnId, throwaway) OR
	  columnId.isInvolvedInJoinAndConst() OR
          CmpCommon::context()->showQueryStats() )
	)
	{
	  colStats().insert(colStatDesc);
	  found = TRUE;
	  if(!colStatDescAdded)
	    colStatDescAdded = TRUE;
	}
	
	if (CURRSTMT_OPTDEFAULTS->incorporateSkewInCosting())
	{
	  // if the column is referenced for histogram, but is 
	  // not needed beyond this time , then we shall save its  
	  // max freq, which might be used later in costing if this
	  // column is a part of the partitioning key

	  ColStatsSharedPtr stat = colStatDesc->getColStats();
	  if (!(stat->isVirtualColForHist() ) && NOT found &&
                    !(stat->isOrigFakeHist() ) )
	  {
            const ValueId col = colStatDesc->getColumn();
            ColAnalysis * colAnalysis = col.colAnalysis();
            if (colAnalysis)
            {
              NAColumn * column = stat->getStatColumns()[0];

              if (column->isReferencedForHistogram())
              {
                CostScalar maxFreq = columnStats.getMaxFreq(columnId);
                colAnalysis->setMaxFreq(maxFreq);
                colAnalysis->setFinalUec(stat->getTotalUec());
                colAnalysis->setFinalRC(stat->getRowcount());
              }
            }
          }
	}
      } // for columnStats.entries()
      if(!colStatDescAdded && columnStats.entries() > 0)
        colStats().insert(columnStats[0]) ;
} // pickOutputs