Beispiel #1
0
//----------------------------------------------------------------------------
Vector3 Curve3::GetBinormal (Real fTime) const
{
    Vector3 kVelocity = GetFirstDerivative(fTime);
    Vector3 kAcceleration = GetSecondDerivative(fTime);
    Real fVDotV = kVelocity.Dot(kVelocity);
    Real fVDotA = kVelocity.Dot(kAcceleration);
    Vector3 kNormal = fVDotV*kAcceleration - fVDotA*kVelocity;
    kNormal.Unitize();
    kVelocity.Unitize();
    Vector3 kBinormal = kVelocity.Cross(kNormal);
    return kBinormal;
}
Beispiel #2
0
//----------------------------------------------------------------------------
void Curve3::GetFrame (Real fTime, Vector3& rkPosition, Vector3& rkTangent,
    Vector3& rkNormal, Vector3& rkBinormal) const
{
    rkPosition = GetPosition(fTime);
    Vector3 kVelocity = GetFirstDerivative(fTime);
    Vector3 kAcceleration = GetSecondDerivative(fTime);
    Real fVDotV = kVelocity.Dot(kVelocity);
    Real fVDotA = kVelocity.Dot(kAcceleration);
    rkNormal = fVDotV*kAcceleration - fVDotA*kVelocity;
    rkNormal.Unitize();
    rkTangent = kVelocity;
    rkTangent.Unitize();
    rkBinormal = rkTangent.Cross(rkNormal);
}
//----------------------------------------------------------------------------
void ConvexPolyhedron::Create (const vector<Vector3>& rakPoint,
                               const vector<int>& raiConnect)
{
    assert( rakPoint.size() >= 4 && raiConnect.size() >= 4 );

    int iVQuantity = rakPoint.size();
    int iTQuantity = raiConnect.size()/3;
    int iEQuantity = iVQuantity + iTQuantity - 2;
    Reset(iVQuantity,iEQuantity,iTQuantity);
    m_akPoint = rakPoint;

    // Copy polyhedron points into vertex array.  Compute centroid for use in
    // making sure the triangles are counterclockwise oriented when viewed
    // from the outside.
    ComputeCentroid();

    // get polyhedron edge and triangle information
    for (int iT = 0, iIndex = 0; iT < iTQuantity; iT++)
    {
        // get vertex indices for triangle
        int iV0 = raiConnect[iIndex++];
        int iV1 = raiConnect[iIndex++];
        int iV2 = raiConnect[iIndex++];

        // make sure triangle is counterclockwise
        Vector3& rkV0 = m_akPoint[iV0];
        Vector3& rkV1 = m_akPoint[iV1];
        Vector3& rkV2 = m_akPoint[iV2];

        Vector3 kDiff = m_kCentroid - rkV0;
        Vector3 kE1 = rkV1 - rkV0;
        Vector3 kE2 = rkV2 - rkV0;
        Vector3 kNormal = kE1.Cross(kE2);
        Real fLength = kNormal.Length();
        if ( fLength > 1e-06f )
        {
            kNormal /= fLength;
        }
        else
        {
            kNormal = kDiff;
            kNormal.Unitize();
        }

        Real fDistance = kNormal.Dot(kDiff);

        if ( fDistance < 0.0f )
        {
            // triangle is counterclockwise
            Insert(iV0,iV1,iV2);
        }
        else
        {
            // triangle is clockwise
            Insert(iV0,iV2,iV1);
        }
    }

    UpdatePlanes();
}
Beispiel #4
0
//----------------------------------------------------------------------------
bool Mgc::Culled (const Plane& rkPlane, const Sphere& rkSphere,
    bool bUnitNormal)
{
    Vector3 kNormal = rkPlane.Normal();
    Real fConstant = rkPlane.Constant();
    if ( !bUnitNormal )
    {
        Real fLength = kNormal.Unitize();
        fConstant /= fLength;
    }

    Real fTmp = kNormal.Dot(rkSphere.Center()) - fConstant;
    return fTmp <= -rkSphere.Radius();
}
Beispiel #5
0
//----------------------------------------------------------------------------
bool Mgc::TestIntersection (const Plane& rkPlane, const Sphere& rkSphere,
    bool bUnitNormal)
{
    Vector3 kNormal = rkPlane.Normal();
    Real fConstant = rkPlane.Constant();
    if ( !bUnitNormal )
    {
        Real fLength = kNormal.Unitize();
        fConstant /= fLength;
    }

    Real fPseudoDistance = kNormal.Dot(rkSphere.Center()) - fConstant;
    return Math::FAbs(fPseudoDistance) <= rkSphere.Radius();
}
//----------------------------------------------------------------------------
bool Mgc::Culled (const Plane& rkPlane, const Ellipsoid& rkEllipsoid,
    bool bUnitNormal)
{
    Vector3 kNormal = rkPlane.Normal();
    Real fConstant = rkPlane.Constant();
    if ( !bUnitNormal )
    {
        Real fLength = kNormal.Unitize();
        fConstant /= fLength;
    }

    Real fDiscr = kNormal.Dot(rkEllipsoid.InverseA()*kNormal);
    Real fRoot = Math::Sqrt(Math::FAbs(fDiscr));
    Real fSDist = kNormal.Dot(rkEllipsoid.Center()) - fConstant;
    return fSDist <= -fRoot;
}
//----------------------------------------------------------------------------
bool Mgc::Culled (const Plane& rkPlane, const Lozenge& rkLozenge,
    bool bUnitNormal)
{
    Vector3 kNormal = rkPlane.Normal();
    Real fConstant = rkPlane.Constant();
    if ( !bUnitNormal )
    {
        Real fLength = kNormal.Unitize();
        fConstant /= fLength;
    }

    Real fTmp00 = kNormal.Dot(rkLozenge.Origin()) - fConstant;
    if ( fTmp00 < 0.0f )
    {
        Real fDotNE0 = kNormal.Dot(rkLozenge.Edge0());
        Real fTmp10 = fTmp00 + fDotNE0;
        if ( fTmp10 < 0.0f )
        {
            Real fDotNE1 = kNormal.Dot(rkLozenge.Edge1());
            Real fTmp01 = fTmp00 + fDotNE1;
            if ( fTmp01 < 0.0f )
            {
                Real fTmp11 = fTmp10 + fDotNE1;
                if ( fTmp11 < 0.0f )
                {
                    // all four lozenge corners on negative side of plane
                    if ( fTmp00 <= fTmp10 )
                    {
                        if ( fTmp00 <= fTmp01 )
                            return fTmp00 <= -rkLozenge.Radius();
                        else
                            return fTmp01 <= -rkLozenge.Radius();
                    }
                    else
                    {
                        if ( fTmp10 <= fTmp11 )
                            return fTmp10 <= -rkLozenge.Radius();
                        else
                            return fTmp11 <= -rkLozenge.Radius();
                    }
                }
            }
        }
    }

    return false;
}
//----------------------------------------------------------------------------
void ConvexPolyhedron::UpdatePlanes ()
{
    // The planes are constructed to have *inner pointing* normals.  This
    // supports my Wild Magic software clipping code that was based on a view
    // frustum having inner pointing normals.
    ComputeCentroid();
    int iTQuantity = m_akTriangle.GetQuantity();
    m_akPlane.resize(iTQuantity);
    for (int iT = 0; iT < iTQuantity; iT++)
    {
        MTTriangle& rkT = m_akTriangle[iT];
        int iV0 = GetVLabel(rkT.Vertex(0));
        int iV1 = GetVLabel(rkT.Vertex(1));
        int iV2 = GetVLabel(rkT.Vertex(2));
        Vector3& rkV0 = m_akPoint[iV0];
        Vector3& rkV1 = m_akPoint[iV1];
        Vector3& rkV2 = m_akPoint[iV2];

        Vector3 kDiff = m_kCentroid - rkV0;
        Vector3 kE1 = rkV1 - rkV0;
        Vector3 kE2 = rkV2 - rkV0;
        Vector3 kNormal = kE2.Cross(kE1);
        Real fLength = kNormal.Length();
        if ( fLength > 1e-06f )
        {
            kNormal /= fLength;
            Real fDot = kNormal.Dot(kDiff);
            if ( fDot < 0.0f )
                kNormal = -kNormal;
        }
        else
        {
            // triangle is degenerate, use "normal" that points towards
            // centroid
            kNormal = kDiff;
            kNormal.Unitize();
        }

        // inner pointing normal
        m_akPlane[iT] = Plane(kNormal,kNormal.Dot(rkV0));
    }
}
//----------------------------------------------------------------------------
bool Mgc::TestIntersection (const Plane& rkPlane, const Lozenge& rkLozenge,
    bool bUnitNormal)
{
    Vector3 kNormal = rkPlane.Normal();
    Real fConstant = rkPlane.Constant();
    if ( !bUnitNormal )
    {
        Real fLength = kNormal.Unitize();
        fConstant /= fLength;
    }

    Vector3 kC10 = rkLozenge.Origin() + rkLozenge.Edge0();
    Vector3 kC01 = rkLozenge.Origin() + rkLozenge.Edge1();
    Vector3 kC11 = kC10 + rkLozenge.Edge1();

    Real fTmp00 = kNormal.Dot(rkLozenge.Origin()) - fConstant;
    Real fTmp10 = kNormal.Dot(kC10) - fConstant;
    if ( fTmp00*fTmp10 <= 0.0f )
    {
        // two lozenge ends on opposite sides of the plane
        return true;
    }

    Real fTmp01 = kNormal.Dot(kC01) - fConstant;
    if ( fTmp00*fTmp01 <= 0.0f )
    {
        // two lozenge ends on opposite sides of the plane
        return true;
    }

    Real fTmp11 = kNormal.Dot(kC11) - fConstant;
    if ( fTmp10*fTmp11 <= 0.0f )
    {
        // two lozenge ends on opposite sides of the plane
        return true;
    }

    return Math::FAbs(fTmp00) <= rkLozenge.Radius()
        || Math::FAbs(fTmp10) <= rkLozenge.Radius()
        || Math::FAbs(fTmp01) <= rkLozenge.Radius()
        || Math::FAbs(fTmp11) <= rkLozenge.Radius();
}
//----------------------------------------------------------------------------
static bool PointInsideCone (const Vector3& rkP, const Cone3& rkCone)
{
    Vector3 kDiff = rkP - rkCone.Vertex();
    kDiff.Unitize();
    return rkCone.Axis().Dot(kDiff) >= rkCone.CosAngle();
}
Beispiel #11
0
//----------------------------------------------------------------------------
Vector3 Curve3::GetTangent (Real fTime) const
{
    Vector3 kVelocity = GetFirstDerivative(fTime);
    kVelocity.Unitize();
    return kVelocity;
}