Beispiel #1
0
FadeLOD::FadeLOD() :
_minPixelExtent( 0.0f ),
_maxPixelExtent( FLT_MAX ),
_minFadeExtent ( 0.0f ),
_maxFadeExtent ( 0.0f )
{
    if ( Registry::capabilities().supportsGLSL() )
    {
        VirtualProgram* vp = new VirtualProgram();

        vp->setFunction(
            "oe_fragFadeLOD",
            FadeLODFragmentShader,
            ShaderComp::LOCATION_FRAGMENT_COLORING );

        osg::StateSet* ss = getOrCreateStateSet();

        ss->setAttributeAndModes( vp, osg::StateAttribute::ON );
    }
}
    osg::Group* run(osg::Node* node)
    {
        float radius = osgEarth::SpatialReference::get("wgs84")->getEllipsoid()->getRadiusEquator();

        VirtualProgram* vp = VirtualProgram::getOrCreate(node->getOrCreateStateSet());

        // Install the shader function:
        vp->setFunction("make_it_red", fragShader, ShaderComp::LOCATION_FRAGMENT_LIGHTING);

        // Set a maximum LOD range for the above function:
        vp->setFunctionMinRange( "make_it_red", 500000 );
        vp->setFunctionMaxRange( "make_it_red", 1000000 );

        osg::Group* g = new osg::Group();

        // Install a callback that will convey the LOD range to the shader LOD.
        g->addCullCallback( new RangeUniformCullCallback() );

        g->addChild( node );
        return g;
    }
Beispiel #3
0
void 
FeaturesToNodeFilter::applyLineSymbology(osg::StateSet*    stateset, 
                                         const LineSymbol* line)
{
    if ( line && line->stroke().isSet() )
    {
        if ( line->stroke()->width().isSet() )
        {
            float width = std::max( 1.0f, *line->stroke()->width() );
            if ( width != 1.0f )
            {
                stateset->setAttributeAndModes(new osg::LineWidth(width), 1);
            }
        }

        if ( line->stroke()->stipplePattern().isSet() )
        {
#if 1
            stateset->setAttributeAndModes(
                new osg::LineStipple(
                    line->stroke()->stippleFactor().value(),
                    line->stroke()->stipplePattern().value()),
                osg::StateAttribute::ON );
#else
            // goofing around...
            const char* frag =
                "#version 110\n"
                "void oe_stipple_frag(inout vec4 color) {\n"
                "    float x = mod(gl_FragCoord.x, 5.0);\n"
                "    float y = mod(gl_FragCoord.y, 5.0);\n"
                "    if (x < y)\n"
                "        color.a = 0.0;\n"
                "}\n";

            VirtualProgram* vp = VirtualProgram::getOrCreate(stateset);
            vp->setFunction("oe_stipple_frag", frag, ShaderComp::LOCATION_FRAGMENT_COLORING);
#endif
        }
    }
}
Beispiel #4
0
void
DiscardAlphaFragments::install(osg::StateSet* ss, float minAlpha) const
{
    if ( ss && minAlpha < 1.0f && Registry::capabilities().supportsGLSL() )
    {
        VirtualProgram* vp = VirtualProgram::getOrCreate(ss);
        if ( vp )
        {
            std::string code = Stringify()
                << "#version " GLSL_VERSION_STR "\n"
                << "void oe_discardalpha_frag(inout vec4 color) { \n"
                << "    if ( color.a < " << std::setprecision(1) << minAlpha << ") discard;\n"
                << "} \n";

            vp->setFunction(
                "oe_discardalpha_frag",
                code,
                ShaderComp::LOCATION_FRAGMENT_COLORING,
                0L, 0.95f);
        }
    }
}
void
ShaderGenerator::apply(osg::ClipNode& node)
{
    static const char* s_clip_source =
        "#version " GLSL_VERSION_STR "\n"
        "void oe_sg_set_clipvertex(inout vec4 vertexVIEW)\n"
        "{\n"
        "    gl_ClipVertex = vertexVIEW; \n"
        "}\n";

    if ( !_active )
        return;

    if ( ignore(&node) )
        return;

    VirtualProgram* vp = VirtualProgram::getOrCreate(node.getOrCreateStateSet());
    if ( vp->referenceCount() == 1 ) vp->setName( _name );
    vp->setFunction( "oe_sg_set_clipvertex", s_clip_source, ShaderComp::LOCATION_VERTEX_VIEW );

    apply( static_cast<osg::Group&>(node) );
}
        void traverse(osg::NodeVisitor& nv)
        {
            if (nv.getVisitorType() == nv.UPDATE_VISITOR)
            {
                if ( (nv.getFrameStamp()->getFrameNumber() % 2) == 0 )
                {
                    _toggle = !_toggle;

                    VirtualProgram* vp = VirtualProgram::getOrCreate(this->getOrCreateStateSet());
                    if ( _toggle )
                    {
                        vp->setFunction(
                            "make_it_red", fragShader,
                            osgEarth::ShaderComp::LOCATION_FRAGMENT_COLORING,
                            new Acceptor() );
                    }
                    else
                    {
                        vp->removeShader("make_it_red");
                    }
                }
            }
            osg::Group::traverse(nv);
        }
Beispiel #7
0
bool
HighlightDecoration::apply(AnnotationNode& node, bool enable)
{
    if ( _supported )
    {
        osg::StateSet* ss = node.getOrCreateStateSet();
        if ( enable )
        {
            VirtualProgram* vp = VirtualProgram::getOrCreate( ss );
            if ( vp->getShader(FRAG_FUNCTION) == 0L )
            {
                vp->setFunction(FRAG_FUNCTION, fragSource, ShaderComp::LOCATION_FRAGMENT_COLORING);
                ss->addUniform( _colorUniform.get() );
            }
            _colorUniform->set(_color);
        }
        else
        {
            // sets alpha=0 to disable highlighting
            _colorUniform->set(osg::Vec4f(1,1,1,0));
        }
    }
    return _supported;
}
Beispiel #8
0
void
DrawInstanced::install(osg::StateSet* stateset)
{
    if ( !stateset )
        return;

    // simple vertex program to position a vertex based on its instance
    // matrix, which is stored in a texture.
     std::string src_vert = Stringify() 
        << "#version 120 \n" 
        << "#extension GL_EXT_gpu_shader4 : enable \n" 
        << "#extension GL_ARB_draw_instanced: enable \n" 
        << "uniform sampler2D oe_di_postex; \n" 
        << "uniform vec2 oe_di_postex_size; \n" 
        << "void oe_di_setInstancePosition(inout vec4 VertexMODEL) \n" 
        << "{ \n" 
        << "    float index = float(4 * gl_InstanceID) / oe_di_postex_size.x; \n" 
        << "    float s = fract(index); \n" 
        << "    float t = floor(index)/oe_di_postex_size.y; \n" 
        << "    float step = 1.0 / oe_di_postex_size.x; \n"  // step from one vec4 to the next 
        << "    vec4 m0 = texture2D(oe_di_postex, vec2(s, t)); \n" 
        << "    vec4 m1 = texture2D(oe_di_postex, vec2(s+step, t)); \n" 
        << "    vec4 m2 = texture2D(oe_di_postex, vec2(s+step+step, t)); \n" 
        << "    vec4 m3 = texture2D(oe_di_postex, vec2(s+step+step+step, t)); \n" 
        << "    VertexMODEL = VertexMODEL * mat4(m0, m1, m2, m3); \n" // why??? 
        << "} \n"; 

    VirtualProgram* vp = VirtualProgram::getOrCreate(stateset);

    vp->setFunction(
        "oe_di_setInstancePosition",
        src_vert,
        ShaderComp::LOCATION_VERTEX_MODEL );

    stateset->getOrCreateUniform("oe_di_postex", osg::Uniform::SAMPLER_2D)->set(POSTEX_TEXTURE_UNIT);
}
// Generates the main shader code for rendering the terrain.
void
MPTerrainEngineNode::updateState()
{
    if ( _batchUpdateInProgress )
    {
        _stateUpdateRequired = true;
    }
    else
    {
        osg::StateSet* terrainStateSet = _terrain->getOrCreateStateSet();
        
        // required for multipass tile rendering to work
        terrainStateSet->setAttributeAndModes(
            new osg::Depth(osg::Depth::LEQUAL, 0, 1, true) );

        // activate standard mix blending.
        terrainStateSet->setAttributeAndModes( 
            new osg::BlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA),
            osg::StateAttribute::ON );

        // install shaders, if we're using them.
        if ( Registry::capabilities().supportsGLSL() )
        {
            VirtualProgram* vp = new VirtualProgram();
            vp->setName( "osgEarth.engine_mp.TerrainNode" );
            terrainStateSet->setAttributeAndModes( vp, osg::StateAttribute::ON );

            // bind the vertex attributes generated by the tile compiler.
            vp->addBindAttribLocation( "oe_terrain_attr",  osg::Drawable::ATTRIBUTE_6 );
            vp->addBindAttribLocation( "oe_terrain_attr2", osg::Drawable::ATTRIBUTE_7 );

            // Vertex shader:
            std::string vs = Stringify() <<
                "#version " GLSL_VERSION_STR "\n"
                GLSL_DEFAULT_PRECISION_FLOAT "\n"
                "varying vec4 oe_layer_texc;\n"
                "varying vec4 oe_layer_tilec;\n"
                "void oe_mp_setup_coloring(inout vec4 VertexModel) \n"
                "{ \n"
                "    oe_layer_texc  = gl_MultiTexCoord" << _primaryUnit << ";\n"
                "    oe_layer_tilec = gl_MultiTexCoord" << _secondaryUnit << ";\n"
                "}\n";

            bool useTerrainColor = _terrainOptions.color().isSet();

            bool useBlending = _terrainOptions.enableBlending() == true;

            // Fragment Shader for normal blending:
            std::string fs = Stringify() <<
                "#version " GLSL_VERSION_STR "\n"
                GLSL_DEFAULT_PRECISION_FLOAT "\n"
                "varying vec4 oe_layer_texc; \n"
                "uniform sampler2D oe_layer_tex; \n"
                "uniform int oe_layer_uid; \n"
                "uniform int oe_layer_order; \n"
                "uniform float oe_layer_opacity; \n"
                << (useTerrainColor ?
                "uniform vec4 oe_terrain_color; \n" : ""
                ) <<
                "void oe_mp_apply_coloring(inout vec4 color) \n"
                "{ \n"
                << (useTerrainColor ?
                "    color = oe_terrain_color; \n" : ""
                ) <<
                //"    color = vec4(1,1,1,1); \n"
                "    vec4 texel; \n"
                "    if ( oe_layer_uid >= 0 ) { \n"
                "        texel = texture2D(oe_layer_tex, oe_layer_texc.st); \n"
                "        texel.a *= oe_layer_opacity; \n"
                "    } \n"
                "    else \n"
                "        texel = color; \n"
                "    "
                << (useBlending ?
                "    if ( oe_layer_order == 0 ) \n"
                "        color = texel*texel.a + color*(1.0-texel.a); \n" // simulate src_alpha, 1-src_alpha blens
                "    else \n" : ""
                ) <<
                "        color = texel; \n"
                "} \n";

            // Color filter frag function:
            std::string fs_colorfilters =
                "#version " GLSL_VERSION_STR "\n"
                GLSL_DEFAULT_PRECISION_FLOAT "\n"
                "uniform int oe_layer_uid; \n"
                "__COLOR_FILTER_HEAD__"
                "void oe_mp_apply_filters(inout vec4 color) \n"
                "{ \n"
                    "__COLOR_FILTER_BODY__"
                "} \n";

            vp->setFunction( "oe_mp_setup_coloring", vs, ShaderComp::LOCATION_VERTEX_MODEL, 0.0 );
            vp->setFunction( "oe_mp_apply_coloring", fs, ShaderComp::LOCATION_FRAGMENT_COLORING, 0.0 );

            // assemble color filter code snippets.
            bool haveColorFilters = false;
            {
                std::stringstream cf_head;
                std::stringstream cf_body;
                const char* I = "    ";

                // second, install the per-layer color filter functions AND shared layer bindings.
                bool ifStarted = false;
                int numImageLayers = _update_mapf->imageLayers().size();
                for( int i=0; i<numImageLayers; ++i )
                {
                    ImageLayer* layer = _update_mapf->getImageLayerAt(i);
                    if ( layer->getEnabled() )
                    {
                        // install Color Filter function calls:
                        const ColorFilterChain& chain = layer->getColorFilters();
                        if ( chain.size() > 0 )
                        {
                            haveColorFilters = true;
                            if ( ifStarted ) cf_body << I << "else if ";
                            else             cf_body << I << "if ";
                            cf_body << "(oe_layer_uid == " << layer->getUID() << ") {\n";
                            for( ColorFilterChain::const_iterator j = chain.begin(); j != chain.end(); ++j )
                            {
                                const ColorFilter* filter = j->get();
                                cf_head << "void " << filter->getEntryPointFunctionName() << "(inout vec4 color);\n";
                                cf_body << I << I << filter->getEntryPointFunctionName() << "(color);\n";
                                filter->install( terrainStateSet );
                            }
                            cf_body << I << "}\n";
                            ifStarted = true;
                        }
                    }
                }

                if ( haveColorFilters )
                {
                    std::string cf_head_str, cf_body_str;
                    cf_head_str = cf_head.str();
                    cf_body_str = cf_body.str();

                    replaceIn( fs_colorfilters, "__COLOR_FILTER_HEAD__", cf_head_str );
                    replaceIn( fs_colorfilters, "__COLOR_FILTER_BODY__", cf_body_str );

                    vp->setFunction( "oe_mp_apply_filters", fs_colorfilters, ShaderComp::LOCATION_FRAGMENT_COLORING, 0.0 );
                }
            }

            // binding for the terrain texture
            terrainStateSet->getOrCreateUniform( 
                "oe_layer_tex", osg::Uniform::SAMPLER_2D )->set( _primaryUnit );

            // binding for the secondary texture (for LOD blending)
            terrainStateSet->getOrCreateUniform(
                "oe_layer_tex_parent", osg::Uniform::SAMPLER_2D )->set( _secondaryUnit );

            // binding for the default secondary texture matrix
            osg::Matrixf parent_mat;
            parent_mat(0,0) = 0.0f;
            terrainStateSet->getOrCreateUniform(
                "oe_layer_parent_matrix", osg::Uniform::FLOAT_MAT4 )->set( parent_mat );

            // uniform that controls per-layer opacity
            terrainStateSet->getOrCreateUniform(
                "oe_layer_opacity", osg::Uniform::FLOAT )->set( 1.0f );

            // uniform that conveys the layer UID to the shaders; necessary
            // for per-layer branching (like color filters)
            // UID -1 => no image layer (no texture)
            terrainStateSet->getOrCreateUniform(
                "oe_layer_uid", osg::Uniform::INT )->set( -1 );

            // uniform that conveys the render order, since the shaders
            // need to know which is the first layer in order to blend properly
            terrainStateSet->getOrCreateUniform(
                "oe_layer_order", osg::Uniform::INT )->set( 0 );

            // base terrain color.
            if ( useTerrainColor )
            {
                terrainStateSet->getOrCreateUniform(
                    "oe_terrain_color", osg::Uniform::FLOAT_VEC4 )->set( *_terrainOptions.color() );
            }
        }

        _stateUpdateRequired = false;
    }
}
Beispiel #10
0
void
OverlayDecorator::initSubgraphShaders( osg::StateSet* set )
{
    VirtualProgram* vp = new VirtualProgram();
    vp->setName( "OverlayDecorator subgraph shader" );
    set->setAttributeAndModes( vp, osg::StateAttribute::ON );

    // sampler for projected texture:
    set->getOrCreateUniform( "osgearth_overlay_ProjTex", osg::Uniform::SAMPLER_2D )->set( *_textureUnit );

    // the texture projection matrix uniform.
    _texGenUniform = set->getOrCreateUniform( "osgearth_overlay_TexGenMatrix", osg::Uniform::FLOAT_MAT4 );

    std::stringstream buf;

    // vertex shader - subgraph
    buf << "#version 110 \n"
        << "uniform mat4 osgearth_overlay_TexGenMatrix; \n"
        << "uniform mat4 osg_ViewMatrixInverse; \n"

        << "void osgearth_overlay_vertex(void) \n"
        << "{ \n"
        << "    gl_TexCoord["<< *_textureUnit << "] = osgearth_overlay_TexGenMatrix * osg_ViewMatrixInverse * gl_ModelViewMatrix * gl_Vertex; \n"
        << "} \n";

    std::string vertexSource = buf.str();
    vp->setFunction( "osgearth_overlay_vertex", vertexSource, ShaderComp::LOCATION_VERTEX_POST_LIGHTING );

    // fragment shader - subgraph
    buf.str("");
    buf << "#version 110 \n"
        << "uniform sampler2D osgearth_overlay_ProjTex; \n";

    if ( _useWarping )
    {
        buf << "uniform float warp; \n"

            // because the built-in pow() is busted
            << "float mypow( in float x, in float y ) \n"
            << "{ \n"
            << "    return x/(x+y-y*x); \n"
            << "} \n"

            << "vec2 warpTexCoord( in vec2 src ) \n"
            << "{ \n"
            //      incoming tex coord is [0..1], so we scale to [-1..1]
            << "    vec2 srcn = vec2( src.x*2.0 - 1.0, src.y*2.0 - 1.0 ); \n" 

            //      we want to work in the [0..1] space on each side of 0, so can the abs
            //      and store the signs for later:
            << "    vec2 srct = vec2( abs(srcn.x), abs(srcn.y) ); \n"
            << "    vec2 sign = vec2( srcn.x > 0.0 ? 1.0 : -1.0, srcn.y > 0.0 ? 1.0 : -1.0 ); \n"

            //      apply the deformation using a deceleration curve:
            << "    vec2 srcp = vec2( 1.0-mypow(1.0-srct.x,warp), 1.0-mypow(1.0-srct.y,warp) ); \n"

            //      reapply the sign, and scale back to [0..1]:
            << "    vec2 srcr = vec2( sign.x*srcp.x, sign.y*srcp.y ); \n"
            << "    return vec2( 0.5*(srcr.x + 1.0), 0.5*(srcr.y + 1.0) ); \n"
            << "} \n";
    }

    buf << "void osgearth_overlay_fragment( inout vec4 color ) \n"
        << "{ \n"
        << "    vec2 texCoord = gl_TexCoord["<< *_textureUnit << "].xy / gl_TexCoord["<< *_textureUnit << "].q; \n";

    if ( _useWarping && !_visualizeWarp )
        buf  << "    texCoord = warpTexCoord( texCoord ); \n";

    buf << "    vec4 texel = texture2D(osgearth_overlay_ProjTex, texCoord); \n"  
        << "    color = vec4( mix( color.rgb, texel.rgb, texel.a ), color.a); \n"
        << "} \n";

    std::string fragmentSource = buf.str();
    vp->setFunction( "osgearth_overlay_fragment", fragmentSource, ShaderComp::LOCATION_FRAGMENT_PRE_LIGHTING );
}
Beispiel #11
0
bool
ShadowUtils::setUpShadows(osgShadow::ShadowedScene* sscene, osg::Group* root)
{
    osg::StateSet* ssStateSet = sscene->getOrCreateStateSet();

    MapNode* mapNode = MapNode::findMapNode(root);
    TerrainEngineNode* engine = mapNode->getTerrainEngine();
    if (!engine)
        return false;

    TextureCompositor* compositor = engine->getTextureCompositor();
    int su = -1;
    if (!compositor->reserveTextureImageUnit(su))
        return false;

    OE_INFO << LC << "Reserved texture unit " << su << " for shadowing" << std::endl;

    osgShadow::ViewDependentShadowMap* vdsm =  dynamic_cast< osgShadow::ViewDependentShadowMap*>(sscene->getShadowTechnique());
    int su1 = -1;
    if (vdsm && sscene->getShadowSettings()->getNumShadowMapsPerLight() == 2)
    {
        if (!compositor->reserveTextureImageUnit(su1) || su1 != su + 1)
        {
            OE_FATAL << LC << "couldn't get contiguous shadows for split vdsm\n";
            sscene->getShadowSettings()->setNumShadowMapsPerLight(1);
            if (su1 != -1)
                compositor->releaseTextureImageUnit(su1);
            su1 = -1;
        }
        else
        {
            OE_INFO << LC << "Reserved texture unit " << su1 << " for shadowing" << std::endl;
        }
    }

    // create a virtual program to attach to the shadowed scene.
    VirtualProgram* vp = new VirtualProgram();
    vp->setName( "shadow:terrain" );
    //vp->installDefaultColoringAndLightingShaders();

    ssStateSet->setAttributeAndModes( vp, 1 );


    std::stringstream buf;
    buf << "#version " << GLSL_VERSION_STR << "\n";
#ifdef OSG_GLES2_AVAILABLE
    buf << "precision mediump float;\n";
#endif
    buf << "varying vec4 oe_shadow_ambient;\n";
    buf << "varying vec4 oe_shadow_TexCoord0;\n";
    if ( su1 >= 0 )
        buf << "varying vec4 oe_shadow_TexCoord1;\n";


    buf << "void oe_shadow_setupShadowCoords(inout vec4 VertexVIEW)\n";
    buf << "{\n";
    buf << "    vec4 position4 = VertexVIEW;\n";
    buf << "    oe_shadow_TexCoord0.s = dot( position4, gl_EyePlaneS[" << su <<"]);\n";
    buf << "    oe_shadow_TexCoord0.t = dot( position4, gl_EyePlaneT[" << su <<"]);\n";
    buf << "    oe_shadow_TexCoord0.p = dot( position4, gl_EyePlaneR[" << su <<"]);\n";
    buf << "    oe_shadow_TexCoord0.q = dot( position4, gl_EyePlaneQ[" << su <<"]);\n";
    if (su1 >= 0)
    {
        buf << "    oe_shadow_TexCoord1.s = dot( position4, gl_EyePlaneS[" << su1 <<"]);\n";
        buf << "    oe_shadow_TexCoord1.t = dot( position4, gl_EyePlaneT[" << su1 <<"]);\n";
        buf << "    oe_shadow_TexCoord1.p = dot( position4, gl_EyePlaneR[" << su1 <<"]);\n";
        buf << "    oe_shadow_TexCoord1.q = dot( position4, gl_EyePlaneQ[" << su1 <<"]);\n";
    }

    // the ambient lighting will control the intensity of the shadow.
    buf << "    oe_shadow_ambient = gl_FrontLightProduct[0].ambient; \n"
        << "}\n";

    std::string setupShadowCoords;
    setupShadowCoords = buf.str();

    vp->setFunction(
        "oe_shadow_setupShadowCoords", 
        setupShadowCoords, 
        ShaderComp::LOCATION_VERTEX_VIEW,
        -1.0 );

    std::stringstream buf2;
    buf2 <<
        "#version " << GLSL_VERSION_STR << "\n"
#ifdef OSG_GLES2_AVAILABLE
        "precision mediump float;\n"
#endif
        "uniform sampler2DShadow shadowTexture;\n"
        "varying vec4 oe_shadow_TexCoord0;\n";

    if (su1 >= 0)
    {
        // bound by vdsm
        buf2 << "uniform sampler2DShadow shadowTexture1;\n";
        buf2 << "varying vec4 oe_shadow_TexCoord1;\n";
    }
    buf2 <<
        "varying vec4 oe_shadow_ambient;\n"

        "void oe_shadow_applyLighting( inout vec4 color )\n"
        "{\n"
        "    float alpha = color.a;\n"
        "    float shadowFac = shadow2DProj( shadowTexture, oe_shadow_TexCoord0).r;\n";
    if (su1 > 0)
    {
        buf2 << "    shadowFac *= shadow2DProj( shadowTexture1, oe_shadow_TexCoord1).r;\n";
    }

    // calculate the shadowed color and mix if with the lit color based on the
    // ambient lighting. The 0.5 is a multiplier that darkens the shadow in
    // proportion to ambient light. It should probably be a uniform.
    buf2 <<
        "    vec4 colorInFullShadow = color * oe_shadow_ambient; \n"
        "    color = mix(colorInFullShadow, color, shadowFac); \n"
        "    color.a = alpha;\n"
        "}\n";

    std::string fragApplyLighting;
    fragApplyLighting = buf2.str();

    vp->setFunction(
        "oe_shadow_applyLighting",
        fragApplyLighting,
        osgEarth::ShaderComp::LOCATION_FRAGMENT_LIGHTING );

    setShadowUnit(sscene, su);

    // VDSM uses a different sampler name, shadowTexture0.
    ssStateSet
        ->getOrCreateUniform("shadowTexture", osg::Uniform::SAMPLER_2D_SHADOW)
        ->set(su);

    return true;
}
Beispiel #12
0
void
ClampingBinTechnique::setUpCamera(OverlayDecorator::TechRTTParams& params)
{
    // To store technique-specific per-view info:
    LocalPerViewData* local = new LocalPerViewData();
    params._techniqueData = local;

    // set up a callback to extract the overlay projection matrix.
    local->_cpm = new CPM();

    // create the projected texture:
    local->_rttTexture = new osg::Texture2D();
    local->_rttTexture->setTextureSize( *_textureSize, *_textureSize );
    local->_rttTexture->setInternalFormat( GL_DEPTH_COMPONENT );
    local->_rttTexture->setFilter( osg::Texture::MIN_FILTER, osg::Texture::LINEAR );
    local->_rttTexture->setFilter( osg::Texture::MAG_FILTER, osg::Texture::LINEAR );

    // this is important. geometry that is outside the depth texture will clamp to the
    // closest edge value in the texture -- this is good when you are rendering a 
    // primitive that has one or more of its verts off-screen.
    local->_rttTexture->setWrap( osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE );
    local->_rttTexture->setWrap( osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE );
    //local->_rttTexture->setBorderColor( osg::Vec4(0,0,0,1) );

    // set up the RTT camera:
    params._rttCamera = new osg::Camera();
    params._rttCamera->setReferenceFrame( osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT );
    params._rttCamera->setClearColor( osg::Vec4f(0,0,0,0) );
    params._rttCamera->setClearMask( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
    params._rttCamera->setComputeNearFarMode( osg::CullSettings::COMPUTE_NEAR_FAR_USING_BOUNDING_VOLUMES );
    params._rttCamera->setViewport( 0, 0, *_textureSize, *_textureSize );
    params._rttCamera->setRenderOrder( osg::Camera::PRE_RENDER );
    params._rttCamera->setRenderTargetImplementation( osg::Camera::FRAME_BUFFER_OBJECT );
    params._rttCamera->attach( osg::Camera::DEPTH_BUFFER, local->_rttTexture.get() );
    params._rttCamera->setClampProjectionMatrixCallback( local->_cpm.get() );

    // set up a StateSet for the RTT camera.
    osg::StateSet* rttStateSet = params._rttCamera->getOrCreateStateSet();

    // lighting is off. We don't want draped items to be lit.
    //rttStateSet->setMode( GL_LIGHTING, osg::StateAttribute::OFF | osg::StateAttribute::PROTECTED );

    rttStateSet->setMode(
        GL_BLEND, 
        osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE);

    // prevents wireframe mode in the depth camera.
    rttStateSet->setAttributeAndModes(
        new osg::PolygonMode( osg::PolygonMode::FRONT_AND_BACK, osg::PolygonMode::FILL ),
        osg::StateAttribute::ON | osg::StateAttribute::PROTECTED );

#if 0 //OOPS this kills things like a vertical scale shader!!
    // installs a dirt-simple program for rendering the depth texture that
    // skips all the normal terrain rendering stuff
    osg::Program* depthProg = new osg::Program();
    depthProg->addShader(new osg::Shader(
        osg::Shader::VERTEX, 
        "void main() { gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; }\n"));
    depthProg->addShader(new osg::Shader(
        osg::Shader::FRAGMENT, 
        "void main() { gl_FragColor = vec4(1,1,1,1); }\n"));
    rttStateSet->setAttributeAndModes(
        depthProg,
        osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE | osg::StateAttribute::PROTECTED );
#endif
    
    // attach the terrain to the camera.
    // todo: should probably protect this with a mutex.....
    params._rttCamera->addChild( _engine ); //params._terrainParent->getChild(0) ); // the terrain itself.

    // assemble the overlay graph stateset.
    local->_groupStateSet = new osg::StateSet();

    local->_groupStateSet->setTextureAttributeAndModes( 
        _textureUnit, 
        local->_rttTexture.get(), 
        osg::StateAttribute::ON );

    // set up depth test/write parameters for the overlay geometry:
    local->_groupStateSet->setAttributeAndModes(
        new osg::Depth( osg::Depth::LEQUAL, 0.0, 1.0, false ),
        osg::StateAttribute::ON );

    local->_groupStateSet->setRenderingHint( osg::StateSet::TRANSPARENT_BIN );

    // sampler for depth map texture:
    local->_groupStateSet->getOrCreateUniform(
        "oe_clamp_depthtex", 
        osg::Uniform::SAMPLER_2D )->set( _textureUnit );

    // matrix that transforms a vert from EYE coords to the depth camera's CLIP coord.
    local->_camViewToDepthClipUniform = local->_groupStateSet->getOrCreateUniform( 
        "oe_clamp_eye2depthclipmat", 
        osg::Uniform::FLOAT_MAT4 );

    // matrix that transforms a vert from depth-cam CLIP coords to EYE coords.
    local->_depthClipToCamViewUniform = local->_groupStateSet->getOrCreateUniform( 
        "oe_clamp_depthclip2eyemat", 
        osg::Uniform::FLOAT_MAT4 );

    // make the shader that will do clamping and depth offsetting.
    VirtualProgram* vp = new VirtualProgram();
    vp->setName( "ClampingBinTechnique program" );
    local->_groupStateSet->setAttributeAndModes( vp, osg::StateAttribute::ON );

    // vertex shader - subgraph
    std::string vertexSource = Stringify()
        << "#version " << GLSL_VERSION_STR << "\n"
#ifdef OSG_GLES2_AVAILABLE
        << "precision mediump float;\n"
#endif
        // uniforms from this ClampingBinTechnique:
        << "uniform sampler2D oe_clamp_depthtex; \n"
        << "uniform mat4 oe_clamp_eye2depthclipmat; \n"
        << "uniform mat4 oe_clamp_depthclip2eyemat; \n"

        // uniforms from ClampableNode:
        << "uniform vec2 oe_clamp_bias; \n"
        << "uniform vec2 oe_clamp_range; \n"

        << "varying vec4 oe_clamp_simvert; \n"
        << "varying float oe_clamp_simvertrange; \n"

        << "void oe_clamp_vertex(void) \n"
        << "{ \n"
        // transform the vertex into the depth texture's clip coordinates.
        << "    vec4 v_eye_orig = gl_ModelViewMatrix * gl_Vertex; \n"
        << "    vec4 tc = oe_clamp_eye2depthclipmat * v_eye_orig; \n"

        // sample the depth map.
        << "    float d = texture2DProj( oe_clamp_depthtex, tc ).r; \n"

        // make a fake point in depth clip space and transform it back into eye coords.
        << "    vec4 p = vec4(tc.x, tc.y, d, 1.0); \n"
        << "    vec4 v_eye_clamped = oe_clamp_depthclip2eyemat * p; \n"

        // if the clamping distance is too big, bag it.
        << "    vec3 v_eye_orig3    = v_eye_orig.xyz/v_eye_orig.w;\n"
        << "    vec3 v_eye_clamped3 = v_eye_clamped.xyz/v_eye_clamped.w; \n"
        << "    float clamp_distance = length(v_eye_orig3 - v_eye_clamped3); \n"

        << "    const float maxClampDistance = 10000.0; \n"
        
        << "    if ( clamp_distance > maxClampDistance ) \n"
        << "    { \n"
        << "        gl_Position = gl_ProjectionMatrix * v_eye_orig; \n"
        // still have to populate these to nullify the depth offset code.
        << "        oe_clamp_simvert = gl_Position; \n"
        << "        oe_clamp_simvertrange = 1.0; \n"
        << "    } \n"
        << "    else \n"
        << "    { \n"

        // now simulate a "closer" vertex for depth offsetting.

        // remap depth offset based on camera distance to vertex. The farther you are away,
        // the more of an offset you need.

        << "        float range = length(v_eye_clamped3); \n"

        << "        float ratio = (clamp(range, oe_clamp_range[0], oe_clamp_range[1])-oe_clamp_range[0])/(oe_clamp_range[1]-oe_clamp_range[0]);\n"
        << "        float bias = oe_clamp_bias[0] + ratio * (oe_clamp_bias[1]-oe_clamp_bias[0]);\n"

        << "        vec3 adj_vec = normalize(v_eye_clamped3); \n"
        << "        vec3 v_eye_offset3 = v_eye_clamped3 - (adj_vec * bias); \n"

        << "        vec4 v_sim_eye = vec4( v_eye_offset3 * v_eye_clamped.w, v_eye_clamped.w ); \n"
        << "        oe_clamp_simvert = gl_ProjectionMatrix * v_sim_eye;\n"
        << "        oe_clamp_simvertrange = range - bias; \n"
        << "        gl_Position = gl_ProjectionMatrix * v_eye_clamped; \n"
        << "    } \n"
        << "} \n";

    vp->setFunction( "oe_clamp_vertex", vertexSource, ShaderComp::LOCATION_VERTEX_POST_LIGHTING );


    // fragment shader - depth offset apply
    std::string frag =
        "varying vec4 oe_clamp_simvert; \n"
        "varying float oe_clamp_simvertrange; \n"
        "void oe_clamp_fragment(inout vec4 color)\n"
        "{ \n"
        "    float sim_depth = 0.5 * (1.0+(oe_clamp_simvert.z/oe_clamp_simvert.w));\n"

        // if the offset pushed the Z behind the eye, the projection mapping will
        // result in a z>1. We need to bring these values back down to the 
        // near clip plan (z=0). We need to check simRange too before doing this
        // so we don't draw fragments that are legitimently beyond the far clip plane.
        "    if ( sim_depth > 1.0 && oe_clamp_simvertrange < 0.0 ) { sim_depth = 0.0; } \n"
        "    gl_FragDepth = max(0.0, sim_depth); \n"
        "}\n";

    vp->setFunction( "oe_clamp_fragment", frag, ShaderComp::LOCATION_FRAGMENT_PRE_LIGHTING );
}
Beispiel #13
0
int
main(int argc, char** argv)
{
    osg::ArgumentParser arguments(&argc,argv);

    // help?
    if ( arguments.read("--help") )
        return usage(argv[0]);

    // create a viewer:
    osgViewer::Viewer viewer(arguments);

    // Tell the database pager to not modify the unref settings
    viewer.getDatabasePager()->setUnrefImageDataAfterApplyPolicy( false, false );

    // install our default manipulator (do this before calling load)
    viewer.setCameraManipulator( new EarthManipulator(arguments) );

    // disable the small-feature culling
    viewer.getCamera()->setSmallFeatureCullingPixelSize(-1.0f);

    // set a near/far ratio that is smaller than the default. This allows us to get
    // closer to the ground without near clipping. If you need more, use --logdepth
    viewer.getCamera()->setNearFarRatio(0.0001);

    // load an earth file, and support all or our example command-line options
    // and earth file <external> tags    
    osg::Node* node = MapNodeHelper().load( arguments, &viewer );
    if ( node )
    {

        // Get the MapNode
        MapNode* mapNode = MapNode::findMapNode( node );

        // Find the Splat Extension
        SplatExtension* splatExtension = mapNode->getExtension<SplatExtension>();
        if (splatExtension)
        {
            OE_NOTICE << "Found Splat Extension" << std::endl;
        }

        LandCoverTerrainEffect* landCoverEffect = mapNode->getTerrainEngine()->getEffect<LandCoverTerrainEffect>();
        if (landCoverEffect)
        {
            OE_NOTICE << "Found landcover terrain effect" << std::endl;

            for (Zones::const_iterator zoneItr = landCoverEffect->getZones().begin();
                zoneItr != landCoverEffect->getZones().end();
                ++zoneItr)
            {
                // Get the StateSet for each of the LandCoverLayers
                for (LandCoverLayers::iterator landCoverItr = zoneItr->get()->getLandCover()->getLayers().begin();
                    landCoverItr != zoneItr->get()->getLandCover()->getLayers().end();
                    ++landCoverItr)
                {
                    // Get the stateset for the layer.
                    osg::StateSet* stateset = landCoverItr->get()->getOrCreateStateSet();

                    // Get the VirtualProgram for this layer.
                    VirtualProgram* vp = VirtualProgram::getOrCreate(stateset);

                    // Make the "tree" layer all red.
                    if (landCoverItr->get()->getName() == "trees")
                    {                                         
                        vp->setFunction( "color_landcover", color_landcover, ShaderComp::LOCATION_FRAGMENT_LIGHTING);
                    }
                }
            }
        }

        viewer.setSceneData( node );
        while(!viewer.done())
        {
            viewer.frame();
        }
    }
    else
    {
        return usage(argv[0]);
    }
}
Beispiel #14
0
void
ShadowCaster::reinitialize()
{
    if ( !_supported )
        return;

    _shadowmap = 0L;
    _rttCameras.clear();

    int numSlices = (int)_ranges.size() - 1;
    if ( numSlices < 1 )
    {
        OE_WARN << LC << "Illegal. Must have at least one range slice." << std::endl;
        return ;
    }

    // create the projected texture:
    _shadowmap = new osg::Texture2DArray();
    _shadowmap->setTextureSize( _size, _size, numSlices );
    _shadowmap->setInternalFormat( GL_DEPTH_COMPONENT );
    _shadowmap->setFilter( osg::Texture::MIN_FILTER, osg::Texture::LINEAR );
    _shadowmap->setFilter( osg::Texture::MAG_FILTER, osg::Texture::LINEAR );
    _shadowmap->setWrap( osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_BORDER );
    _shadowmap->setWrap( osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_BORDER );
    _shadowmap->setBorderColor(osg::Vec4(1,1,1,1));

    // set up the RTT camera:
    for(int i=0; i<numSlices; ++i)
    {
        osg::Camera* rtt = new osg::Camera();
        Shadowing::setIsShadowCamera(rtt);
        rtt->setReferenceFrame( osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT );
        rtt->setClearDepth( 1.0 );
        rtt->setClearMask( GL_DEPTH_BUFFER_BIT );
        rtt->setComputeNearFarMode( osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR );
        rtt->setViewport( 0, 0, _size, _size );
        rtt->setRenderOrder( osg::Camera::PRE_RENDER );
        rtt->setRenderTargetImplementation( osg::Camera::FRAME_BUFFER_OBJECT );
        rtt->setImplicitBufferAttachmentMask(0, 0);
        rtt->attach( osg::Camera::DEPTH_BUFFER, _shadowmap.get(), 0, i );
        rtt->addChild( _castingGroup.get() );
        _rttCameras.push_back(rtt);
    }

    _rttStateSet = new osg::StateSet();

    // only draw back faces to the shadow depth map
    _rttStateSet->setAttributeAndModes( 
        new osg::CullFace(osg::CullFace::FRONT),
        osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);

    _rttStateSet->addUniform(new osg::Uniform("oe_isShadowCamera", true), osg::StateAttribute::OVERRIDE);


    _renderStateSet = new osg::StateSet();
    
    std::string vertex = Stringify() << 
        "#version " GLSL_VERSION_STR "\n"
        GLSL_DEFAULT_PRECISION_FLOAT "\n"
        "uniform mat4 oe_shadow_matrix[" << numSlices << "]; \n"
        "varying vec4 oe_shadow_coord[" << numSlices << "]; \n"
        "void oe_shadow_vertex(inout vec4 VertexVIEW) \n"
        "{ \n"
        "    for(int i=0; i<" << numSlices << "; ++i) \n"
        "        oe_shadow_coord[i] = oe_shadow_matrix[i] * VertexVIEW;\n"
        "} \n";

    std::string fragment = Stringify() << 
        "#version " GLSL_VERSION_STR "\n"
        GLSL_DEFAULT_PRECISION_FLOAT "\n"
        "#extension GL_EXT_texture_array : enable \n"

        "uniform sampler2DArray oe_shadow_map; \n"
        "uniform vec4 oe_shadow_color; \n"
        "uniform float oe_shadow_blur; \n"
        "varying vec3 vp_Normal; \n"
        "varying vec4 oe_shadow_coord[" << numSlices << "]; \n"

        //TODO-run a generator and rplace
        "#define OE_SHADOW_NUM_SAMPLES 16\n"
        "const vec2 oe_shadow_samples[OE_SHADOW_NUM_SAMPLES] = vec2[]( vec2( -0.942016, -0.399062 ), vec2( 0.945586, -0.768907 ), vec2( -0.094184, -0.929389 ), vec2( 0.344959, 0.293878 ), vec2( -0.915886, 0.457714 ), vec2( -0.815442, -0.879125 ), vec2( -0.382775, 0.276768 ), vec2( 0.974844, 0.756484 ), vec2( 0.443233, -0.975116 ), vec2( 0.53743, -0.473734 ), vec2( -0.264969, -0.41893 ), vec2( 0.791975, 0.190909 ), vec2( -0.241888, 0.997065 ), vec2( -0.8141, 0.914376 ), vec2( 0.199841, 0.786414 ), vec2( 0.143832, -0.141008 )); \n"

        "float oe_shadow_rand(vec2 co){\n"
        "   return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);\n"
        "}\n"
        
        "vec2 oe_shadow_rot(vec2 p, float a) { \n"
        "    vec2 sincos = vec2(sin(a), cos(a)); \n"
        "    return vec2(dot(p, vec2(sincos.y, -sincos.x)), dot(p, sincos.xy)); \n"
        "}\n"

        // slow PCF sampling.
        "float oe_shadow_multisample(in vec3 c, in float refvalue, in float blur) \n"
        "{ \n"
        "    float shadowed = 0.0; \n"
        "    float a = 6.283185 * oe_shadow_rand(c.xy); \n"
        "    vec4 b = vec4(oe_shadow_rot(vec2(1,0),a), oe_shadow_rot(vec2(0,1),a)); \n"
        "    for(int i=0; i<OE_SHADOW_NUM_SAMPLES; ++i) { \n"
        "        vec2 off = oe_shadow_samples[i];\n"
        "        off = vec2(dot(off,b.xz), dot(off,b.yw)); \n"
        "        vec3 pc = vec3(c.xy + off*blur, c.z); \n"
        "        float depth = texture2DArray(oe_shadow_map, pc).r; \n"
        "        if ( depth < 1.0 && depth < refvalue ) { \n"
        "           shadowed += 1.0; \n"
        "        } \n"
        "    } \n"
        "    return 1.0-(shadowed/OE_SHADOW_NUM_SAMPLES); \n"
        "} \n"

        "void oe_shadow_fragment( inout vec4 color )\n"
        "{\n"
        "    float alpha = color.a; \n"
        "    float factor = 1.0; \n"

        // pre-pixel biasing to reduce moire/acne
        "    const float b0 = 0.001; \n"
        "    const float b1 = 0.01; \n"
        "    vec3 L = normalize(gl_LightSource[0].position.xyz); \n"
        "    vec3 N = normalize(vp_Normal); \n"
        "    float costheta = clamp(dot(L,N), 0.0, 1.0); \n"
        "    float bias = b0*tan(acos(costheta)); \n"

        // loop over the slices:
        "    for(int i=0; i<" << numSlices << " && factor > 0.0; ++i) \n"
        "    { \n"
        "        vec4 c = oe_shadow_coord[i]; \n"
        "        vec3 coord = vec3(c.x, c.y, float(i)); \n"

        "        if ( oe_shadow_blur > 0.0 ) \n"
        "        { \n"
        "            factor = min(factor, oe_shadow_multisample(coord, c.z-bias, oe_shadow_blur)); \n"
        "        } \n"
        "        else \n"
        "        { \n"
        "            float depth = texture2DArray(oe_shadow_map, coord).r; \n"
        "            if ( depth < 1.0 && depth < c.z-bias ) \n"
        "                factor = 0.0; \n"
        "        } \n"
        "    } \n"

        "    vec4 colorInFullShadow = color * oe_shadow_color; \n"
        "    color = mix(colorInFullShadow, color, factor); \n"
        "    color.a = alpha;\n"
        "}\n";

    VirtualProgram* vp = VirtualProgram::getOrCreate(_renderStateSet.get());

    vp->setFunction(
        "oe_shadow_vertex", 
        vertex, 
        ShaderComp::LOCATION_VERTEX_VIEW,
        0.9f );

    vp->setFunction(
        "oe_shadow_fragment",
        fragment,
        ShaderComp::LOCATION_FRAGMENT_LIGHTING,
        0.9f );

    // the texture coord generator matrix array (from the caster):
    _shadowMapTexGenUniform = _renderStateSet->getOrCreateUniform(
        "oe_shadow_matrix",
        osg::Uniform::FLOAT_MAT4,
        numSlices );

    // bind the shadow map texture itself:
    _renderStateSet->setTextureAttribute(
        _texImageUnit,
        _shadowmap.get(),
        osg::StateAttribute::ON );

    _renderStateSet->addUniform( new osg::Uniform("oe_shadow_map", _texImageUnit) );

    // blur factor:
    _shadowBlurUniform = _renderStateSet->getOrCreateUniform(
        "oe_shadow_blur",
        osg::Uniform::FLOAT);

    _shadowBlurUniform->set(_blurFactor);

    // shadow color:
    _shadowColorUniform = _renderStateSet->getOrCreateUniform(
        "oe_shadow_color",
        osg::Uniform::FLOAT_VEC4);

    _shadowColorUniform->set(_color);
}
    osg::Node* run(osg::Node* earthfile)
    {
        // 32-bit vertex shader, for reference only. This shader will exceed
        // the single-precision capacity and cause "jumping verts" at the 
        // camera make small movements.
        const char* vs32 =
            "#version 330 \n"
            "uniform mat4 osg_ViewMatrixInverse; \n"
            "flat out float isRed; \n"

            "void vertex(inout vec4 v32) \n"
            "{ \n"
            "    vec4 world = osg_ViewMatrixInverse * v32; \n"
            "    world /= world.w; \n"
            "    float len = length(world); \n"

            "    const float R = 6371234.5678; \n"
            
            "    isRed = 0.0; \n"
            "    if (len > R) \n"
            "        isRed = 1.0;"

            "}\n";

        // 64-bit vertex shader. This shader uses a double-precision inverse
        // view matrix and calculates the altitude all in double precision;
        // therefore the "jumping verts" problem in the 32-bit version is 
        // resolved. (Mostly-- you will still see the jumping if you view the 
        // earth from orbit, because the 32-bit vertex itself is very far from
        // the camera in view coordinates. If that is an issue, you need to pass
        // in 64-bit vertex attributes.)
        const char* vs64 = 
            "#version 330 \n"
            "#extension GL_ARB_gpu_shader_fp64 : enable \n"
            "uniform dmat4 u_ViewMatrixInverse64; \n"            // must use a 64-bit VMI.
            "flat out float isRed; \n"
            "flat out double vary64; \n"                         // just to test shadercomp framework

            "void vertex(inout vec4 v32) \n"
            "{ \n"
            "    dvec4 v64 = dvec4(v32); \n"                     // upcast to 64-bit, no precision loss
                                                                 // unless camera is very far away

            "    dvec4 world = u_ViewMatrixInverse64 * v64; \n"  // xform into world coords
            "    world /= world.w; \n"                           // divide by w
            "    double len = length(world.xyz); \n"             // get double-precision vector length.

            "    const double R = 6371234.5678; \n"              // arbitrary earth radius threshold
            
            "    isRed = (len > R) ? 1.0 : 0.0; \n"
            "}\n";

        // frag shader: color the terrain red if the incoming varying is non-zero.
        const char* fs =
            "#version 330 \n"
            "#extension GL_ARB_gpu_shader_fp64 : enable \n"
            "flat in float isRed; \n"
            "flat in double vary64; \n"
            "void fragment(inout vec4 color) \n"
            "{ \n"
            "    if (isRed > 0.0f) { \n"
            "        color.r = 1.0; \n"
            "        color.gb *= 0.5; \n"
            "    } \n"
            "} \n";

        // installs a double-precision inverse view matrix for our shader to use.
        struct VMI64Callback : public osg::NodeCallback
        {
            void operator()(osg::Node* node, osg::NodeVisitor* nv)
            {
                osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);

                osg::Uniform* u = new osg::Uniform(osg::Uniform::DOUBLE_MAT4, "u_ViewMatrixInverse64");
                u->set(cv->getCurrentCamera()->getInverseViewMatrix());
                
                osg::ref_ptr<osg::StateSet> ss = new osg::StateSet();
                ss->addUniform(u);
                cv->pushStateSet(ss.get());

                traverse(node, nv);

                cv->popStateSet();
            }
        };
        earthfile->setCullCallback(new VMI64Callback());

        osg::StateSet* ss = earthfile->getOrCreateStateSet();
        VirtualProgram* vp = VirtualProgram::getOrCreate(ss);
        vp->setFunction("vertex",   vs64, ShaderComp::LOCATION_VERTEX_VIEW);
        vp->setFunction("fragment", fs,   ShaderComp::LOCATION_FRAGMENT_COLORING);


        return earthfile;
    }
void
DrapingTechnique::setUpCamera(OverlayDecorator::TechRTTParams& params)
{
    // create the projected texture:
    osg::Texture2D* projTexture = new osg::Texture2D();
    projTexture->setTextureSize( *_textureSize, *_textureSize );
    projTexture->setInternalFormat( GL_RGBA );
    projTexture->setSourceFormat( GL_RGBA );
    projTexture->setSourceType( GL_UNSIGNED_BYTE );
    projTexture->setFilter( osg::Texture::MIN_FILTER, _mipmapping? osg::Texture::LINEAR_MIPMAP_LINEAR: osg::Texture::LINEAR );
    projTexture->setFilter( osg::Texture::MAG_FILTER, osg::Texture::LINEAR );
    projTexture->setWrap( osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_BORDER );
    projTexture->setWrap( osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_BORDER );
    //projTexture->setWrap( osg::Texture::WRAP_R, osg::Texture::CLAMP_TO_EDGE );
    projTexture->setBorderColor( osg::Vec4(0,0,0,0) );

    // set up the RTT camera:
    params._rttCamera = new osg::Camera();
    params._rttCamera->setClearColor( osg::Vec4f(0,0,0,0) );
    // this ref frame causes the RTT to inherit its viewpoint from above (in order to properly
    // process PagedLOD's etc. -- it doesn't affect the perspective of the RTT camera though)
    params._rttCamera->setReferenceFrame( osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT );
    params._rttCamera->setViewport( 0, 0, *_textureSize, *_textureSize );
    params._rttCamera->setComputeNearFarMode( osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR );
    params._rttCamera->setRenderOrder( osg::Camera::PRE_RENDER );
    params._rttCamera->setRenderTargetImplementation( osg::Camera::FRAME_BUFFER_OBJECT );
    params._rttCamera->attach( osg::Camera::COLOR_BUFFER, projTexture, 0, 0, _mipmapping );

    if ( _attachStencil )
    {
        // try a depth-packed buffer. failing that, try a normal one.. if the FBO doesn't support
        // that (which is doesn't on some GPUs like Intel), it will automatically fall back on 
        // a PBUFFER_RTT impl
        if ( Registry::capabilities().supportsDepthPackedStencilBuffer() )
        {
#ifdef OSG_GLES2_AVAILABLE 
            params._rttCamera->attach( osg::Camera::PACKED_DEPTH_STENCIL_BUFFER, GL_DEPTH24_STENCIL8_EXT );
#else
            params._rttCamera->attach( osg::Camera::PACKED_DEPTH_STENCIL_BUFFER, GL_DEPTH_STENCIL_EXT );
#endif
        }
        else
        {
            params._rttCamera->attach( osg::Camera::STENCIL_BUFFER, GL_STENCIL_INDEX );
        }

        params._rttCamera->setClearStencil( 0 );
        params._rttCamera->setClearMask( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
    }
    else
    {
        params._rttCamera->setClearMask( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
    }

    // set up a StateSet for the RTT camera.
    osg::StateSet* rttStateSet = params._rttCamera->getOrCreateStateSet();

    // lighting is off. We don't want draped items to be lit.
    rttStateSet->setMode( GL_LIGHTING, osg::StateAttribute::OFF | osg::StateAttribute::PROTECTED );

    // install a new default shader program that replaces anything from above.
    if ( _useShaders )
    {
        VirtualProgram* vp = VirtualProgram::getOrCreate(rttStateSet);
        vp->setName( "DrapingTechnique RTT" );
        vp->setInheritShaders( false );
        //rttStateSet->setAttributeAndModes( vp, osg::StateAttribute::ON );
    }
    
    // active blending within the RTT camera's FBO
    if ( _rttBlending )
    {
        //Setup a separate blend function for the alpha components and the RGB components.  
        //Because the destination alpha is initialized to 0 instead of 1
        osg::BlendFunc* blendFunc = 0;        
        if (Registry::capabilities().supportsGLSL(1.4f))
        {
            //Blend Func Separate is only available on OpenGL 1.4 and above
            blendFunc = new osg::BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
        }
        else
        {
            blendFunc = new osg::BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
        }

        rttStateSet->setAttributeAndModes(blendFunc, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
    }
    else
    {
        rttStateSet->setMode(GL_BLEND, osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE);
    }

    // attach the overlay group to the camera. 
    // TODO: we should probably lock this since other cull traversals might be accessing the group
    //       while we are changing its children.
    params._rttCamera->addChild( params._group );

    // overlay geometry is rendered with no depth testing, and in the order it's found in the
    // scene graph... until further notice.
    rttStateSet->setMode(GL_DEPTH_TEST, 0);
    rttStateSet->setBinName( "TraversalOrderBin" );

    // add to the terrain stateset, i.e. the stateset that the OverlayDecorator will
    // apply to the terrain before cull-traversing it. This will activate the projective
    // texturing on the terrain.
    params._terrainStateSet->setTextureAttributeAndModes( *_textureUnit, projTexture, osg::StateAttribute::ON );

    // fire up the local per-view data:
    LocalPerViewData* local = new LocalPerViewData();
    params._techniqueData = local;
    
    if ( _useShaders )
    {            
        // GPU path

        VirtualProgram* vp = VirtualProgram::getOrCreate(params._terrainStateSet);
        vp->setName( "DrapingTechnique terrain shaders");
        //params._terrainStateSet->setAttributeAndModes( vp, osg::StateAttribute::ON );

        // sampler for projected texture:
        params._terrainStateSet->getOrCreateUniform(
            "oe_overlay_tex", osg::Uniform::SAMPLER_2D )->set( *_textureUnit );

        // the texture projection matrix uniform.
        local->_texGenUniform = params._terrainStateSet->getOrCreateUniform(
            "oe_overlay_texmatrix", osg::Uniform::FLOAT_MAT4 );

        // vertex shader - subgraph
        std::string vs =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "uniform mat4 oe_overlay_texmatrix; \n"
            "varying vec4 oe_overlay_texcoord; \n"

            "void oe_overlay_vertex(inout vec4 VertexVIEW) \n"
            "{ \n"
            "    oe_overlay_texcoord = oe_overlay_texmatrix * VertexVIEW; \n"
            "} \n";

        vp->setFunction( "oe_overlay_vertex", vs, ShaderComp::LOCATION_VERTEX_VIEW );

        // fragment shader - subgraph
        std::string fs =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "uniform sampler2D oe_overlay_tex; \n"
            "varying vec4      oe_overlay_texcoord; \n"

            "void oe_overlay_fragment( inout vec4 color ) \n"
            "{ \n"
            "    vec4 texel = texture2DProj(oe_overlay_tex, oe_overlay_texcoord); \n"
            "    color = vec4( mix( color.rgb, texel.rgb, texel.a ), color.a); \n"
            "} \n";

        vp->setFunction( "oe_overlay_fragment", fs, ShaderComp::LOCATION_FRAGMENT_COLORING );
    }
    else
    {
        // FFP path
        local->_texGen = new osg::TexGen();
        local->_texGen->setMode( osg::TexGen::EYE_LINEAR );
        params._terrainStateSet->setTextureAttributeAndModes( *_textureUnit, local->_texGen.get(), 1 );

        osg::TexEnv* env = new osg::TexEnv();
        env->setMode( osg::TexEnv::DECAL );
        params._terrainStateSet->setTextureAttributeAndModes( *_textureUnit, env, 1 );
    }
}
int
main(int argc, char** argv)
{
    osg::ArgumentParser arguments(&argc,argv);

    // help?
    if ( arguments.read("--help") )
        return usage(argv[0]);

    // set up a viewer:
    osgViewer::Viewer viewer(arguments);
    viewer.getDatabasePager()->setUnrefImageDataAfterApplyPolicy( false, false );

    // install our default manipulator (do this before calling load)
    viewer.setCameraManipulator( new EarthManipulator() );

    // load an earth file, and support all or our example command-line options
    // and earth file <external> tags    
    osg::Node* node = MapNodeHelper().load( arguments, &viewer );
    if ( node )
    {
        // Make a root group:
        osg::Group* root = new osg::Group();
        root->addChild( node );
        viewer.setSceneData( root );

        // Install a ClipNode. The ClipNode establishes positional state so it
        // doesn't need to parent anything. In this case it needs to be at the
        // top of the scene graph since out clip plane calculator assumes 
        // you're in world space.
        osg::ClipNode* clipNode = new osg::ClipNode();
        root->addChild( clipNode );
        
        // By default, the clip node will activate any clip planes you add to it
        // for its subgraph. Our clip node doesn't parent anything, but we include
        // this to demonstrate how you would disable that:
        clipNode->getOrCreateStateSet()->setMode(GL_CLIP_PLANE0, 0);
        
        // Create a ClipPlane we will use to clip to the visible horizon:
        osg::ClipPlane* cp = new osg::ClipPlane();
        clipNode->addClipPlane( cp );

        // This cull callback will recalcuate the position of the clipping plane
        // each frame based on the camera.
        const osgEarth::SpatialReference* srs = osgEarth::MapNode::get(node)->getMapSRS();
        clipNode->addCullCallback( new ClipToGeocentricHorizon(srs, cp) );

        // We also need a shader that will activate clipping in GLSL.
        VirtualProgram* vp = VirtualProgram::getOrCreate(root->getOrCreateStateSet());
        vp->setFunction("oe_clip_vert", clipvs, ShaderComp::LOCATION_VERTEX_VIEW);

        // Now everything is set up. The last thing to do is: anywhere in your
        // scene graph that you want to activate the clipping plane, set the 
        // corresponding mode on, like so:
        //
        // node->getOrCreateStateSet()->setMode(GL_CLIP_PLANE0, osg::StateAttribute::ON);
        //
        // If you are using symbology, you can use RenderSymbol::clipPlane(). Or in 
        // the earth file, for example:
        //
        //    render-depth-test: false;
        //    render-clip-plane: 0;

        return viewer.run();
    }
    else
    {
        return usage(argv[0]);
    }
}
Beispiel #18
0
void
PolygonizeLinesOperator::installShaders(osg::Node* node) const
{
    if ( !node )
        return;

    float minPixels = _stroke.minPixels().getOrUse( 0.0f );
    if ( minPixels <= 0.0f )
        return;

    osg::StateSet* stateset = node->getOrCreateStateSet();

    VirtualProgram* vp = VirtualProgram::getOrCreate(stateset);

    // bail if already installed.
    if ( vp->getName().compare( SHADER_NAME ) == 0 )
        return;

    vp->setName( SHADER_NAME );

    const char* vs =
        "#version " GLSL_VERSION_STR "\n"
        GLSL_DEFAULT_PRECISION_FLOAT "\n"
        "in vec3 oe_polyline_center; \n"
        "uniform float oe_polyline_scale;  \n"
        "uniform float oe_polyline_min_pixels; \n"
        "uniform vec4 oe_PixelSizeVector; \n"

        "void oe_polyline_scalelines(inout vec4 vertex_model4) \n"
        "{ \n"
        "   const float epsilon = 0.0001; \n"

        "   vec4 center = vec4(oe_polyline_center, 1.0); \n"
        "   vec3 vector = vertex_model4.xyz - center.xyz; \n"
        
        "   float r = length(vector); \n"

        "   float activate  = step(epsilon, r*oe_polyline_min_pixels);\n"
        "   float pixelSize = max(epsilon, 2.0*abs(r/dot(center, oe_PixelSizeVector))); \n"
        "   float min_scale = max(oe_polyline_min_pixels/pixelSize, 1.0); \n"
        "   float scale     = mix(1.0, max(oe_polyline_scale, min_scale), activate); \n"

        "   vertex_model4.xyz = center.xyz + vector*scale; \n"
        "} \n";

    vp->setFunction( "oe_polyline_scalelines", vs, ShaderComp::LOCATION_VERTEX_MODEL, 0.5f );
    vp->addBindAttribLocation( "oe_polyline_center", ATTR_LOCATION );

    // add the default scaling uniform.
    // good way to test:
    //    osgearth_viewer earthfile --uniform oe_polyline_scale 1.0 10.0
    osg::Uniform* scaleU = new osg::Uniform(osg::Uniform::FLOAT, "oe_polyline_scale");
    scaleU->set( 1.0f );
    stateset->addUniform( scaleU, 1 );

    // the default "min pixels" uniform.
    osg::Uniform* minPixelsU = new osg::Uniform(osg::Uniform::FLOAT, "oe_polyline_min_pixels");
    minPixelsU->set( minPixels );
    stateset->addUniform( minPixelsU, 1 );

    // this will install and update the oe_PixelSizeVector uniform.
    node->addCullCallback( new PixelSizeVectorCullCallback(stateset) );
}
Beispiel #19
0
// Generates the main shader code for rendering the terrain.
void
MPTerrainEngineNode::updateShaders()
{
    if ( _batchUpdateInProgress )
    {
        _shaderUpdateRequired = true;
    }
    else
    {
        osg::StateSet* terrainStateSet = _terrain->getOrCreateStateSet();

        VirtualProgram* vp = new VirtualProgram();
        vp->setName( "engine_mp:TerrainNode" );
        terrainStateSet->setAttributeAndModes( vp, osg::StateAttribute::ON );

        // bind the vertex attributes generated by the tile compiler.
        vp->addBindAttribLocation( "oe_terrain_attr",  osg::Drawable::ATTRIBUTE_6 );
        vp->addBindAttribLocation( "oe_terrain_attr2", osg::Drawable::ATTRIBUTE_7 );

        // Vertex shader template:
        std::string vs =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "varying vec4 oe_layer_texc;\n"
            "varying vec4 oe_layer_tilec;\n"
            "void oe_mp_setup_coloring(inout vec4 VertexModel) \n"
            "{ \n"
            "    oe_layer_texc  = __GL_MULTITEXCOORD1__;\n"
            "    oe_layer_tilec = __GL_MULTITEXCOORD2__;\n"
            "}\n";

        // Fragment shader for normal blending:
        std::string fs =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "varying vec4 oe_layer_texc; \n"
            "uniform sampler2D oe_layer_tex; \n"
            "uniform int oe_layer_uid; \n"
            "uniform int oe_layer_order; \n"
            "uniform float oe_layer_opacity; \n"
            "void oe_mp_apply_coloring( inout vec4 color ) \n"
            "{ \n"
            "    vec4 texel; \n"
            "    if ( oe_layer_uid >= 0 ) { \n"
            "        texel = texture2D(oe_layer_tex, oe_layer_texc.st); \n"
            "        texel.a *= oe_layer_opacity; \n"
            "    } \n"
            "    else \n"
            "        texel = color; \n"
            "    if (oe_layer_order == 0 ) \n"
            "        color = texel*texel.a + color*(1.0-texel.a); \n" // simulate src_alpha, 1-src_alpha blens
            "    else \n"
            "        color = texel; \n"
            "} \n";

        // Fragment shader with pre-multiplied alpha blending:
        std::string fs_pma =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "varying vec4 oe_layer_texc; \n"
            "uniform sampler2D oe_layer_tex; \n"
            "uniform int oe_layer_uid; \n"
            "uniform int oe_layer_order; \n"
            "uniform float oe_layer_opacity; \n"
            "void oe_mp_apply_coloring_pma( inout vec4 color ) \n"
            "{ \n"
            "    vec4 texelpma; \n"

            // a UID < 0 means no texture.
            "    if ( oe_layer_uid >= 0 ) \n"
            "        texelpma = texture2D(oe_layer_tex, oe_layer_texc.st) * oe_layer_opacity; \n"
            "    else \n"
            "        texelpma = color * color.a * oe_layer_opacity; \n" // to PMA.

            // first layer must PMA-blend with the globe color.
            "    if (oe_layer_order == 0) { \n"
            "        color.rgb *= color.a; \n"
            "        color = texelpma + color*(1.0-texelpma.a); \n" // simulate one, 1-src_alpha blend
            "    } \n"

            "    else { \n"
            "        color = texelpma; \n"
            "    } \n"
            "} \n";

        // Color filter frag function:
        std::string fs_colorfilters =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "uniform int oe_layer_uid; \n"
            "__COLOR_FILTER_HEAD__"
            "void oe_mp_apply_filters(inout vec4 color) \n"
            "{ \n"
                "__COLOR_FILTER_BODY__"
            "} \n";


        // install the gl_MultiTexCoord* variable that uses the proper texture
        // image unit:
        replaceIn( vs, "__GL_MULTITEXCOORD1__", Stringify() << "gl_MultiTexCoord" << _primaryUnit );
        replaceIn( vs, "__GL_MULTITEXCOORD2__", Stringify() << "gl_MultiTexCoord" << _secondaryUnit );

        vp->setFunction( "oe_mp_setup_coloring", vs, ShaderComp::LOCATION_VERTEX_MODEL, 0.0 );

        if ( _terrainOptions.premultipliedAlpha() == true )
            vp->setFunction( "oe_mp_apply_coloring_pma", fs_pma, ShaderComp::LOCATION_FRAGMENT_COLORING, 0.0 );
        else
            vp->setFunction( "oe_mp_apply_coloring", fs, ShaderComp::LOCATION_FRAGMENT_COLORING, 0.0 );


        // assemble color filter code snippets.
        bool haveColorFilters = false;
        {
            std::stringstream cf_head;
            std::stringstream cf_body;
            const char* I = "    ";

            if ( _terrainOptions.premultipliedAlpha() == true )
            {
                // un-PMA the color before passing it to the color filters.
                cf_body << I << "if (color.a > 0.0) color.rgb /= color.a; \n";
            }

            // second, install the per-layer color filter functions AND shared layer bindings.
            bool ifStarted = false;
            int numImageLayers = _update_mapf->imageLayers().size();
            for( int i=0; i<numImageLayers; ++i )
            {
                ImageLayer* layer = _update_mapf->getImageLayerAt(i);
                if ( layer->getEnabled() )
                {
                    // install Color Filter function calls:
                    const ColorFilterChain& chain = layer->getColorFilters();
                    if ( chain.size() > 0 )
                    {
                        haveColorFilters = true;
                        if ( ifStarted ) cf_body << I << "else if ";
                        else             cf_body << I << "if ";
                        cf_body << "(oe_layer_uid == " << layer->getUID() << ") {\n";
                        for( ColorFilterChain::const_iterator j = chain.begin(); j != chain.end(); ++j )
                        {
                            const ColorFilter* filter = j->get();
                            cf_head << "void " << filter->getEntryPointFunctionName() << "(inout vec4 color);\n";
                            cf_body << I << I << filter->getEntryPointFunctionName() << "(color);\n";
                            filter->install( terrainStateSet );
                        }
                        cf_body << I << "}\n";
                        ifStarted = true;
                    }
                }
            }

            if ( _terrainOptions.premultipliedAlpha() == true )
            {
                // re-PMA the color after it passes through the color filters.
                cf_body << I << "color.rgb *= color.a; \n";
            }

            if ( haveColorFilters )
            {
                std::string cf_head_str, cf_body_str;
                cf_head_str = cf_head.str();
                cf_body_str = cf_body.str();

                replaceIn( fs_colorfilters, "__COLOR_FILTER_HEAD__", cf_head_str );
                replaceIn( fs_colorfilters, "__COLOR_FILTER_BODY__", cf_body_str );

                vp->setFunction( "oe_mp_apply_filters", fs_colorfilters, ShaderComp::LOCATION_FRAGMENT_COLORING, 0.0 );
            }
        }



        if ( _terrainOptions.premultipliedAlpha() == true )
        {
            // activate PMA blending.
            terrainStateSet->setAttributeAndModes( 
                new osg::BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA),
                osg::StateAttribute::ON );
        }
        else
        {
            // activate standard mix blending.
            terrainStateSet->setAttributeAndModes( 
                new osg::BlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA),
                osg::StateAttribute::ON );
        }

        // required for multipass tile rendering to work
        terrainStateSet->setAttributeAndModes(
            new osg::Depth(osg::Depth::LEQUAL, 0, 1, true) );

        // binding for the terrain texture
        terrainStateSet->getOrCreateUniform( 
            "oe_layer_tex", osg::Uniform::SAMPLER_2D )->set( _primaryUnit );

        // binding for the secondary texture (for LOD blending)
        terrainStateSet->getOrCreateUniform(
            "oe_layer_tex_parent", osg::Uniform::SAMPLER_2D )->set( _secondaryUnit );

        // uniform that controls per-layer opacity
        terrainStateSet->getOrCreateUniform(
            "oe_layer_opacity", osg::Uniform::FLOAT )->set( 1.0f );

        // uniform that conveys the layer UID to the shaders; necessary
        // for per-layer branching (like color filters)
        // UID -1 => no image layer (no texture)
        terrainStateSet->getOrCreateUniform(
            "oe_layer_uid", osg::Uniform::INT )->set( -1 );

        // uniform that conveys the render order, since the shaders
        // need to know which is the first layer in order to blend properly
        terrainStateSet->getOrCreateUniform(
            "oe_layer_order", osg::Uniform::INT )->set( 0 );

        _shaderUpdateRequired = false;
    }
}
Beispiel #20
0
void
SimpleOceanNode::rebuild()
{
    this->removeChildren( 0, this->getNumChildren() );

    if ( _parentMapNode.valid() )
    {
        const MapOptions&     parentMapOptions     = _parentMapNode->getMap()->getMapOptions();
        const MapNodeOptions& parentMapNodeOptions = _parentMapNode->getMapNodeOptions();

        // set up the map to "match" the parent map:
        MapOptions mo;
        mo.coordSysType() = parentMapOptions.coordSysType();
        mo.profile()      = _parentMapNode->getMap()->getProfile()->toProfileOptions();

        // new data model for the ocean:
        Map* oceanMap = new Map( mo );

        // ditto with the map node options:
        MapNodeOptions mno;
        if ( mno.enableLighting().isSet() )
            mno.enableLighting() = *mno.enableLighting();

        MPTerrainEngineOptions mpoptions;
        mpoptions.heightFieldSkirtRatio() = 0.0;      // don't want to see skirts
        mpoptions.minLOD() = _options.maxLOD().get(); // weird, I know

        // so we can the surface from underwater:
        mpoptions.clusterCulling() = false;       // want to see underwater

        mpoptions.enableBlending() = true;        // gotsta blend with the main node

        mpoptions.color() = _options.baseColor().get();

        mno.setTerrainOptions( mpoptions );

        // make the ocean's map node:
        MapNode* oceanMapNode = new MapNode( oceanMap, mno );

        // if the caller requested a mask layer, install that now.
        if ( _options.maskLayer().isSet() )
        {
            if ( !_options.maskLayer()->maxLevel().isSet() )
            {
                // set the max subdivision level if it's not already specified in the 
                // mask layer options:
                _options.maskLayer()->maxLevel() = *_options.maxLOD();
            }

            // make sure the mask is shared (so we can access it from our shader)
            // and invisible (so we can't see it)
            _options.maskLayer()->shared() = true;
            _options.maskLayer()->visible() = false;

            ImageLayer* maskLayer = new ImageLayer( "ocean-mask", *_options.maskLayer() );
            oceanMap->addImageLayer( maskLayer );
        }

        // otherwise, install a "proxy layer" that will use the elevation data in the map
        // to determine where the ocean is. This approach is limited in that it cannot
        // detect the difference between ocean and inland areas that are below sea level.
        else
        {
            // install an "elevation proxy" layer that reads elevation tiles from the
            // parent map and turns them into encoded images for our shader to use.
            ImageLayerOptions epo( "ocean-proxy" );
            epo.cachePolicy() = CachePolicy::NO_CACHE;
            //epo.maxLevel() = *_options.maxLOD();
            oceanMap->addImageLayer( new ElevationProxyImageLayer(_parentMapNode->getMap(), epo) );
        }

        this->addChild( oceanMapNode );

        // set up the shaders.
        osg::StateSet* ss = this->getOrCreateStateSet();

        // install the shaders on the ocean map node.
        VirtualProgram* vp = VirtualProgram::getOrCreate( ss );
        vp->setName( "osgEarth SimpleOcean" );

        // use the appropriate shader for the active technique:
        std::string vertSource = _options.maskLayer().isSet() ? source_vertMask : source_vertProxy;
        std::string fragSource = _options.maskLayer().isSet() ? source_fragMask : source_fragProxy;

        vp->setFunction( "oe_ocean_vertex",   vertSource, ShaderComp::LOCATION_VERTEX_VIEW );
        vp->setFunction( "oe_ocean_fragment", fragSource, ShaderComp::LOCATION_FRAGMENT_COLORING, 0.6f );

        // install the slot attribute(s)
        ss->getOrCreateUniform( "ocean_data", osg::Uniform::SAMPLER_2D )->set( 0 );

        // set up the options uniforms.

        _seaLevel = new osg::Uniform(osg::Uniform::FLOAT, "ocean_seaLevel");
        ss->addUniform( _seaLevel.get() );

        _lowFeather = new osg::Uniform(osg::Uniform::FLOAT, "ocean_lowFeather");
        ss->addUniform( _lowFeather.get() );

        _highFeather = new osg::Uniform(osg::Uniform::FLOAT, "ocean_highFeather");
        ss->addUniform( _highFeather.get() );

        _baseColor = new osg::Uniform(osg::Uniform::FLOAT_VEC4, "ocean_baseColor");
        ss->addUniform( _baseColor.get() );

        _maxRange = new osg::Uniform(osg::Uniform::FLOAT, "ocean_max_range");
        ss->addUniform( _maxRange.get() );

        _fadeRange = new osg::Uniform(osg::Uniform::FLOAT, "ocean_fade_range");
        ss->addUniform( _fadeRange.get() );

        // trick to mitigate z-fighting..
        ss->setAttributeAndModes( new osg::Depth(osg::Depth::LEQUAL, 0.0, 1.0, false) );
        ss->setRenderingHint( osg::StateSet::TRANSPARENT_BIN );

        // load up a surface texture
        osg::ref_ptr<osg::Image> surfaceImage;
        ss->getOrCreateUniform( "ocean_has_surface_tex", osg::Uniform::BOOL )->set( false );
        if ( _options.textureURI().isSet() )
        {
            //TODO: enable cache support here?
            surfaceImage = _options.textureURI()->getImage();
        }

        if ( !surfaceImage.valid() )
        {
            surfaceImage = createSurfaceImage();
        }

        if ( surfaceImage.valid() )
        {
            osg::Texture2D* tex = new osg::Texture2D( surfaceImage.get() );
            tex->setFilter( osg::Texture::MIN_FILTER, osg::Texture::LINEAR_MIPMAP_LINEAR );
            tex->setFilter( osg::Texture::MAG_FILTER, osg::Texture::LINEAR );
            tex->setWrap  ( osg::Texture::WRAP_S, osg::Texture::REPEAT );
            tex->setWrap  ( osg::Texture::WRAP_T, osg::Texture::REPEAT );

            ss->setTextureAttributeAndModes( 2, tex, 1 );
            ss->getOrCreateUniform( "ocean_surface_tex", osg::Uniform::SAMPLER_2D )->set( 2 );
            ss->getOrCreateUniform( "ocean_has_surface_tex", osg::Uniform::BOOL )->set( true );
        }

        // remove backface culling so we can see underwater
        // (use OVERRIDE since the terrain engine sets back face culling.)
        ss->setAttributeAndModes( 
            new osg::CullFace(), 
            osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE );

        // Material.
        osg::Material* m = new osg::Material();
        m->setAmbient(m->FRONT_AND_BACK, osg::Vec4(0,0,0,1));
        m->setDiffuse(m->FRONT_AND_BACK, osg::Vec4(1,1,1,1));
        m->setSpecular(m->FRONT_AND_BACK, osg::Vec4(0.1,0.1,0.1,1));
        m->setEmission(m->FRONT_AND_BACK, osg::Vec4(0,0,0,1));
        m->setShininess(m->FRONT_AND_BACK, 32.0);
        ss->setAttributeAndModes(m, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );

        // force apply options:
        applyOptions();
    }
}
void
TextureCompositorMultiTexture::updateMasterStateSet(osg::StateSet*       stateSet,
                                                    const TextureLayout& layout    ) const
{
    int numSlots = layout.getMaxUsedSlot() + 1;
    int maxUnits = numSlots;

    if ( _useGPU )
    {
        // Validate against the max number of GPU texture units:
        if ( maxUnits > Registry::instance()->getCapabilities().getMaxGPUTextureUnits() )
        {
            maxUnits = Registry::instance()->getCapabilities().getMaxGPUTextureUnits();

            OE_WARN << LC
                << "Warning! You have exceeded the number of texture units available on your GPU ("
                << maxUnits << "). Consider using another compositing mode."
                << std::endl;
        }

        VirtualProgram* vp = static_cast<VirtualProgram*>( stateSet->getAttribute(VirtualProgram::SA_TYPE) );
        // see if we have any blended layers:
        bool hasBlending = layout.containsSecondarySlots( maxUnits );

        // Why are these marked as PROTECTED? See the comments in MapNode.cpp for the answer.
        // (Where it sets up the top-level VirtualProgram)

        vp->setFunction(
            "oe_multicomp_vertex",
            s_createTextureVertexShader(layout, hasBlending),
            ShaderComp::LOCATION_VERTEX_MODEL,
            0.0 );

        vp->setFunction(
            "oe_multicomp_fragment",
            s_createTextureFragShaderFunction(layout, maxUnits, hasBlending, _lodTransitionTime),
            ShaderComp::LOCATION_FRAGMENT_COLORING,
            0.0 );

        //vp->setShader(
        //    "osgearth_vert_setupColoring",
        //    s_createTextureVertexShader(layout, hasBlending),
        //    osg::StateAttribute::ON | osg::StateAttribute::PROTECTED );

        //vp->setShader(
        //    "osgearth_frag_applyColoring",
        //    s_createTextureFragShaderFunction(layout, maxUnits, hasBlending, _lodTransitionTime),
        //    osg::StateAttribute::ON | osg::StateAttribute::PROTECTED );
    }

    else
    {
        // Forcably disable shaders
        stateSet->setAttributeAndModes( new osg::Program(), osg::StateAttribute::OFF | osg::StateAttribute::PROTECTED );

        // Validate against the maximum number of textures available in FFP mode.
        if ( maxUnits > Registry::instance()->getCapabilities().getMaxFFPTextureUnits() )
        {
            maxUnits = Registry::instance()->getCapabilities().getMaxFFPTextureUnits();
            OE_WARN << LC <<
                "Warning! You have exceeded the number of texture units available in fixed-function pipeline "
                "mode on your graphics hardware (" << maxUnits << "). Consider using another "
                "compositing mode." << std::endl;
        }

        // FFP multitexturing requires that we set up a series of TexCombine attributes:
        if (maxUnits == 1)
        {
            osg::TexEnv* texenv = new osg::TexEnv(osg::TexEnv::MODULATE);
            stateSet->setTextureAttributeAndModes(0, texenv, osg::StateAttribute::ON);
        }
        else if (maxUnits >= 2)
        {
            //Blend together the colors and accumulate the alpha values of textures 0 and 1 on unit 0
            {
                osg::TexEnvCombine* texenv = new osg::TexEnvCombine;
                texenv->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
                texenv->setCombine_Alpha(osg::TexEnvCombine::ADD);

                texenv->setSource0_RGB(osg::TexEnvCombine::TEXTURE0+1);
                texenv->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
                texenv->setSource0_Alpha(osg::TexEnvCombine::TEXTURE0+1);
                texenv->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);

                texenv->setSource1_RGB(osg::TexEnvCombine::TEXTURE0+0);
                texenv->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
                texenv->setSource1_Alpha(osg::TexEnvCombine::TEXTURE0+0);
                texenv->setOperand1_Alpha(osg::TexEnvCombine::SRC_ALPHA);

                texenv->setSource2_RGB(osg::TexEnvCombine::TEXTURE0+1);
                texenv->setOperand2_RGB(osg::TexEnvCombine::SRC_ALPHA);

                stateSet->setTextureAttributeAndModes(0, texenv, osg::StateAttribute::ON);
            }


            //For textures 2 and beyond, blend them together with the previous
            //Add the alpha values of this unit and the previous unit
            for (int unit = 1; unit < maxUnits-1; ++unit)
            {
                osg::TexEnvCombine* texenv = new osg::TexEnvCombine;
                texenv->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
                texenv->setCombine_Alpha(osg::TexEnvCombine::ADD);

                texenv->setSource0_RGB(osg::TexEnvCombine::TEXTURE0+unit+1);
                texenv->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
                texenv->setSource0_Alpha(osg::TexEnvCombine::TEXTURE0+unit+1);
                texenv->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);

                texenv->setSource1_RGB(osg::TexEnvCombine::PREVIOUS);
                texenv->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
                texenv->setSource1_Alpha(osg::TexEnvCombine::PREVIOUS);
                texenv->setOperand1_Alpha(osg::TexEnvCombine::SRC_ALPHA);

                texenv->setSource2_RGB(osg::TexEnvCombine::TEXTURE0+unit+1);
                texenv->setOperand2_RGB(osg::TexEnvCombine::SRC_ALPHA);

                stateSet->setTextureAttributeAndModes(unit, texenv, osg::StateAttribute::ON);
            }

            //Modulate the colors to get proper lighting on the last unit
            //Keep the alpha results from the previous stage
            {
                osg::TexEnvCombine* texenv = new osg::TexEnvCombine;
                texenv->setCombine_RGB(osg::TexEnvCombine::MODULATE);
                texenv->setCombine_Alpha(osg::TexEnvCombine::REPLACE);

                texenv->setSource0_RGB(osg::TexEnvCombine::PREVIOUS);
                texenv->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
                texenv->setSource0_Alpha(osg::TexEnvCombine::PREVIOUS);
                texenv->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);

                texenv->setSource1_RGB(osg::TexEnvCombine::PRIMARY_COLOR);
                texenv->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
                stateSet->setTextureAttributeAndModes(maxUnits-1, texenv, osg::StateAttribute::ON);
            }
        }
    }
}
Beispiel #22
0
void
DetailTexture::onInstall(TerrainEngineNode* engine)
{
    if ( engine )
    {
        if ( !_texture.valid() )
        {
            _texture = new osg::Texture2DArray();
            _texture->setTextureSize(1024, 1024, _textures.size());
            _texture->setWrap( osg::Texture::WRAP_S, osg::Texture::REPEAT );
            _texture->setWrap( osg::Texture::WRAP_T, osg::Texture::REPEAT );
            _texture->setFilter( osg::Texture::MIN_FILTER, osg::Texture::LINEAR_MIPMAP_LINEAR );
            _texture->setFilter( osg::Texture::MAG_FILTER, osg::Texture::LINEAR );
            _texture->setResizeNonPowerOfTwoHint( false );

            for(unsigned i=0; i<_textures.size(); ++i)
            {
                const TextureSource& ts = _textures[i];
                osg::ref_ptr<osg::Image> image = URI(ts._url).getImage(_dbOptions.get());
                if ( image->s() != 1024 || image->t() != 1024 )
                {
                    osg::ref_ptr<osg::Image> imageResized;
                    ImageUtils::resizeImage( image.get(), 1024, 1024, imageResized );
                    _texture->setImage( i, imageResized.get() );
                }
                else
                {
                    _texture->setImage( i, image.get() );
                }
            }
        }

        osg::StateSet* stateset = engine->getOrCreateStateSet();

        if ( engine->getTextureCompositor()->reserveTextureImageUnit(_unit) )
        {
            _samplerUniform = stateset->getOrCreateUniform( "oe_detail_tex", osg::Uniform::SAMPLER_2D_ARRAY );
            _samplerUniform->set( _unit );
            stateset->setTextureAttribute( _unit, _texture.get(), osg::StateAttribute::ON ); // don't use "..andModes"
        }

        if ( _maskLayer.valid() )
        {
            int unit = *_maskLayer->shareImageUnit();
            _maskUniform = stateset->getOrCreateUniform("oe_detail_mask", osg::Uniform::SAMPLER_2D);
            _maskUniform->set(unit);
            OE_NOTICE << LC << "Installed layer " << _maskLayer->getName() << " as texture mask on unit " << unit << std::endl;
        }
        else
        {
            exit(-1);
        }

        stateset->addUniform( _startLODUniform.get() );
        stateset->addUniform( _intensityUniform.get() );
        stateset->addUniform( _scaleUniform.get() );
        stateset->addUniform( _attenuationDistanceUniform.get() );

        std::string fs = generateFragmentShader( _textures.size(), _octaves.value() );
        VirtualProgram* vp = VirtualProgram::getOrCreate(stateset);
        vp->setFunction( "oe_detail_vertex",   vs, ShaderComp::LOCATION_VERTEX_VIEW );
        vp->setFunction( "oe_detail_fragment", fs, ShaderComp::LOCATION_FRAGMENT_COLORING );

        vp->setShader(
            "simplexNoise",
            new osg::Shader(osg::Shader::FRAGMENT, snoise) );
    }
}
void
ClampingTechnique::setUpCamera(OverlayDecorator::TechRTTParams& params)
{
    // To store technique-specific per-view info:
    LocalPerViewData* local = new LocalPerViewData();
    params._techniqueData = local;

    // create the projected texture:
    local->_rttTexture = new osg::Texture2D();
    local->_rttTexture->setTextureSize( *_textureSize, *_textureSize );
    local->_rttTexture->setInternalFormat( GL_DEPTH_COMPONENT );
    local->_rttTexture->setFilter( osg::Texture::MIN_FILTER, osg::Texture::NEAREST );
    local->_rttTexture->setFilter( osg::Texture::MAG_FILTER, osg::Texture::LINEAR );

    // this is important. geometry that is outside the depth texture will clamp to the
    // closest edge value in the texture -- this is good when you are rendering a 
    // primitive that has one or more of its verts off-screen.
    local->_rttTexture->setWrap( osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE );
    local->_rttTexture->setWrap( osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE );
    //local->_rttTexture->setBorderColor( osg::Vec4(0,0,0,1) );

    // set up the RTT camera:
    params._rttCamera = new osg::Camera();
    params._rttCamera->setReferenceFrame( osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT );
    params._rttCamera->setClearDepth( 1.0 );
    params._rttCamera->setClearMask( GL_DEPTH_BUFFER_BIT );
    params._rttCamera->setComputeNearFarMode( osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR );
    params._rttCamera->setViewport( 0, 0, *_textureSize, *_textureSize );
    params._rttCamera->setRenderOrder( osg::Camera::PRE_RENDER );
    params._rttCamera->setRenderTargetImplementation( osg::Camera::FRAME_BUFFER_OBJECT );
    params._rttCamera->setImplicitBufferAttachmentMask(0, 0);
    params._rttCamera->attach( osg::Camera::DEPTH_BUFFER, local->_rttTexture.get() );

#ifdef DUMP_RTT_IMAGE
    local->_rttDebugImage = new osg::Image();
    local->_rttDebugImage->allocateImage(4096, 4096, 1, GL_RGB, GL_UNSIGNED_BYTE);
    memset( (void*)local->_rttDebugImage->getDataPointer(), 0xff, local->_rttDebugImage->getTotalSizeInBytes() );
    params._rttCamera->attach( osg::Camera::COLOR_BUFFER, local->_rttDebugImage.get() );
    params._rttCamera->setFinalDrawCallback( new DumpTex(local->_rttDebugImage.get()) );
#endif

#ifdef TIME_RTT_CAMERA
    params._rttCamera->setInitialDrawCallback( new RttIn() );
    params._rttCamera->setFinalDrawCallback( new RttOut() );
#endif

    // set up a StateSet for the RTT camera.
    osg::StateSet* rttStateSet = params._rttCamera->getOrCreateStateSet();

    rttStateSet->setMode(
        GL_BLEND, 
        osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE);

    // prevents wireframe mode in the depth camera.
    rttStateSet->setAttributeAndModes(
        new osg::PolygonMode( osg::PolygonMode::FRONT_AND_BACK, osg::PolygonMode::FILL ),
        osg::StateAttribute::ON | osg::StateAttribute::PROTECTED );
    
    // attach the terrain to the camera.
    // todo: should probably protect this with a mutex.....
    params._rttCamera->addChild( _engine ); // the terrain itself.

    // assemble the overlay graph stateset.
    local->_groupStateSet = new osg::StateSet();

    // Required for now, otherwise GPU-clamped geometry will jitter sometimes.
    // TODO: figure out why and fix it. This is a workaround for now.
    local->_groupStateSet->setDataVariance( osg::Object::DYNAMIC );

    local->_groupStateSet->setTextureAttributeAndModes( 
        _textureUnit, 
        local->_rttTexture.get(), 
        osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );

    // set up depth test/write parameters for the overlay geometry:
    local->_groupStateSet->setAttributeAndModes(
        new osg::Depth( osg::Depth::LEQUAL, 0.0, 1.0, true ),
        osg::StateAttribute::ON );

    local->_groupStateSet->setRenderingHint( osg::StateSet::TRANSPARENT_BIN );

    // uniform for the horizon distance (== max clamping distance)
    local->_horizonDistanceUniform = local->_groupStateSet->getOrCreateUniform(
        "oe_clamp_horizonDistance",
        osg::Uniform::FLOAT );

    // sampler for depth map texture:
    local->_groupStateSet->getOrCreateUniform(
        "oe_clamp_depthTex", 
        osg::Uniform::SAMPLER_2D )->set( _textureUnit );

    // matrix that transforms a vert from EYE coords to the depth camera's CLIP coord.
    local->_camViewToDepthClipUniform = local->_groupStateSet->getOrCreateUniform( 
        "oe_clamp_cameraView2depthClip", 
        osg::Uniform::FLOAT_MAT4 );

#ifdef SUPPORT_Z

    // matrix that transforms a vert from depth clip coords to depth view coords.
    local->_depthClipToDepthViewUniform = local->_groupStateSet->getOrCreateUniform(
        "oe_clamp_depthClip2depthView",
        osg::Uniform::FLOAT_MAT4 );

    // matrix that transforms a vert from depth view coords to camera view coords.
    local->_depthViewToCamViewUniform = local->_groupStateSet->getOrCreateUniform(
        "oe_clamp_depthView2cameraView",
        osg::Uniform::FLOAT_MAT4 );

#else

    // matrix that transforms a vert from depth-cam CLIP coords to EYE coords.
    local->_depthClipToCamViewUniform = local->_groupStateSet->getOrCreateUniform( 
        "oe_clamp_depthClip2cameraView", 
        osg::Uniform::FLOAT_MAT4 );

#endif

    // make the shader that will do clamping and depth offsetting.
    VirtualProgram* vp = VirtualProgram::getOrCreate(local->_groupStateSet.get());
    vp->setName( "ClampingTechnique" );
    vp->setFunction( "oe_clamp_vertex",   clampingVertexShader,   ShaderComp::LOCATION_VERTEX_VIEW );
    vp->setFunction( "oe_clamp_fragment", clampingFragmentShader, ShaderComp::LOCATION_FRAGMENT_COLORING );
}
Beispiel #24
0
void makeVisibleVP(osg::StateSet* ss)
{
    VirtualProgram* vp = VirtualProgram::getOrCreate(ss);
    vp->setFunction("oe_instancing_setPos", IG_VS, ShaderComp::LOCATION_VERTEX_MODEL, -FLT_MAX);
    vp->addBindAttribLocation( "xfb_position", XFB_SLOT );
}
// Generates the main shader code for rendering the terrain.
void
RexTerrainEngineNode::updateState()
{
    if ( _batchUpdateInProgress )
    {
        _stateUpdateRequired = true;
    }
    else
    {
        osg::StateSet* terrainStateSet   = _terrain->getOrCreateStateSet();   // everything
        osg::StateSet* surfaceStateSet   = getSurfaceStateSet();    // just the surface
        
        // required for multipass tile rendering to work
        surfaceStateSet->setAttributeAndModes(
            new osg::Depth(osg::Depth::LEQUAL, 0, 1, true) );

        // activate standard mix blending.
        terrainStateSet->setAttributeAndModes( 
            new osg::BlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA),
            osg::StateAttribute::ON );

        // install patch param if we are tessellation on the GPU.
        if ( _terrainOptions.gpuTessellation() == true )
        {
            #ifdef HAVE_PATCH_PARAMETER
              terrainStateSet->setAttributeAndModes( new osg::PatchParameter(3) );
            #endif
        }

        // install shaders, if we're using them.
        if ( Registry::capabilities().supportsGLSL() )
        {
            Shaders package;

            VirtualProgram* terrainVP = VirtualProgram::getOrCreate(terrainStateSet);
            terrainVP->setName( "Rex Terrain" );
            package.load(terrainVP, package.ENGINE_VERT_MODEL);

            //moved to CTOR so it's always available
            //package.load(terrainVP, package.SDK);
            
            bool useTerrainColor = _terrainOptions.color().isSet();
            package.define("OE_REX_USE_TERRAIN_COLOR", useTerrainColor);
            if ( useTerrainColor )
            {
                surfaceStateSet->addUniform(new osg::Uniform("oe_terrain_color", _terrainOptions.color().get()));
            }

            bool useBlending = _terrainOptions.enableBlending().get();
            package.define("OE_REX_GL_BLENDING", useBlending);

            bool morphImagery = _terrainOptions.morphImagery().get();
            package.define("OE_REX_MORPH_IMAGERY", morphImagery);

            // Funtions that affect only the terrain surface:
            VirtualProgram* surfaceVP = VirtualProgram::getOrCreate(surfaceStateSet);
            surfaceVP->setName("Rex Surface");

            // Functions that affect the terrain surface only:
            package.load(surfaceVP, package.ENGINE_VERT_VIEW);
            package.load(surfaceVP, package.ENGINE_FRAG);

            // Normal mapping shaders:
            if ( this->normalTexturesRequired() )
            {
                package.load(surfaceVP, package.NORMAL_MAP_VERT);
                package.load(surfaceVP, package.NORMAL_MAP_FRAG);
            }

            // Morphing?
            if (_terrainOptions.morphTerrain() == true ||
                _terrainOptions.morphImagery() == true)
            {
                package.define("OE_REX_VERTEX_MORPHING", (_terrainOptions.morphTerrain() == true));
                package.load(surfaceVP, package.MORPHING_VERT);
            }

            for(LandCoverZones::iterator zone = _landCoverData._zones.begin(); zone != _landCoverData._zones.end(); ++zone)
            {
                for(LandCoverBins::iterator bin = zone->_bins.begin(); bin != zone->_bins.end(); ++bin)
                {
                    osg::StateSet* landCoverStateSet = bin->_binProto->getStateSet();

                    // enable alpha-to-coverage multisampling for vegetation.
                    landCoverStateSet->setMode(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB, 1);

                    // uniform that communicates the availability of multisampling.
                    landCoverStateSet->addUniform( new osg::Uniform(
                        "oe_terrain_hasMultiSamples",
                        osg::DisplaySettings::instance()->getMultiSamples()) );

                    landCoverStateSet->setAttributeAndModes(
                        new osg::BlendFunc(GL_ONE, GL_ZERO, GL_ONE, GL_ZERO),
                        osg::StateAttribute::OVERRIDE );

                    #ifdef HAVE_OSG_PATCH_PARAMETER
                        landCoverStateSet->setAttributeAndModes( new osg::PatchParameter(3) );
                    #endif
                }
            }

            // assemble color filter code snippets.
            bool haveColorFilters = false;
            {
                // Color filter frag function:
                std::string fs_colorfilters =
                    "#version " GLSL_VERSION_STR "\n"
                    GLSL_DEFAULT_PRECISION_FLOAT "\n"
                    "uniform int oe_layer_uid; \n"
                    "$COLOR_FILTER_HEAD"
                    "void oe_rexEngine_applyFilters(inout vec4 color) \n"
                    "{ \n"
                        "$COLOR_FILTER_BODY"
                    "} \n";

                std::stringstream cf_head;
                std::stringstream cf_body;
                const char* I = "    ";

                // second, install the per-layer color filter functions AND shared layer bindings.
                bool ifStarted = false;
                int numImageLayers = _update_mapf->imageLayers().size();
                for( int i=0; i<numImageLayers; ++i )
                {
                    ImageLayer* layer = _update_mapf->getImageLayerAt(i);
                    if ( layer->getEnabled() )
                    {
                        // install Color Filter function calls:
                        const ColorFilterChain& chain = layer->getColorFilters();
                        if ( chain.size() > 0 )
                        {
                            haveColorFilters = true;
                            if ( ifStarted ) cf_body << I << "else if ";
                            else             cf_body << I << "if ";
                            cf_body << "(oe_layer_uid == " << layer->getUID() << ") {\n";
                            for( ColorFilterChain::const_iterator j = chain.begin(); j != chain.end(); ++j )
                            {
                                const ColorFilter* filter = j->get();
                                cf_head << "void " << filter->getEntryPointFunctionName() << "(inout vec4 color);\n";
                                cf_body << I << I << filter->getEntryPointFunctionName() << "(color);\n";
                                filter->install( surfaceStateSet );
                            }
                            cf_body << I << "}\n";
                            ifStarted = true;
                        }
                    }
                }

                if ( haveColorFilters )
                {
                    std::string cf_head_str, cf_body_str;
                    cf_head_str = cf_head.str();
                    cf_body_str = cf_body.str();

                    replaceIn( fs_colorfilters, "$COLOR_FILTER_HEAD", cf_head_str );
                    replaceIn( fs_colorfilters, "$COLOR_FILTER_BODY", cf_body_str );

                    surfaceVP->setFunction(
                        "oe_rexEngine_applyFilters",
                        fs_colorfilters,
                        ShaderComp::LOCATION_FRAGMENT_COLORING,
                        0.0 );
                }
            }

            // Apply uniforms for sampler bindings:
            OE_DEBUG << LC << "Render Bindings:\n";
            for(RenderBindings::const_iterator b = _renderBindings.begin(); b != _renderBindings.end(); ++b)
            {
                if ( b->isActive() )
                {
                    terrainStateSet->addUniform( new osg::Uniform(b->samplerName().c_str(), b->unit()) );
                    OE_DEBUG << LC << " > Bound \"" << b->samplerName() << "\" to unit " << b->unit() << "\n";
                }
            }

            // uniform that controls per-layer opacity
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_opacity", 1.0f) );

            // uniform that conveys the layer UID to the shaders; necessary
            // for per-layer branching (like color filters)
            // UID -1 => no image layer (no texture)
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_uid", (int)-1 ) );

            // uniform that conveys the render order, since the shaders
            // need to know which is the first layer in order to blend properly
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_order", (int)0) );

            // default min/max range uniforms. (max < min means ranges are disabled)
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_minRange", 0.0f) );
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_maxRange", -1.0f) );
            
            terrainStateSet->getOrCreateUniform(
                "oe_min_tile_range_factor",
                osg::Uniform::FLOAT)->set( *_terrainOptions.minTileRangeFactor() );

            terrainStateSet->addUniform(new osg::Uniform("oe_tile_size", (float)_terrainOptions.tileSize().get()));

            // special object ID that denotes the terrain surface.
            surfaceStateSet->addUniform( new osg::Uniform(
                Registry::objectIndex()->getObjectIDUniformName().c_str(), OSGEARTH_OBJECTID_TERRAIN) );
        }

        _stateUpdateRequired = false;
    }
}
Beispiel #26
0
osg::Node*
PolygonizeLinesFilter::push(FeatureList& input, FilterContext& cx)
{
    // compute the coordinate localization matrices.
    computeLocalizers( cx );

    // establish some things
    bool                    makeECEF   = false;
    const SpatialReference* featureSRS = 0L;
    const SpatialReference* mapSRS     = 0L;

    if ( cx.isGeoreferenced() )
    {
        makeECEF   = cx.getSession()->getMapInfo().isGeocentric();
        featureSRS = cx.extent()->getSRS();
        mapSRS     = cx.getSession()->getMapInfo().getProfile()->getSRS();
    }

    // The operator we'll use to make lines into polygons.
    const LineSymbol* line = _style.get<LineSymbol>();
    PolygonizeLinesOperator polygonize( line ? (*line->stroke()) : Stroke() );

    // Geode to hold all the geometries.
    osg::Geode* geode = new osg::Geode();

    // iterate over all features.
    for( FeatureList::iterator i = input.begin(); i != input.end(); ++i )
    {
        Feature* f = i->get();

        // iterate over all the feature's geometry parts. We will treat
        // them as lines strings.
        GeometryIterator parts( f->getGeometry(), false );
        while( parts.hasMore() )
        {
            Geometry* part = parts.next();

            // skip empty geometry
            if ( part->size() == 0 )
                continue;

            // transform the geometry into the target SRS and localize it about 
            // a local reference point.
            osg::Vec3Array* verts   = new osg::Vec3Array();
            osg::Vec3Array* normals = new osg::Vec3Array();
            transformAndLocalize( part->asVector(), featureSRS, verts, normals, mapSRS, _world2local, makeECEF );

            // turn the lines into polygons.
            osg::Geometry* geom = polygonize( verts, normals );
            geode->addDrawable( geom );

            // record the geometry's primitive set(s) in the index:
            if ( cx.featureIndex() )
                cx.featureIndex()->tagPrimitiveSets( geom, f );
        }
    }

    // attempt to combine geometries for better performance
    MeshConsolidator::run( *geode );

    // GPU performance optimization:
    VertexCacheOptimizer vco;
    geode->accept( vco );

    // If we're auto-scaling, we need a shader
    float minPixels = line ? line->stroke()->minPixels().getOrUse( 0.0f ) : 0.0f;
    if ( minPixels > 0.0f )
    {
        osg::StateSet* stateSet = geode->getOrCreateStateSet();

        VirtualProgram* vp = VirtualProgram::getOrCreate(stateSet);
        vp->setName( "osgEarth::PolygonizeLines" );

        const char* vs =
            "#version " GLSL_VERSION_STR "\n"
            GLSL_DEFAULT_PRECISION_FLOAT "\n"
            "attribute vec3   oe_polyline_center; \n"
            "uniform   float  oe_polyline_scale;  \n"
            "uniform   float  oe_polyline_min_pixels; \n"
            "uniform   mat3   oe_WindowScaleMatrix; \n"

            "void oe_polyline_scalelines(inout vec4 VertexMODEL) \n"
            "{ \n"
            "   if ( oe_polyline_scale != 1.0 || oe_polyline_min_pixels > 0.0 ) \n"
            "   { \n"
            "       vec4  center_model = vec4(oe_polyline_center*VertexMODEL.w, VertexMODEL.w); \n"
            "       vec4  vector_model = VertexMODEL - center_model; \n"
            "       if ( length(vector_model.xyz) > 0.0 ) \n"
            "       { \n"
            "           float scale = oe_polyline_scale; \n"

            "           vec4 vertex_clip = gl_ModelViewProjectionMatrix * VertexMODEL; \n"
            "           vec4 center_clip = gl_ModelViewProjectionMatrix * center_model; \n"
            "           vec4 vector_clip = vertex_clip - center_clip; \n"

            "           if ( oe_polyline_min_pixels > 0.0 ) \n"
            "           { \n"
            "               vec3 vector_win = oe_WindowScaleMatrix * (vertex_clip.xyz/vertex_clip.w - center_clip.xyz/center_clip.w); \n"
            "               float min_scale = max( (0.5*oe_polyline_min_pixels)/length(vector_win.xy), 1.0 ); \n"
            "               scale = max( scale, min_scale ); \n"
            "           } \n"

            "           VertexMODEL = center_model + vector_model*scale; \n"
            "        } \n"
            "    } \n"
            "} \n";

        vp->setFunction( "oe_polyline_scalelines", vs, ShaderComp::LOCATION_VERTEX_MODEL );
        vp->addBindAttribLocation( "oe_polyline_center", osg::Drawable::ATTRIBUTE_6 );

        // add the default scaling uniform.
        // good way to test:
        //    osgearth_viewer earthfile --uniform oe_polyline_scale 1.0 10.0
        osg::Uniform* scaleU = new osg::Uniform(osg::Uniform::FLOAT, "oe_polyline_scale");
        scaleU->set( 1.0f );
        stateSet->addUniform( scaleU, 1 );

        // the default "min pixels" uniform.
        osg::Uniform* minPixelsU = new osg::Uniform(osg::Uniform::FLOAT, "oe_polyline_min_pixels");
        minPixelsU->set( minPixels );
        stateSet->addUniform( minPixelsU, 1 );
    }

    return delocalize( geode );
}
Beispiel #27
0
// Generates the main shader code for rendering the terrain.
void
RexTerrainEngineNode::updateState()
{
    if ( _batchUpdateInProgress )
    {
        _stateUpdateRequired = true;
    }
    else
    {
        osg::StateSet* terrainStateSet   = _terrain->getOrCreateStateSet();   // everything
        osg::StateSet* surfaceStateSet   = getSurfaceStateSet();    // just the surface
        
        //terrainStateSet->setRenderBinDetails(0, "SORT_FRONT_TO_BACK");
        
        // required for multipass tile rendering to work
        surfaceStateSet->setAttributeAndModes(
            new osg::Depth(osg::Depth::LEQUAL, 0, 1, true) );

        surfaceStateSet->setAttributeAndModes(
            new osg::CullFace(), osg::StateAttribute::ON);

        // activate standard mix blending.
        terrainStateSet->setAttributeAndModes( 
            new osg::BlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA),
            osg::StateAttribute::ON );

        // install patch param if we are tessellation on the GPU.
        if ( _terrainOptions.gpuTessellation() == true )
        {
            #ifdef HAVE_PATCH_PARAMETER
              terrainStateSet->setAttributeAndModes( new osg::PatchParameter(3) );
            #endif
        }

        // install shaders, if we're using them.
        if ( Registry::capabilities().supportsGLSL() )
        {
            Shaders package;

            VirtualProgram* terrainVP = VirtualProgram::getOrCreate(terrainStateSet);
            terrainVP->setName( "Rex Terrain" );
            package.load(terrainVP, package.ENGINE_VERT_MODEL);
            
            surfaceStateSet->addUniform(new osg::Uniform("oe_terrain_color", _terrainOptions.color().get()));

            if (_terrainOptions.enableBlending() == true)
            {
                surfaceStateSet->setDefine("OE_TERRAIN_BLEND_IMAGERY");
            }

            // Funtions that affect only the terrain surface:
            VirtualProgram* surfaceVP = VirtualProgram::getOrCreate(surfaceStateSet);
            surfaceVP->setName("Rex Surface");

            // Functions that affect the terrain surface only:
            package.load(surfaceVP, package.ENGINE_VERT_VIEW);
            package.load(surfaceVP, package.ENGINE_FRAG);

            // Elevation?
            if (this->elevationTexturesRequired())
            {
                surfaceStateSet->setDefine("OE_TERRAIN_RENDER_ELEVATION");
            }

            // Normal mapping shaders:
            if ( this->normalTexturesRequired() )
            {
                package.load(surfaceVP, package.NORMAL_MAP_VERT);
                package.load(surfaceVP, package.NORMAL_MAP_FRAG);
                surfaceStateSet->setDefine("OE_TERRAIN_RENDER_NORMAL_MAP");
            }

            // Morphing?
            if (_terrainOptions.morphTerrain() == true ||
                _terrainOptions.morphImagery() == true)
            {
                package.load(surfaceVP, package.MORPHING_VERT);

                if (_terrainOptions.morphImagery() == true)
                {
                    surfaceStateSet->setDefine("OE_TERRAIN_MORPH_IMAGERY");
                }
                if (_terrainOptions.morphTerrain() == true)
                {
                    surfaceStateSet->setDefine("OE_TERRAIN_MORPH_GEOMETRY");
                }
            }

            // assemble color filter code snippets.
            bool haveColorFilters = false;
            {
                // Color filter frag function:
                std::string fs_colorfilters =
                    "#version " GLSL_VERSION_STR "\n"
                    GLSL_DEFAULT_PRECISION_FLOAT "\n"
                    "uniform int oe_layer_uid; \n"
                    "$COLOR_FILTER_HEAD"
                    "void oe_rexEngine_applyFilters(inout vec4 color) \n"
                    "{ \n"
                        "$COLOR_FILTER_BODY"
                    "} \n";

                std::stringstream cf_head;
                std::stringstream cf_body;
                const char* I = "    ";

                // second, install the per-layer color filter functions AND shared layer bindings.
                bool ifStarted = false;
                ImageLayerVector imageLayers;
                _update_mapf->getLayers(imageLayers);

                for( int i=0; i<imageLayers.size(); ++i )
                {
                    ImageLayer* layer = imageLayers.at(i);
                    if ( layer->getEnabled() )
                    {
                        // install Color Filter function calls:
                        const ColorFilterChain& chain = layer->getColorFilters();
                        if ( chain.size() > 0 )
                        {
                            haveColorFilters = true;
                            if ( ifStarted ) cf_body << I << "else if ";
                            else             cf_body << I << "if ";
                            cf_body << "(oe_layer_uid == " << layer->getUID() << ") {\n";
                            for( ColorFilterChain::const_iterator j = chain.begin(); j != chain.end(); ++j )
                            {
                                const ColorFilter* filter = j->get();
                                cf_head << "void " << filter->getEntryPointFunctionName() << "(inout vec4 color);\n";
                                cf_body << I << I << filter->getEntryPointFunctionName() << "(color);\n";
                                filter->install( surfaceStateSet );
                            }
                            cf_body << I << "}\n";
                            ifStarted = true;
                        }
                    }
                }

                if ( haveColorFilters )
                {
                    std::string cf_head_str, cf_body_str;
                    cf_head_str = cf_head.str();
                    cf_body_str = cf_body.str();

                    replaceIn( fs_colorfilters, "$COLOR_FILTER_HEAD", cf_head_str );
                    replaceIn( fs_colorfilters, "$COLOR_FILTER_BODY", cf_body_str );

                    surfaceVP->setFunction(
                        "oe_rexEngine_applyFilters",
                        fs_colorfilters,
                        ShaderComp::LOCATION_FRAGMENT_COLORING,
                        0.6 );
                }
            }

            // Apply uniforms for sampler bindings:
            OE_DEBUG << LC << "Render Bindings:\n";
            osg::ref_ptr<osg::Texture> tex = new osg::Texture2D(ImageUtils::createEmptyImage(1,1));
            for (unsigned i = 0; i < _renderBindings.size(); ++i)
            {
                SamplerBinding& b = _renderBindings[i];
                if (b.isActive())
                {
                    osg::Uniform* u = new osg::Uniform(b.samplerName().c_str(), b.unit());
                    terrainStateSet->addUniform( u );
                    OE_DEBUG << LC << " > Bound \"" << b.samplerName() << "\" to unit " << b.unit() << "\n";
                    terrainStateSet->setTextureAttribute(b.unit(), tex.get());
                }
            }

            // uniform that controls per-layer opacity
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_opacity", 1.0f) );

            // uniform that conveys the layer UID to the shaders; necessary
            // for per-layer branching (like color filters)
            // UID -1 => no image layer (no texture)
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_uid", (int)-1 ) );

            // uniform that conveys the render order, since the shaders
            // need to know which is the first layer in order to blend properly
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_order", (int)0) );

            // default min/max range uniforms. (max < min means ranges are disabled)
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_minRange", 0.0f) );
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_maxRange", -1.0f) );
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_attenuationRange", _terrainOptions.attentuationDistance().get()) );
            
            terrainStateSet->getOrCreateUniform(
                "oe_min_tile_range_factor",
                osg::Uniform::FLOAT)->set( *_terrainOptions.minTileRangeFactor() );

            terrainStateSet->addUniform(new osg::Uniform("oe_tile_size", (float)_terrainOptions.tileSize().get()));

            // special object ID that denotes the terrain surface.
            surfaceStateSet->addUniform( new osg::Uniform(
                Registry::objectIndex()->getObjectIDUniformName().c_str(), OSGEARTH_OBJECTID_TERRAIN) );
        }

        _stateUpdateRequired = false;
    }
}
Beispiel #28
0
bool
ShaderGenerator::processGeometry( osg::StateSet* ss, osg::ref_ptr<osg::StateSet>& replacement )
{
    // do nothing if there's no GLSL support
    if ( !Registry::capabilities().supportsGLSL() )
        return false;

    // State object with extra accessors:
    StateEx* state = static_cast<StateEx*>(_state.get());

    // check for a real osg::Program in the whole state stack. If it exists, bail out
    // so that OSG can use the program already in the graph. We never override a
    // full Program.
    osg::StateAttribute* program = state->getAttribute(osg::StateAttribute::PROGRAM);
    if ( dynamic_cast<osg::Program*>(program) != 0L )
        return false;

    // see if the current state set contains a VirtualProgram already. If so,
    // we will add to it if necessary.
    VirtualProgram* vp = dynamic_cast<VirtualProgram*>( ss->getAttribute(VirtualProgram::SA_TYPE) );

    // Check whether the lighting state has changed and install a mode uniform.
    if ( ss->getMode(GL_LIGHTING) != osg::StateAttribute::INHERIT )
    {
        if ( !replacement.valid() ) 
            replacement = osg::clone(ss, osg::CopyOp::DEEP_COPY_ALL);

        ShaderFactory* sf = Registry::instance()->getShaderFactory();
        osg::StateAttribute::GLModeValue value = state->getMode(GL_LIGHTING); // from the state, not the ss.
        replacement->addUniform( sf->createUniformForGLMode(GL_LIGHTING, value) );
    }

    // if the stateset changes any texture attributes, we need a new virtual program:
    if (ss->getTextureAttributeList().size() > 0)
    {
        if ( !replacement.valid() ) 
            replacement = osg::clone(ss, osg::CopyOp::DEEP_COPY_ALL);

        // work off the state's accumulated texture attribute set:
        int texCount = state->getNumTextureAttributes();

        if ( !vp )
        {
            vp = osg::clone( _defaultVP.get() );
            replacement->setAttributeAndModes( vp, osg::StateAttribute::ON );
        }

        // start generating the shader source.
        std::stringstream vertHead, vertBody, fragHead, fragBody;

        // compatibility strings make it work in GL or GLES.
        vertHead << "#version " GLSL_VERSION_STR "\n" GLSL_PRECISION;
        fragHead << "#version " GLSL_VERSION_STR "\n" GLSL_PRECISION;

        // function declarations:
        vertBody << "void " VERTEX_FUNCTION "()\n{\n";

        fragBody << "void " FRAGMENT_FUNCTION "(inout vec4 color)\n{\n";

        for( int t = 0; t < texCount; ++t )
        {
            if (t == 0)
            {
                fragBody << INDENT << MEDIUMP "vec4 texel; \n";
            }

            osg::StateAttribute* tex = state->getTextureAttribute( t, osg::StateAttribute::TEXTURE );
            if ( tex )
            {
                // see if we have a texenv; if so get its blending mode.
                osg::TexEnv::Mode blendingMode = osg::TexEnv::MODULATE;
                osg::TexEnv* env = dynamic_cast<osg::TexEnv*>(state->getTextureAttribute(t, osg::StateAttribute::TEXENV) );
                if ( env )
                {
                    blendingMode = env->getMode();
                    if ( blendingMode == osg::TexEnv::BLEND )
                    {
                        replacement->getOrCreateUniform( Stringify() << TEXENV_COLOR << t, osg::Uniform::FLOAT_VEC4 )->set( env->getColor() );
                    }
                }

                vertHead << "varying " MEDIUMP "vec4 " TEX_COORD << t << ";\n";
                vertBody << INDENT << TEX_COORD << t << " = gl_MultiTexCoord" << t << ";\n";

                fragHead << "varying " MEDIUMP "vec4 " TEX_COORD << t << ";\n";

                if ( dynamic_cast<osg::Texture1D*>(tex) )
                {
                    fragHead << "uniform sampler1D " SAMPLER << t << ";\n";
                    fragBody << INDENT "texel = texture1D(" SAMPLER << t << ", " TEX_COORD << t << ".x);\n";
                    replacement->getOrCreateUniform( Stringify() << SAMPLER << t, osg::Uniform::SAMPLER_1D )->set( t );
                }
                else if ( dynamic_cast<osg::Texture2D*>(tex) )
                {
                    fragHead << "uniform sampler2D " SAMPLER << t << ";\n";
                    fragBody << INDENT "texel = texture2D(" SAMPLER << t << ", " TEX_COORD << t << ".xy);\n";
                    replacement->getOrCreateUniform( Stringify() << SAMPLER << t, osg::Uniform::SAMPLER_2D )->set( t );
                }
                else if ( dynamic_cast<osg::Texture3D*>(tex) )
                {
                    fragHead << "uniform sampler3D " SAMPLER << t << ";\n";
                    fragBody << INDENT "texel = texture3D(" SAMPLER << t << ", " TEX_COORD << t << ".xyz);\n";
                    replacement->getOrCreateUniform( Stringify() << SAMPLER << t, osg::Uniform::SAMPLER_3D )->set( t );
                }

                // See http://www.opengl.org/sdk/docs/man/xhtml/glTexEnv.xml
                switch( blendingMode )
                {
                case osg::TexEnv::REPLACE:
                    fragBody
                        << INDENT "color = texel; \n";
                    break;
                case osg::TexEnv::MODULATE:
                    fragBody
                        << INDENT "color = color * texel; \n";
                    break;
                case osg::TexEnv::DECAL:
                    fragBody
                        << INDENT "color.rgb = color.rgb * (1.0 - texel.a) + (texel.rgb * texel.a); \n";
                    break;
                case osg::TexEnv::BLEND:
                    fragHead
                        << "uniform " MEDIUMP "vec4 " TEXENV_COLOR << t << "\n;";
                    fragBody
                        << INDENT "color.rgb = color.rgb * (1.0 - texel.rgb) + (" << TEXENV_COLOR << t << ".rgb * texel.rgb); \n"
                        << INDENT "color.a   = color.a * texel.a; \n";
                    break;
                case osg::TexEnv::ADD:
                default:
                    fragBody
                        << INDENT "color.rgb = color.rgb + texel.rgb; \n"
                        << INDENT "color.a   = color.a * texel.a; \n";
                }
            }
        }

        // close out functions:
        vertBody << "}\n";
        fragBody << "}\n";

        // Extract the shader source strings (win compat method)
        std::string vertBodySrc, vertSrc, fragBodySrc, fragSrc;
        vertBodySrc = vertBody.str();
        vertHead << vertBodySrc;
        vertSrc = vertHead.str();
        fragBodySrc = fragBody.str();
        fragHead << fragBodySrc;
        fragSrc = fragHead.str();

        // inject the shaders:
        vp->setFunction( VERTEX_FUNCTION,   vertSrc, ShaderComp::LOCATION_VERTEX_PRE_LIGHTING );
        vp->setFunction( FRAGMENT_FUNCTION, fragSrc, ShaderComp::LOCATION_FRAGMENT_PRE_LIGHTING );
    }

    return replacement.valid();
}
// Generates the main shader code for rendering the terrain.
void
MPTerrainEngineNode::updateState()
{
    if ( _batchUpdateInProgress )
    {
        _stateUpdateRequired = true;
    }
    else
    {
        if ( _elevationTextureUnit < 0 && elevationTexturesRequired() )
        {
            getResources()->reserveTextureImageUnit( _elevationTextureUnit, "MP Engine Elevation" );
        }

        osg::StateSet* terrainStateSet = getTerrainStateSet();
        
        // required for multipass tile rendering to work
        terrainStateSet->setAttributeAndModes(
            new osg::Depth(osg::Depth::LEQUAL, 0, 1, true) );

        // activate standard mix blending.
        terrainStateSet->setAttributeAndModes( 
            new osg::BlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA),
            osg::StateAttribute::ON );

        // install shaders, if we're using them.
        if ( Registry::capabilities().supportsGLSL() )
        {
            VirtualProgram* vp = new VirtualProgram();
            vp->setName( "osgEarth.engine_mp.TerrainNode" );
            terrainStateSet->setAttributeAndModes( vp, osg::StateAttribute::ON );

            // bind the vertex attributes generated by the tile compiler.
            vp->addBindAttribLocation( "oe_terrain_attr",  osg::Drawable::ATTRIBUTE_6 );
            vp->addBindAttribLocation( "oe_terrain_attr2", osg::Drawable::ATTRIBUTE_7 );

            Shaders package;

            package.replace( "$MP_PRIMARY_UNIT",   Stringify() << _primaryUnit );
            package.replace( "$MP_SECONDARY_UNIT", Stringify() << (_secondaryUnit>=0?_secondaryUnit:0) );

            package.define( "MP_USE_BLENDING", (_terrainOptions.enableBlending() == true) );

            package.loadFunction( vp, package.VertexModel );
            package.loadFunction( vp, package.VertexView );
            package.loadFunction( vp, package.Fragment );
            

            // terrain background color; negative means use the vertex color.
            Color terrainColor = _terrainOptions.color().getOrUse( Color(1,1,1,-1) );
            terrainStateSet->addUniform(new osg::Uniform("oe_terrain_color", terrainColor));

            
            // assemble color filter code snippets.
            bool haveColorFilters = false;
            {
                // Color filter frag function:
                std::string fs_colorfilters =
                    "#version " GLSL_VERSION_STR "\n"
                    GLSL_DEFAULT_PRECISION_FLOAT "\n"
                    "uniform int oe_layer_uid; \n"
                    "$COLOR_FILTER_HEAD"
                    "void oe_mp_apply_filters(inout vec4 color) \n"
                    "{ \n"
                        "$COLOR_FILTER_BODY"
                    "} \n";

                std::stringstream cf_head;
                std::stringstream cf_body;
                const char* I = "    ";

                // second, install the per-layer color filter functions AND shared layer bindings.
                bool ifStarted = false;
                int numImageLayers = _update_mapf->imageLayers().size();
                for( int i=0; i<numImageLayers; ++i )
                {
                    ImageLayer* layer = _update_mapf->getImageLayerAt(i);
                    if ( layer->getEnabled() )
                    {
                        // install Color Filter function calls:
                        const ColorFilterChain& chain = layer->getColorFilters();
                        if ( chain.size() > 0 )
                        {
                            haveColorFilters = true;
                            if ( ifStarted ) cf_body << I << "else if ";
                            else             cf_body << I << "if ";
                            cf_body << "(oe_layer_uid == " << layer->getUID() << ") {\n";
                            for( ColorFilterChain::const_iterator j = chain.begin(); j != chain.end(); ++j )
                            {
                                const ColorFilter* filter = j->get();
                                cf_head << "void " << filter->getEntryPointFunctionName() << "(inout vec4 color);\n";
                                cf_body << I << I << filter->getEntryPointFunctionName() << "(color);\n";
                                filter->install( terrainStateSet );
                            }
                            cf_body << I << "}\n";
                            ifStarted = true;
                        }
                    }
                }

                if ( haveColorFilters )
                {
                    std::string cf_head_str, cf_body_str;
                    cf_head_str = cf_head.str();
                    cf_body_str = cf_body.str();

                    replaceIn( fs_colorfilters, "$COLOR_FILTER_HEAD", cf_head_str );
                    replaceIn( fs_colorfilters, "$COLOR_FILTER_BODY", cf_body_str );

                    vp->setFunction(
                        "oe_mp_apply_filters",
                        fs_colorfilters,
                        ShaderComp::LOCATION_FRAGMENT_COLORING,
                        0.5f );
                }
            }

            // binding for the terrain texture
            terrainStateSet->getOrCreateUniform( 
                "oe_layer_tex", osg::Uniform::SAMPLER_2D )->set( _primaryUnit );

            // binding for the secondary texture (for LOD blending)
            if ( parentTexturesRequired() )
            {
                terrainStateSet->getOrCreateUniform(
                    "oe_layer_tex_parent", osg::Uniform::SAMPLER_2D )->set( _secondaryUnit );

                // binding for the default secondary texture matrix
                osg::Matrixf parent_mat;
                parent_mat(0,0) = 0.0f;
                terrainStateSet->getOrCreateUniform(
                    "oe_layer_parent_matrix", osg::Uniform::FLOAT_MAT4 )->set( parent_mat );
            }

            // uniform for accessing the elevation texture sampler.
            if ( elevationTexturesRequired() )
            {
                terrainStateSet->getOrCreateUniform(
                    "oe_terrain_tex", osg::Uniform::SAMPLER_2D)->set( _elevationTextureUnit );
            }

            // uniform that controls per-layer opacity
            terrainStateSet->getOrCreateUniform(
                "oe_layer_opacity", osg::Uniform::FLOAT )->set( 1.0f );

            // uniform that conveys the layer UID to the shaders; necessary
            // for per-layer branching (like color filters)
            // UID -1 => no image layer (no texture)
            terrainStateSet->getOrCreateUniform(
                "oe_layer_uid", osg::Uniform::INT )->set( -1 );

            // uniform that conveys the render order, since the shaders
            // need to know which is the first layer in order to blend properly
            terrainStateSet->getOrCreateUniform(
                "oe_layer_order", osg::Uniform::INT )->set( 0 );

            // default min/max range uniforms. (max < min means ranges are disabled)
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_minRange", 0.0f) );
            terrainStateSet->addUniform( new osg::Uniform("oe_layer_maxRange", -1.0f) );
            
            terrainStateSet->getOrCreateUniform(
                "oe_min_tile_range_factor",
                osg::Uniform::FLOAT)->set( *_terrainOptions.minTileRangeFactor() );

            // special object ID that denotes the terrain surface.
            terrainStateSet->addUniform( new osg::Uniform(
                Registry::objectIndex()->getObjectIDUniformName().c_str(), OSGEARTH_OBJECTID_TERRAIN) );
        }

        _stateUpdateRequired = false;
    }
}
Beispiel #30
0
osg::Node*
createFramebufferPass(App& app)
{
    osg::Node* quad = createFramebufferQuad(app);
    
    osg::StateSet* stateset = quad->getOrCreateStateSet();

    static const char* vertSource =
        "varying vec4 texcoord;\n"
        "void effect_vert(inout vec4 vertexView)\n"
        "{\n"
        "    texcoord = gl_MultiTexCoord0; \n"
        "}\n";

    static const char* fragSource =
        "#version 120\n"
        "#extension GL_ARB_texture_rectangle : enable\n"
        "uniform sampler2DRect gcolor;\n"
        "uniform sampler2DRect gnormal;\n"
        "uniform sampler2DRect gdepth;\n"
        "varying vec4 texcoord;\n"

        "void effect_frag(inout vec4 color)\n"
        "{\n"
        "    color = texture2DRect(gcolor, texcoord.st); \n"
        "    float depth = texture2DRect(gdepth, texcoord.st).r; \n"
        "    vec3 normal = texture2DRect(gnormal,texcoord.st).xyz *2.0-1.0; \n"

        // sample radius in pixels:
        "    float e = 5.0; \n"

        // sample the normals around our pixel and find the approximate
        // deviation from our center normal:
        "    vec3 avgNormal =\n"
        "       texture2DRect(gnormal, texcoord.st+vec2( e, e)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2(-e, e)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2(-e,-e)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2( e,-e)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2( 0, e)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2( e, 0)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2( 0,-e)).xyz + \n"
        "       texture2DRect(gnormal, texcoord.st+vec2(-e, 0)).xyz;  \n"
        "    avgNormal = normalize((avgNormal/8.0)*2.0-1.0); \n"
        "    float deviation = clamp(dot(normal, avgNormal),0.0,1.0); \n"

        // set a blur factor based on the normal deviation, so that we
        // blur more around edges.
        "    e = 2.5 * (1.0-deviation); \n"

        "    vec4 blurColor = \n"
        "       color + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2( e, e)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2(-e, e)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2(-e,-e)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2( e,-e)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2( 0, e)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2( e, 0)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2( 0,-e)) + \n"
        "       texture2DRect(gcolor, texcoord.st+vec2(-e, 0));  \n"
        "    blurColor /= 9.0; \n"

        // blur the color and darken the edges at the same time
        "    color.rgb = blurColor.rgb * deviation; \n"
        "}\n";

    VirtualProgram* vp = VirtualProgram::getOrCreate(stateset);
    vp->setFunction("effect_vert", vertSource, ShaderComp::LOCATION_VERTEX_VIEW);
    vp->setFunction("effect_frag", fragSource, ShaderComp::LOCATION_FRAGMENT_COLORING);

    stateset->setTextureAttributeAndModes(0, app.gcolor, 1);
    stateset->addUniform(new osg::Uniform("gcolor", 0));
    stateset->setTextureAttributeAndModes(1, app.gnormal, 1);
    stateset->addUniform(new osg::Uniform("gnormal", 1));
    stateset->setTextureAttributeAndModes(2, app.gdepth, 1);
    stateset->addUniform(new osg::Uniform("gdepth", 2));
    stateset->setMode( GL_LIGHTING, 0 );

    float w = app.gcolor->getTextureWidth();
    float h = app.gcolor->getTextureHeight();

    osg::Camera* camera = new osg::Camera();
    camera->setReferenceFrame( osg::Transform::ABSOLUTE_RF );
    camera->setViewMatrix( osg::Matrix::identity() );
    camera->setProjectionMatrixAsOrtho2D( -w/2, (-w/2)+w, -h/2, (-h/2)+h );

    camera->addChild( quad );
    return camera;
}