Beispiel #1
0
void merge_metadata_files (
    const command_line_parser& parser
)
{
    image_dataset_metadata::dataset src, dest;
    load_image_dataset_metadata(src, parser.option("add").argument(0));
    load_image_dataset_metadata(dest, parser.option("add").argument(1));

    std::map<string,image_dataset_metadata::image> merged_data;
    for (unsigned long i = 0; i < dest.images.size(); ++i)
        merged_data[dest.images[i].filename] = dest.images[i];
    // now add in the src data and overwrite anything if there are duplicate entries.
    for (unsigned long i = 0; i < src.images.size(); ++i)
        merged_data[src.images[i].filename] = src.images[i];

    // copy merged data into dest
    dest.images.clear();
    for (std::map<string,image_dataset_metadata::image>::const_iterator i = merged_data.begin();
            i != merged_data.end(); ++i)
    {
        dest.images.push_back(i->second);
    }

    save_image_dataset_metadata(dest, "merged.xml");
}
Beispiel #2
0
void flip_dataset(const command_line_parser& parser)
{
    image_dataset_metadata::dataset metadata, orig_metadata;
    string datasource;
    if (parser.option("flip"))
        datasource = parser.option("flip").argument();
    else
        datasource = parser.option("flip-basic").argument();
    load_image_dataset_metadata(metadata,datasource);
    orig_metadata = metadata;

    // Set the current directory to be the one that contains the
    // metadata file. We do this because the file might contain
    // file paths which are relative to this folder.
    set_current_dir(get_parent_directory(file(datasource)));

    const string metadata_filename = get_parent_directory(file(datasource)).full_name() +
        directory::get_separator() + "flipped_" + file(datasource).name();


    array2d<rgb_pixel> img, temp;
    for (unsigned long i = 0; i < metadata.images.size(); ++i)
    {
        file f(metadata.images[i].filename);
        string filename = get_parent_directory(f).full_name() + directory::get_separator() + "flipped_" + to_png_name(f.name());

        load_image(img, metadata.images[i].filename);
        flip_image_left_right(img, temp);
        if (parser.option("jpg"))
        {
            filename = to_jpg_name(filename);
            save_jpeg(temp, filename,JPEG_QUALITY);
        }
        else
        {
            save_png(temp, filename);
        }

        for (unsigned long j = 0; j < metadata.images[i].boxes.size(); ++j)
        {
            metadata.images[i].boxes[j].rect = impl::flip_rect_left_right(metadata.images[i].boxes[j].rect, get_rect(img));

            // flip all the object parts
            for (auto& part : metadata.images[i].boxes[j].parts)
            {
                part.second = impl::flip_rect_left_right(rectangle(part.second,part.second), get_rect(img)).tl_corner();
            }
        }

        metadata.images[i].filename = filename;
    }

    if (!parser.option("flip-basic"))
        make_part_labeling_match_target_dataset(orig_metadata, metadata);

    save_image_dataset_metadata(metadata, metadata_filename);
}
static double
get_mlp_num_iterations (
    command_line_parser& parser,
    std::vector<dense_sample_type>& dense_samples
)
{
    int num_iterations = 5000;
    if (parser.option ("mlp-num-iterations")) {
        num_iterations = sa = parser.option("mlp-num-iterations").argument();
    }
    return num_iterations;
}
static double
get_mlp_hidden_units (
    command_line_parser& parser,
    std::vector<dense_sample_type>& dense_samples
)
{
    int num_hidden = 5;
    if (parser.option ("mlp-hidden-units")) {
        num_hidden = sa = parser.option("mlp-hidden-units").argument();
    }
    return num_hidden;
}
static void
krr_rbk_test (
    command_line_parser& parser,
    std::vector<dense_sample_type>& dense_samples,
    std::vector<double>& labels
)
{
    typedef radial_basis_kernel<dense_sample_type> kernel_type;
    krr_trainer<kernel_type> trainer;
    option_range gamma_range;
    double best_gamma = DBL_MAX;
    float best_loo = FLT_MAX;

    get_rbk_gamma (parser, dense_samples, gamma_range);

    for (float gamma = gamma_range.get_min_value(); 
         gamma <= gamma_range.get_max_value();
         gamma = gamma_range.get_next_value (gamma))
    {
        // LOO cross validation
        std::vector<double> loo_values;

        if (parser.option("verbose")) {
            trainer.set_search_lambdas(logspace(-9, 4, 100));
            trainer.be_verbose();
        }
        trainer.set_kernel (kernel_type (gamma));
        trainer.train (dense_samples, labels, loo_values);
        const double loo_error = mean_squared_error(loo_values, labels);
        if (loo_error < best_loo) {
            best_loo = loo_error;
            best_gamma = gamma;
        }
        printf ("10^%f %9.6f\n", log10(gamma), loo_error);
    }

    printf ("Best result: gamma=10^%f (%g), loo_error=%9.6f\n",
            log10(best_gamma), best_gamma, best_loo);
    if (parser.option("train-best")) {
        printf ("Training network with best parameters\n");
        trainer.set_kernel (kernel_type (best_gamma));
        decision_function<kernel_type> best_network = 
            trainer.train (dense_samples, labels);

        std::ofstream fout (parser.option("train-best").argument().c_str(), 
                            std::ios::binary);
        serialize (best_network, fout);
        fout.close();
    }
}
Beispiel #6
0
int tile_dataset(const command_line_parser& parser)
{
    if (parser.number_of_arguments() != 1)
    {
        cerr << "The --tile option requires you to give one XML file on the command line." << endl;
        return EXIT_FAILURE;
    }

    string out_image = parser.option("tile").argument();
    string ext = right_substr(out_image,".");
    if (ext != "png" && ext != "jpg")
    {
        cerr << "The output image file must have either .png or .jpg extension." << endl;
        return EXIT_FAILURE;
    }

    const unsigned long chip_size = get_option(parser, "size", 8000);

    dlib::image_dataset_metadata::dataset data;
    load_image_dataset_metadata(data, parser[0]);
    locally_change_current_dir chdir(get_parent_directory(file(parser[0])));
    dlib::array<array2d<rgb_pixel> > images;
    console_progress_indicator pbar(data.images.size());
    for (unsigned long i = 0; i < data.images.size(); ++i)
    {
        // don't even bother loading images that don't have objects.
        if (data.images[i].boxes.size() == 0)
            continue;

        pbar.print_status(i);
        array2d<rgb_pixel> img;
        load_image(img, data.images[i].filename);

        // figure out what chips we want to take from this image
        std::vector<chip_details> dets;
        for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
        {
            if (data.images[i].boxes[j].ignore)
                continue;

            rectangle rect = data.images[i].boxes[j].rect;
            dets.push_back(chip_details(rect, chip_size));
        }
        // Now grab all those chips at once.
        dlib::array<array2d<rgb_pixel> > chips;
        extract_image_chips(img, dets, chips);
        // and put the chips into the output.
        for (unsigned long j = 0; j < chips.size(); ++j)
            images.push_back(chips[j]);
    }

    chdir.revert();

    if (ext == "png")
        save_png(tile_images(images), out_image);
    else
        save_jpeg(tile_images(images), out_image);

    return EXIT_SUCCESS;
}
Beispiel #7
0
void create_new_dataset (
    const command_line_parser& parser
)
{
    using namespace dlib::image_dataset_metadata;

    const std::string filename = parser.option("c").argument();
    // make sure the file exists so we can use the get_parent_directory() command to
    // figure out it's parent directory.
    make_empty_file(filename);
    const std::string parent_dir = get_parent_directory(file(filename));

    unsigned long depth = 0;
    if (parser.option("r"))
        depth = 30;

    dataset meta;
    meta.name = "imglab dataset";
    meta.comment = "Created by imglab tool.";
    for (unsigned long i = 0; i < parser.number_of_arguments(); ++i)
    {
        try
        {
            const string temp = strip_path(file(parser[i]), parent_dir);
            meta.images.push_back(image(temp));
        }
        catch (dlib::file::file_not_found&)
        {
            // then parser[i] should be a directory

            std::vector<file> files = get_files_in_directory_tree(parser[i],
                                      match_endings(".png .PNG .jpeg .JPEG .jpg .JPG .bmp .BMP .dng .DNG"),
                                      depth);
            sort(files.begin(), files.end());

            for (unsigned long j = 0; j < files.size(); ++j)
            {
                meta.images.push_back(image(strip_path(files[j], parent_dir)));
            }
        }
    }

    save_image_dataset_metadata(meta, filename);
}
static double
get_svr_epsilon_insensitivity (
    command_line_parser& parser,
    std::vector<dense_sample_type>& dense_samples
)
{
    // Epsilon-insensitive regression means we do regression but stop 
    // trying to fit a data point once it is "close enough" to its 
    // target value.  This parameter is the value that controls what 
    // we mean by "close enough".  In this case, I'm saying I'm happy 
    // if the resulting regression function gets within 0.001 of the 
    // target value.
    double epsilon_insensitivity = 0.001;
    if (parser.option ("svr-epsilon-insensitivity")) {
        epsilon_insensitivity 
            = sa = parser.option("svr-epsilon-insensitivity").argument();
    }
    return epsilon_insensitivity;
}
Beispiel #9
0
void convert_idl(
    const command_line_parser& parser
)
{
    cout << "Convert from IDL annotation format..." << endl;

    dlib::image_dataset_metadata::dataset dataset;

    for (unsigned long i = 0; i < parser.number_of_arguments(); ++i)
    {
        parse_annotation_file(parser[i], dataset);
    }

    const std::string filename = parser.option("c").argument();
    save_image_dataset_metadata(dataset, filename);
}
Beispiel #10
0
int split_dataset (
    const command_line_parser& parser
)
{
    if (parser.number_of_arguments() != 1)
    {
        cerr << "The --split option requires you to give one XML file on the command line." << endl;
        return EXIT_FAILURE;
    }

    const std::string label = parser.option("split").argument();

    dlib::image_dataset_metadata::dataset data, data_with, data_without;
    load_image_dataset_metadata(data, parser[0]);

    data_with.name = data.name;
    data_with.comment = data.comment;
    data_without.name = data.name;
    data_without.comment = data.comment;

    for (unsigned long i = 0; i < data.images.size(); ++i)
    {
        auto&& temp = data.images[i];

        bool has_the_label = false;
        // check for the label we are looking for
        for (unsigned long j = 0; j < temp.boxes.size(); ++j)
        {
            if (temp.boxes[j].label == label)
            {
                has_the_label = true;
                break;
            }
        }

        if (has_the_label)
            data_with.images.push_back(temp);
        else
            data_without.images.push_back(temp);
    }


    save_image_dataset_metadata(data_with, left_substr(parser[0],".") + "_with_"+label + ".xml");
    save_image_dataset_metadata(data_without, left_substr(parser[0],".") + "_without_"+label + ".xml");

    return EXIT_SUCCESS;
}
Beispiel #11
0
void flip_dataset(const command_line_parser& parser)
{
#ifdef DLIB_PNG_SUPPORT
    image_dataset_metadata::dataset metadata;
    const string datasource = parser.option("flip").argument();
    load_image_dataset_metadata(metadata,datasource);

    // Set the current directory to be the one that contains the
    // metadata file. We do this because the file might contain
    // file paths which are relative to this folder.
    set_current_dir(get_parent_directory(file(datasource)));

    const string metadata_filename = get_parent_directory(file(datasource)).full_name() +
                                     directory::get_separator() + "flipped_" + file(datasource).name();


    array2d<rgb_pixel> img, temp;
    for (unsigned long i = 0; i < metadata.images.size(); ++i)
    {
        file f(metadata.images[i].filename);
        const string filename = get_parent_directory(f).full_name() + directory::get_separator() + "flipped_" + to_png_name(f.name());

        load_image(img, metadata.images[i].filename);
        flip_image_left_right(img, temp);
        save_png(temp, filename);

        for (unsigned long j = 0; j < metadata.images[i].boxes.size(); ++j)
        {
            metadata.images[i].boxes[j].rect = impl::flip_rect_left_right(metadata.images[i].boxes[j].rect, get_rect(img));

            // flip all the object parts
            std::map<std::string,point>::iterator k;
            for (k = metadata.images[i].boxes[j].parts.begin(); k != metadata.images[i].boxes[j].parts.end(); ++k)
            {
                k->second = impl::flip_rect_left_right(rectangle(k->second,k->second), get_rect(img)).tl_corner();
            }
        }

        metadata.images[i].filename = filename;
    }

    save_image_dataset_metadata(metadata, metadata_filename);
#else
    throw dlib::error("imglab must be compiled with libpng if you want to use the --flip option.");
#endif
}
void convert_pascal_xml(
    const command_line_parser& parser
)
{
    cout << "Convert from PASCAL XML annotation format..." << endl;

    dlib::image_dataset_metadata::dataset dataset;

    std::string name;
    dlib::image_dataset_metadata::image img;

    const std::string filename = parser.option("c").argument();
    // make sure the file exists so we can use the get_parent_directory() command to
    // figure out it's parent directory.
    make_empty_file(filename);
    const std::string parent_dir = get_parent_directory(file(filename)).full_name();

    for (unsigned long i = 0; i < parser.number_of_arguments(); ++i)
    {
        try
        {
            parse_annotation_file(parser[i], img, name);
            const string root = get_parent_directory(get_parent_directory(file(parser[i]))).full_name();
            const string img_path = root + directory::get_separator() + "JPEGImages" + directory::get_separator();

            dataset.name = name;
            img.filename = strip_path(img_path + img.filename,  parent_dir);
            dataset.images.push_back(img);

        }
        catch (exception& e)
        {
            cout << "Error while processing file " << parser[i] << endl << endl;
            throw;
        }
    }

    save_image_dataset_metadata(dataset, filename);
}
Beispiel #13
0
static void
parse_args (command_line_parser& parser, int argc, char* argv[])
{
    try {
        // Algorithm-independent options
        parser.add_option ("a",
                           "Choose the learning algorithm: {krls,krr,mlp,svr}.",1);
        parser.add_option ("h","Display this help message.");
        parser.add_option ("help","Display this help message.");
        parser.add_option ("k",
                           "Learning kernel (for krls,krr,svr methods): {lin,rbk}.",1);
        parser.add_option ("in","A libsvm-formatted file to test.",1);
        parser.add_option ("normalize",
                           "Normalize the sample inputs to zero-mean unit variance.");
        parser.add_option ("train-best",
                           "Train and save a network using best parameters", 1);

        parser.set_group_name("Algorithm Specific Options");
        // Algorithm-specific options
        parser.add_option ("rbk-gamma",
                           "Width of radial basis kernels: {float}.",1);
        parser.add_option ("krls-tolerance",
                           "Numerical tolerance of krls linear dependency test: {float}.",1);
        parser.add_option ("mlp-hidden-units",
                           "Number of hidden units in mlp: {integer}.",1);
        parser.add_option ("mlp-num-iterations",
                           "Number of epochs to train the mlp: {integer}.",1);
        parser.add_option ("svr-c",
                           "SVR regularization parameter \"C\": "
                           "{float}.",1);
        parser.add_option ("svr-epsilon-insensitivity",
                           "SVR fitting tolerance parameter: "
                           "{float}.",1);
        parser.add_option ("verbose", "Use verbose trainers");

        // Parse the command line arguments
        parser.parse(argc,argv);

        // Check that options aren't given multiple times
        const char* one_time_opts[] = {"a", "h", "help", "in"};
        parser.check_one_time_options(one_time_opts);

        const char* valid_kernels[] = {"lin", "rbk"};
        const char* valid_algs[]    = {"krls", "krr", "mlp", "svr"};
        parser.check_option_arg_range("a", valid_algs);
        parser.check_option_arg_range("k", valid_kernels);
        parser.check_option_arg_range("rbk-gamma", 1e-200, 1e200);
        parser.check_option_arg_range("krls-tolerance", 1e-200, 1e200);
        parser.check_option_arg_range("mlp-hidden-units", 1, 10000000);
        parser.check_option_arg_range("mlp-num-iterations", 1, 10000000);
        parser.check_option_arg_range("svr-c", 1e-200, 1e200);
        parser.check_option_arg_range("svr-epsilon-insensitivity", 1e-200, 1e200);

        // Check if the -h option was given
        if (parser.option("h") || parser.option("help")) {
            std::cout << "Usage: mltool [-a algorithm] --in input_file\n";
            parser.print_options(std::cout);
            std::cout << std::endl;
            exit (0);
        }

        // Check that an input file was given
        if (!parser.option("in")) {
            std::cout 
                << "Error in command line:\n"
                << "You must specify an input file with the --in option.\n"
                << "\nTry the -h option for more information\n";
            exit (0);
        }
    }
    catch (std::exception& e) {
        // Catch cmd_line_parse_error exceptions and print usage message.
        std::cout << e.what() << std::endl;
        exit (1);
    }
    catch (...) {
        std::cout << "Some error occurred" << std::endl;
    }
}
Beispiel #14
0
int resample_dataset(const command_line_parser& parser)
{
    if (parser.number_of_arguments() != 1)
    {
        cerr << "The --resample option requires you to give one XML file on the command line." << endl;
        return EXIT_FAILURE;
    }

    const size_t obj_size = get_option(parser,"cropped-object-size",100*100); 
    const double margin_scale =  get_option(parser,"crop-size",2.5); // cropped image will be this times wider than the object.
    const unsigned long min_object_size = get_option(parser,"min-object-size",1);
    const bool one_object_per_image = parser.option("one-object-per-image");

    dlib::image_dataset_metadata::dataset data, resampled_data;
    std::ostringstream sout;
    sout << "\nThe --resample parameters which generated this dataset were:" << endl;
    sout << "   cropped-object-size: "<< obj_size << endl;
    sout << "   crop-size: "<< margin_scale << endl;
    sout << "   min-object-size: "<< min_object_size << endl;
    if (one_object_per_image)
        sout << "   one_object_per_image: true" << endl;
    resampled_data.comment = data.comment + sout.str();
    resampled_data.name = data.name + " RESAMPLED";

    load_image_dataset_metadata(data, parser[0]);
    locally_change_current_dir chdir(get_parent_directory(file(parser[0])));
    dlib::rand rnd;

    const size_t image_size = std::round(std::sqrt(obj_size*margin_scale*margin_scale));
    const chip_dims cdims(image_size, image_size);

    console_progress_indicator pbar(data.images.size());
    for (unsigned long i = 0; i < data.images.size(); ++i)
    {
        // don't even bother loading images that don't have objects.
        if (data.images[i].boxes.size() == 0)
            continue;

        pbar.print_status(i);
        array2d<rgb_pixel> img, chip;
        load_image(img, data.images[i].filename);


        // figure out what chips we want to take from this image
        for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
        {
            const rectangle rect = data.images[i].boxes[j].rect;
            if (data.images[i].boxes[j].ignore || rect.area() < min_object_size)
                continue;

            const auto max_dim = std::max(rect.width(), rect.height());

            const double rand_scale_perturb = 1 - 0.3*(rnd.get_random_double()-0.5);
            const rectangle crop_rect = centered_rect(rect, max_dim*margin_scale*rand_scale_perturb, max_dim*margin_scale*rand_scale_perturb);

            const rectangle_transform tform = get_mapping_to_chip(chip_details(crop_rect, cdims));
            extract_image_chip(img, chip_details(crop_rect, cdims), chip);

            image_dataset_metadata::image dimg;
            // Now transform the boxes to the crop and also mark them as ignored if they
            // have already been cropped out or are outside the crop.
            for (size_t k = 0; k < data.images[i].boxes.size(); ++k)
            {
                image_dataset_metadata::box box = data.images[i].boxes[k];
                // ignore boxes outside the cropped image
                if (crop_rect.intersect(box.rect).area() == 0)
                    continue;

                // mark boxes we include in the crop as ignored.  Also mark boxes that
                // aren't totally within the crop as ignored.
                if (crop_rect.contains(grow_rect(box.rect,10)) && (!one_object_per_image || k==j))
                    data.images[i].boxes[k].ignore = true;
                else
                    box.ignore = true;

                if (box.rect.area() < min_object_size)
                    box.ignore = true;

                box.rect = tform(box.rect);
                for (auto&& p : box.parts)
                    p.second = tform.get_tform()(p.second);
                dimg.boxes.push_back(box);
            }
            // Put a 64bit hash of the image data into the name to make sure there are no
            // file name conflicts.
            std::ostringstream sout;
            sout << hex << murmur_hash3_128bit(&chip[0][0], chip.size()*sizeof(chip[0][0])).second;
            dimg.filename = data.images[i].filename + "_RESAMPLED_"+sout.str()+".png";

            if (parser.option("jpg"))
            {
                dimg.filename = to_jpg_name(dimg.filename);
                save_jpeg(chip,dimg.filename, JPEG_QUALITY);
            }
            else
            {
                save_png(chip,dimg.filename);
            }
            resampled_data.images.push_back(dimg);
        }
    }

    save_image_dataset_metadata(resampled_data, parser[0] + ".RESAMPLED.xml");

    return EXIT_SUCCESS;
}
Beispiel #15
0
void rotate_dataset(const command_line_parser& parser)
{
    image_dataset_metadata::dataset metadata;
    const string datasource = parser[0];
    load_image_dataset_metadata(metadata,datasource);

    double angle = get_option(parser, "rotate", 0);

    // Set the current directory to be the one that contains the
    // metadata file. We do this because the file might contain
    // file paths which are relative to this folder.
    set_current_dir(get_parent_directory(file(datasource)));

    const string file_prefix = "rotated_"+ cast_to_string(angle) + "_";
    const string metadata_filename = get_parent_directory(file(datasource)).full_name() +
        directory::get_separator() + file_prefix + file(datasource).name();


    array2d<rgb_pixel> img, temp;
    for (unsigned long i = 0; i < metadata.images.size(); ++i)
    {
        file f(metadata.images[i].filename);
        string filename = get_parent_directory(f).full_name() + directory::get_separator() + file_prefix + to_png_name(f.name());

        load_image(img, metadata.images[i].filename);
        const point_transform_affine tran = rotate_image(img, temp, angle*pi/180);
        if (parser.option("jpg"))
        {
            filename = to_jpg_name(filename);
            save_jpeg(temp, filename,JPEG_QUALITY);
        }
        else
        {
            save_png(temp, filename);
        }

        for (unsigned long j = 0; j < metadata.images[i].boxes.size(); ++j)
        {
            const rectangle rect = metadata.images[i].boxes[j].rect;
            rectangle newrect;
            newrect += tran(rect.tl_corner());
            newrect += tran(rect.tr_corner());
            newrect += tran(rect.bl_corner());
            newrect += tran(rect.br_corner());
            // now make newrect have the same area as the starting rect.
            double ratio = std::sqrt(rect.area()/(double)newrect.area());
            newrect = centered_rect(newrect, newrect.width()*ratio, newrect.height()*ratio);
            metadata.images[i].boxes[j].rect = newrect;

            // rotate all the object parts
            std::map<std::string,point>::iterator k;
            for (k = metadata.images[i].boxes[j].parts.begin(); k != metadata.images[i].boxes[j].parts.end(); ++k)
            {
                k->second = tran(k->second); 
            }
        }

        metadata.images[i].filename = filename;
    }

    save_image_dataset_metadata(metadata, metadata_filename);
}