Beispiel #1
0
float EdgeDistance(float2 const & grad, float val)
{
	float df;
	if ((0 == grad.x()) || (0 == grad.y()))
	{
		df = 0.5f - val;
	}
	else
	{
		float2 n_grad = MathLib::abs(MathLib::normalize(grad));
		if (n_grad.x() < n_grad.y())
		{
			std::swap(n_grad.x(), n_grad.y());
		}

		float v1 = 0.5f * n_grad.y() / n_grad.x();
		if (val < v1)
		{
			df = 0.5f * (n_grad.x() + n_grad.y()) - MathLib::sqrt(2 * n_grad.x() * n_grad.y() * val);
		}
		else if (val < 1 - v1)
		{
			df = (0.5f - val) * n_grad.x();
		}
		else
		{
			df = -0.5f * (n_grad.x() + n_grad.y()) + MathLib::sqrt(2 * n_grad.x() * n_grad.y() * (1 - val));
		}
	}
	return df;
}
Beispiel #2
0
void InitPhysics(const float2 &gv)
{
	// FIXME: check that shaders are initialized, since renderables depend on that
	CleanPhysics();
	world = new b2World(b2Vec2(gv.x(), gv.y()));
	fixtures = new IntResourceManagerCompact<b2Fixture>([](b2Fixture *fixture)
	{
		delete (Renderable *)fixture->GetUserData();
	});
}
Beispiel #3
0
// 2D Multi-octave Simplex noise.
//
// For each octave, a higher frequency/lower amplitude function will be added to the original.
// The higher the persistence [0-1], the more of each succeeding octave will be added.
float simplexNoise( const int octaves, const float persistence, const float scale, const float2 &v ) {
    float total = 0;
    float frequency = scale;
    float amplitude = 1;

    // We have to keep track of the largest possible amplitude,
    // because each octave adds more, and we need a value in [-1, 1].
    float maxAmplitude = 0;

    for( int i=0; i < octaves; i++ ) {
        total += simplexRawNoise( v.x() * frequency, v.y() * frequency ) * amplitude;

        frequency *= 2;
        maxAmplitude += amplitude;
        amplitude *= persistence;
    }

    return total / maxAmplitude;
}
Beispiel #4
0
	void SDSMCascadedShadowLayer::UpdateCascades(Camera const & camera, float4x4 const & light_view_proj,
			float3 const & light_space_border)
	{
		RenderFactory& rf = Context::Instance().RenderFactoryInstance();
		RenderEngine& re = rf.RenderEngineInstance();

		uint32_t const num_cascades = static_cast<uint32_t>(intervals_.size());
		uint32_t const copy_index = frame_index_ & 1;
		uint32_t const read_back_index = (0 == frame_index_) ? copy_index : !copy_index;

		if (cs_support_)
		{
			re.BindFrameBuffer(FrameBufferPtr());

			float max_blur_light_space = 8.0f / 1024;
			float3 max_cascade_scale(max_blur_light_space / light_space_border.x(),
				max_blur_light_space / light_space_border.y(),
				std::numeric_limits<float>::max());

			int const TILE_DIM = 128;

			int dispatch_x = (depth_tex_->Width(0) + TILE_DIM - 1) / TILE_DIM;
			int dispatch_y = (depth_tex_->Height(0) + TILE_DIM - 1) / TILE_DIM;

			*interval_buff_param_ = interval_buff_;
			*interval_buff_uint_param_ = interval_buff_;
			*interval_buff_read_param_ = interval_buff_;
			*cascade_min_buff_uint_param_ = cascade_min_buff_;
			*cascade_max_buff_uint_param_ = cascade_max_buff_;
			*cascade_min_buff_read_param_ = cascade_min_buff_;
			*cascade_max_buff_read_param_ = cascade_max_buff_;
			*scale_buff_param_ = scale_buff_;
			*bias_buff_param_ = bias_buff_;
			*depth_tex_param_ = depth_tex_;
			*num_cascades_param_ = static_cast<int32_t>(num_cascades);
			*inv_depth_width_height_param_ = float2(1.0f / depth_tex_->Width(0), 1.0f / depth_tex_->Height(0));
			*near_far_param_ = float2(camera.NearPlane(), camera.FarPlane());
			float4x4 const & inv_proj = camera.InverseProjMatrix();
			float3 upper_left = MathLib::transform_coord(float3(-1, +1, 1), inv_proj);
			float3 upper_right = MathLib::transform_coord(float3(+1, +1, 1), inv_proj);
			float3 lower_left = MathLib::transform_coord(float3(-1, -1, 1), inv_proj);
			*upper_left_param_ = upper_left;
			*xy_dir_param_ = float2(upper_right.x() - upper_left.x(), lower_left.y() - upper_left.y());
			*view_to_light_view_proj_param_ = camera.InverseViewMatrix() * light_view_proj;
			*light_space_border_param_ = light_space_border;
			*max_cascade_scale_param_ = max_cascade_scale;

			re.Dispatch(*clear_z_bounds_tech_, 1, 1, 1);
			re.Dispatch(*reduce_z_bounds_from_depth_tech_, dispatch_x, dispatch_y, 1);
			re.Dispatch(*compute_log_cascades_from_z_bounds_tech_, 1, 1, 1);
			re.Dispatch(*clear_cascade_bounds_tech_, 1, 1, 1);
			re.Dispatch(*reduce_bounds_from_depth_tech_, dispatch_x, dispatch_y, 1);
			re.Dispatch(*compute_custom_cascades_tech_, 1, 1, 1);

			interval_buff_->CopyToBuffer(*interval_cpu_buffs_[copy_index]);
			scale_buff_->CopyToBuffer(*scale_cpu_buffs_[copy_index]);
			bias_buff_->CopyToBuffer(*bias_cpu_buffs_[copy_index]);

			GraphicsBuffer::Mapper interval_mapper(*interval_cpu_buffs_[read_back_index], BA_Read_Only);
			GraphicsBuffer::Mapper scale_mapper(*scale_cpu_buffs_[read_back_index], BA_Read_Only);
			GraphicsBuffer::Mapper bias_mapper(*bias_cpu_buffs_[read_back_index], BA_Read_Only);
			float2* interval_ptr = interval_mapper.Pointer<float2>();
			float3* scale_ptr = scale_mapper.Pointer<float3>();
			float3* bias_ptr = bias_mapper.Pointer<float3>();

			for (size_t i = 0; i < intervals_.size(); ++ i)
			{
				float3 const & scale = scale_ptr[i];
				float3 const & bias = bias_ptr[i];

				intervals_[i] = interval_ptr[i];
				scales_[i] = scale;
				biases_[i] = bias;
			}
		}
		else
		{
			float2 const near_far(camera.NearPlane(), camera.FarPlane());

			reduce_z_bounds_from_depth_pp_->SetParam(1, near_far);
			reduce_z_bounds_from_depth_pp_->Apply();

			for (uint32_t i = 1; i < depth_deriative_tex_->NumMipMaps(); ++ i)
			{
				int width = depth_deriative_tex_->Width(i - 1);
				int height = depth_deriative_tex_->Height(i - 1);

				float delta_x = 1.0f / width;
				float delta_y = 1.0f / height;
				float4 delta_offset(delta_x, delta_y, -delta_x / 2, -delta_y / 2);			
				reduce_z_bounds_from_depth_mip_map_pp_->SetParam(0, delta_offset);

				reduce_z_bounds_from_depth_mip_map_pp_->OutputPin(0, depth_deriative_small_tex_, i - 1);
				reduce_z_bounds_from_depth_mip_map_pp_->Apply();

				int sw = depth_deriative_tex_->Width(i);
				int sh = depth_deriative_tex_->Height(i);

				depth_deriative_small_tex_->CopyToSubTexture2D(*depth_deriative_tex_, 0, i, 0, 0, sw, sh,
					0, i - 1, 0, 0, sw, sh);
			}

			compute_log_cascades_from_z_bounds_pp_->SetParam(1, static_cast<int32_t>(num_cascades));
			compute_log_cascades_from_z_bounds_pp_->SetParam(2, near_far);
			compute_log_cascades_from_z_bounds_pp_->Apply();

			interval_tex_->CopyToSubTexture2D(*interval_cpu_texs_[copy_index], 0, 0, 0, 0, num_cascades, 1,
				0, 0, 0, 0, num_cascades, 1);

			Texture::Mapper interval_mapper(*interval_cpu_texs_[read_back_index], 0, 0,
				TMA_Read_Only, 0, 0, num_cascades, 1);
			Vector_T<half, 2>* interval_ptr = interval_mapper.Pointer<Vector_T<half, 2> >();

			for (size_t i = 0; i < intervals_.size(); ++ i)
			{
				float2 const interval(static_cast<float>(interval_ptr[i].x()),
					static_cast<float>(interval_ptr[i].y()));

				AABBox aabb = CalcFrustumExtents(camera, interval.x(), interval.y(), light_view_proj);

				aabb &= AABBox(float3(-1, -1, -1), float3(+1, +1, +1));

				aabb.Min() -= light_space_border;
				aabb.Max() += light_space_border;

				aabb.Min().x() = +aabb.Min().x() * 0.5f + 0.5f;
				aabb.Min().y() = -aabb.Min().y() * 0.5f + 0.5f;
				aabb.Max().x() = +aabb.Max().x() * 0.5f + 0.5f;
				aabb.Max().y() = -aabb.Max().y() * 0.5f + 0.5f;

				std::swap(aabb.Min().y(), aabb.Max().y());

				float3 const scale = float3(1.0f, 1.0f, 1.0f) / (aabb.Max() - aabb.Min());
				float3 const bias = -aabb.Min() * scale;

				intervals_[i] = interval;
				scales_[i] = scale;
				biases_[i] = bias;
			}
		}

		this->UpdateCropMats();

		++ frame_index_;
	}
Beispiel #5
0
	void Blur::GaussBlur(
		const Ptr<ShaderResourceView> & src,
		const Ptr<RenderTargetView> & dst,
		int2 numSamples,
		float2 blurRadius)
	{
		auto dstTex = dst->GetResource()->Cast<Texture>();
		auto mipSize = dstTex->GetMipSize(dst->Cast<TextureRenderTargetView>()->mipLevel);

		TextureDesc texDesc = dst->GetResource()->Cast<Texture>()->GetDesc();
		texDesc.width = mipSize.x();
		texDesc.height = mipSize.y();
		texDesc.depth = 1;
		texDesc.arraySize = 1;
		texDesc.mipLevels = 1;
		auto tmpTex = TexturePool::Instance().FindFree({ TEXTURE_2D, texDesc });

		GaussBlurX(src, tmpTex->Get()->Cast<Texture>()->GetRenderTargetView(0, 0, 1), numSamples.x(), blurRadius.x());

		GaussBlurY(tmpTex->Get()->Cast<Texture>()->GetShaderResourceView(0, 1, 0, 1), dst, numSamples.y(), blurRadius.y());
	}
Beispiel #6
0
b2Vec2 Float2ToB2(const float2 &v) { return b2Vec2(v.x(), v.y()); }