Beispiel #1
0
void fullMatrix<double>::gemm(const fullMatrix<double> &a, const fullMatrix<double> &b,
                              double alpha, double beta, bool transposeA, bool transposeB)
{
  int M = size1(), N = size2(), K = transposeA ? a.size1() : a.size2();
  int LDA = a.size1(), LDB = b.size1(), LDC = size1();
  F77NAME(dgemm)(transposeA ? "T" : "N", transposeB ? "T" :"N", &M, &N, &K, &alpha, a._data, &LDA, b._data, &LDB,
                 &beta, _data, &LDC);
}
Beispiel #2
0
void fullMatrix<double>::multOnBlock(const fullMatrix<double> &b, const int ncol, const int fcol, const int alpha_, const int beta_, fullVector<double> &c) const
{
  int M = 1, N = ncol, K = b.size1() ;
  int LDA = _r, LDB = b.size1(), LDC = 1;
  double alpha = alpha_, beta = beta_;
  F77NAME(dgemm)("N", "N", &M, &N, &K, &alpha, _data, &LDA, &(b._data[fcol*K]), &LDB,
                 &beta, &(c._data[fcol]), &LDC);
}
Beispiel #3
0
void fullMatrix<double>::mult(const fullMatrix<double> &b, fullMatrix<double> &c) const
{
  int M = c.size1(), N = c.size2(), K = _c;
  int LDA = _r, LDB = b.size1(), LDC = c.size1();
  double alpha = 1., beta = 0.;
  F77NAME(dgemm)("N", "N", &M, &N, &K, &alpha, _data, &LDA, b._data, &LDB,
                 &beta, c._data, &LDC);
}
Beispiel #4
0
void PViewFactory::setEntry (int id, const fullMatrix<double> &val)
{
  std::vector<double> &vv = _values[id];
  vv.resize(val.size1()*val.size2());
  int k=0;
  for (int i=0;i<val.size1(); i++) {
    for (int j=0;j<val.size2(); j++) {
      vv[k++] = val(i,j);
    }
  }
}
Beispiel #5
0
bool fullMatrix<double>::invert(fullMatrix<double> &result) const
{
  int M = size1(), N = size2(), lda = size1(), info;
  int *ipiv = new int[std::min(M, N)];
  if (result.size2() != M || result.size1() != N) {
    if (result._own_data || !result._data)
      result.resize(M,N,false);
    else
      Msg::Fatal("FullMatrix: Bad dimension, I cannot write in proxy");
  }
  result.setAll(*this);
  F77NAME(dgetrf)(&M, &N, result._data, &lda, ipiv, &info);
  if(info == 0){
    int lwork = M * 4;
    double *work = new double[lwork];
    F77NAME(dgetri)(&M, result._data, &lda, ipiv, work, &lwork, &info);
    delete [] work;
  }
  delete [] ipiv;
  if(info == 0) return true;
  else if(info > 0)
    Msg::Error("U(%d,%d)=0 in matrix inversion", info, info);
  else
    Msg::Error("Wrong %d-th argument in matrix inversion", -info);
  return false;
}
Beispiel #6
0
void polynomialBasis::df(const fullMatrix<double> &coord,
                         fullMatrix<double> &dfm) const
{
  double dfv[1256][3];
  dfm.resize(coord.size1() * 3, coefficients.size1(), false);
  int dimCoord = coord.size2();
  for(int iPoint = 0; iPoint < coord.size1(); iPoint++) {
    df(coord(iPoint, 0), dimCoord > 1 ? coord(iPoint, 1) : 0.,
       dimCoord > 2 ? coord(iPoint, 2) : 0., dfv);
    for(int i = 0; i < coefficients.size1(); i++) {
      dfm(iPoint * 3 + 0, i) = dfv[i][0];
      dfm(iPoint * 3 + 1, i) = dfv[i][1];
      dfm(iPoint * 3 + 2, i) = dfv[i][2];
    }
  }
}
Beispiel #7
0
void polynomialBasis::f(const fullMatrix<double> &coord,
                        fullMatrix<double> &sf) const
{
  double p[1256];
  sf.resize(coord.size1(), coefficients.size1());
  for(int iPoint = 0; iPoint < coord.size1(); iPoint++) {
    evaluateMonomials(coord(iPoint, 0),
                      coord.size2() > 1 ? coord(iPoint, 1) : 0,
                      coord.size2() > 2 ? coord(iPoint, 2) : 0, p);
    for(int i = 0; i < coefficients.size1(); i++) {
      sf(iPoint, i) = 0.;
      for(int j = 0; j < coefficients.size2(); j++)
        sf(iPoint, i) += coefficients(i, j) * p[j];
    }
  }
}
Beispiel #8
0
void linearSystemPETSc<fullMatrix<double> >::addToMatrix(int row, int col,
                                               const fullMatrix<double> &val)
{
  if (!_entriesPreAllocated)
    preAllocateEntries();
  #ifdef PETSC_USE_COMPLEX
  fullMatrix<std::complex<double> > modval(val.size1(), val.size2());
  for (int ii = 0; ii < val.size1(); ii++) {
    for (int jj = 0; jj < val.size1(); jj++) {
      modval(ii, jj) = val (jj, ii);
      modval(jj, ii) = val (ii, jj);
    }
  }
  #else
  fullMatrix<double> &modval = *const_cast<fullMatrix<double> *>(&val);
  for (int ii = 0; ii < val.size1(); ii++) {
    for (int jj = 0; jj < ii; jj++) {
      PetscScalar buff = modval(ii, jj);
      modval(ii, jj) = modval (jj, ii);
      modval(jj, ii) = buff;
    }
  }
  #endif
  PetscInt i = row, j = col;
  MatSetValuesBlocked(_a, 1, &i, 1, &j, &modval(0,0), ADD_VALUES);
  //transpose back so that the original matrix is not modified
  #ifndef PETSC_USE_COMPLEX
  for (int ii = 0; ii < val.size1(); ii++)
    for (int jj = 0; jj < ii; jj++) {
      PetscScalar buff = modval(ii,jj);
      modval(ii, jj) = modval (jj,ii);
      modval(jj, ii) = buff;
    }
  #endif
  _valuesNotAssembled = true;
}
Beispiel #9
0
bool fullMatrix<double>::svd(fullMatrix<double> &V, fullVector<double> &S)
{
  fullMatrix<double> VT(V.size2(), V.size1());
  int M = size1(), N = size2(), LDA = size1(), LDVT = VT.size1(), info;
  int lwork = std::max(3 * std::min(M, N) + std::max(M, N), 5 * std::min(M, N));
  fullVector<double> WORK(lwork);
  F77NAME(dgesvd)("O", "A", &M, &N, _data, &LDA, S._data, _data, &LDA,
                  VT._data, &LDVT, WORK._data, &lwork, &info);
  V = VT.transpose();
  if(info == 0) return true;
  if(info > 0)
    Msg::Error("SVD did not converge");
  else
    Msg::Error("Wrong %d-th argument in SVD decomposition", -info);
  return false;
}
Beispiel #10
0
void ana(double (*f)(fullVector<double>& xyz),
         const fullMatrix<double>& point,
         fullMatrix<double>& eval){
  // Alloc eval for Scalar Values //
  const size_t nPoint = point.size1();
  eval.resize(nPoint, 1);

  // Loop on point and evaluate f //
  fullVector<double> xyz(3);
  for(size_t i = 0; i < nPoint; i++){
    xyz(0) = point(i, 0);
    xyz(1) = point(i, 1);
    xyz(2) = point(i, 2);

    eval(i, 0) = f(xyz);
  }
}
Beispiel #11
0
double taylorDistanceSq1D(const GradientBasis *gb, const fullMatrix<double> &nodesXYZ,
                          const std::vector<SVector3> &tanCAD)
{
  const int nV = nodesXYZ.size1();
  fullMatrix<double> dxyzdX(nV, 3);
  gb->getGradientsFromNodes(nodesXYZ, &dxyzdX, 0, 0);
//  const double dx = nodesXYZ(1, 0) - nodesXYZ(0, 0), dy = nodesXYZ(1, 1) - nodesXYZ(0, 1),
//               dz = nodesXYZ(1, 2) - nodesXYZ(0, 2), h = 0.5*sqrt(dx*dx+dy*dy+dz*dz)/double(nV-1);
  double distSq = 0.;
  for (int i=0; i<nV; i++) {
    SVector3 tanMesh(dxyzdX(i, 0), dxyzdX(i, 1), dxyzdX(i, 2));
    const double h = 0.25*tanMesh.normalize();                                            // Half of "local edge length"
    SVector3 diff = (dot(tanCAD[i], tanMesh) > 0) ?
                    tanCAD[i] - tanMesh : tanCAD[i] + tanMesh;
    distSq += h*h*diff.normSq();
  }
  return distSq;
}
Beispiel #12
0
double l2Norm(const fullMatrix<double>& valA, const fullMatrix<double>& valB){
  const size_t nPoint = valA.size1();
  const size_t    dim = valA.size2();

  double norm = 0;
  double modSquare = 0;

  for(size_t i = 0; i < nPoint; i++){
    modSquare = 0;

    for(size_t j = 0; j < dim; j++)
      modSquare += (valA(i, j) - valB(i, j)) * (valA(i, j) - valB(i, j));

    norm += modSquare;
  }

  return norm = sqrt(norm);
}
Beispiel #13
0
double taylorDistanceSq2D(const GradientBasis *gb, const fullMatrix<double> &nodesXYZ,
                          const std::vector<SVector3> &normCAD)
{
  const int nV = nodesXYZ.size1();
  fullMatrix<double> dxyzdX(nV, 3), dxyzdY(nV, 3);
  gb->getGradientsFromNodes(nodesXYZ, &dxyzdX, &dxyzdY, 0);
  double distSq = 0.;
  for (int i=0; i<nV; i++) {
    const double nz = dxyzdX(i, 0) * dxyzdY(i, 1) - dxyzdX(i, 1) * dxyzdY(i, 0);
    const double ny = -dxyzdX(i, 0) * dxyzdY(i, 2) + dxyzdX(i, 2) * dxyzdY(i, 0);
    const double nx = dxyzdX(i, 1) * dxyzdY(i, 2) - dxyzdX(i, 2) * dxyzdY(i, 1);
    SVector3 normMesh(nx, ny, nz);
    const double h = 0.25*sqrt(normMesh.normalize());                                     // Half of sqrt of "local area", to be adjusted w.r.t. el. type?
    SVector3 diff = (dot(normCAD[i], normMesh) > 0) ?
                    normCAD[i] - normMesh : normCAD[i] + normMesh;
    distSq += h*h*diff.normSq();
  }
  return distSq;
}
Beispiel #14
0
void pyramidalBasis::f(const fullMatrix<double> &coord, fullMatrix<double> &sf) const
{

  const int N = bergot->size(), NPts = coord.size1();

  sf.resize(NPts, N);
  double *fval = new double[N];

  for (int iPt=0; iPt<NPts; iPt++) {
    bergot->f(coord(iPt,0), coord(iPt,1), coord(iPt,2), fval);
    for (int i = 0; i < N; i++) {
      sf(iPt,i) = 0.;
      for (int j = 0; j < N; j++) sf(iPt,i) += coefficients(i,j)*fval[j];
    }
  }

  delete[] fval;

}
Beispiel #15
0
void pyramidalBasis::df(const fullMatrix<double> &coord, fullMatrix<double> &dfm) const
{

  const int N = bergot->size(), NPts = coord.size1();

  double (*dfv)[3] = new double[N][3];
  dfm.resize (N, 3*NPts, false);

  for (int iPt=0; iPt<NPts; iPt++) {
    df(coord(iPt,0), coord(iPt,1), coord(iPt,2), dfv);
    for (int i = 0; i < N; i++) {
      dfm(i, 3*iPt) = dfv[i][0];
      dfm(i, 3*iPt+1) = dfv[i][1];
      dfm(i, 3*iPt+2) = dfv[i][2];
    }
  }

  delete[] dfv;

}
Beispiel #16
0
void write(bool isScalar, const fullMatrix<double>& l2, string name){
  // Stream
  ofstream stream;
  string   fileName;
  if(isScalar)
    fileName = name + "Node.m";
  else
    fileName = name + "Edge.m";

  stream.open(fileName.c_str());

  // Matrix data
  const size_t l2Row      = l2.size1();
  const size_t l2ColMinus = l2.size2() - 1;

  // Clean Octave
  stream << "close all;" << endl
         << "clear all;" << endl
         << endl;

  // Mesh (Assuming uniform refinement)
  stream << "h = [1, ";
  for(size_t i = 1; i < l2ColMinus; i++)
    stream << 1 / pow(2, i) << ", ";

  stream << 1 / pow(2, l2ColMinus) << "];" << endl;

  // Order (Assuming uniform refinement)
  stream << "p = [1:" << l2Row << "];" << endl
         << endl;

  // Matrix of l2 error (l2[Order][Mesh])
  stream << "l2 = ..." << endl
         << "    [..." << endl;

  for(size_t i = 0; i < l2Row; i++){
    stream << "        ";

    for(size_t j = 0; j < l2ColMinus; j++)
      stream << scientific << showpos
             << l2(i, j) << " , ";

    stream << scientific << showpos
           << l2(i, l2ColMinus) << " ; ..." << endl;
  }

  stream << "    ];" << endl
         << endl;

  // Delta
  stream << "P = size(p, 2);"                                   << endl
         << "H = size(h, 2);"                                   << endl
         << endl
         << "delta = zeros(P, H - 1);"                          << endl
         << endl
         << "for i = 1:H-1"                                     << endl
         << "  delta(:, i) = ..."                               << endl
         << "    (log10(l2(:, i + 1)) - log10(l2(:, i))) / ..." << endl
         << "    (log10(1/h(i + 1))   - log10(1/h(i)));"        << endl
         << "end"                                               << endl
         << endl
         << "delta"                                             << endl
         << endl;

  // Plot
  stream << "figure;"                  << endl
         << "loglog(1./h, l2', '-*');" << endl
         << "grid;"
         << endl;

  // Title
  stream << "title(" << "'" << name << ": ";
  if(isScalar)
    stream << "Nodal";
  else
    stream << "Edge";

  stream << "');" << endl
         << endl;

  // Axis
  stream << "xlabel('1/h [-]');"      << endl
         << "ylabel('L2 Error [-]');" << endl;
  // Close
  stream.close();
}